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Abstract
This research work investigates the existence of semianalytical solutions of a chemical
kinematics model. We develop the conditions for the existence of the solutions for a
proposed enzyme kinetics model, via tools of the fixed point theory. The
semianalytical results were obtained with the help of Laplace transformation and
Adomian decomposition method. The results established by the proposed
techniques are in the form of infinite series. Furthermore, with extending homotopy
perturbation method (HPM), we develop a series solutions for the considered model.
By using Matlab, we present the approximate solution for both methods up to a few
series terms.
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1 Introduction
Recently, experimental evidence shows that dynamics problems in nature follow a frac-
tional calculus analysis. The relevant field of research is a fast growing area, due to its nu-
merous applications in diverse and widespread fields of engineering and science; such as
chemical models, physics, signal and image processing, quantum mechanics, control the-
ory, nonlinear dynamics, biological population models, optimization theory, and much
more [1–10]. Instantly, it is evident that dealing with a dynamical system with memory
effects is one of the biggest challenges for researchers. Fractional calculus has a direct link
to dynamical systems (with memory effect). Therefore, fractional differential equations
(FDEs) present a novel technique developed to model phenomena related to the dynamics
of the aforesaid fields of science [11–14]. Fractional derivatives are global in nature and
offer a greater degree of freedom compared to the conventional derivatives. Numerous
researchers have investigated various features of FDEs concerning the existence, stabil-
ity analysis, and approximate solutions. They utilized different techniques of fixed-point
theory and numerical analysis to investigate the existence theory, stability analysis, and
approximate solutions of FDEs [15–18].

An important aspect of the this concerned field is mathematical modeling, which is a
tool that describes almost all dynamical phenomena in mathematical language and con-
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cepts. Mathematical modeling is an effective technique that produces some of the best
results for optimization and quantitative productivity (see [19, 20]). The mathematical
approach for enzymes’ kinetics has been discussed in different articles, and also different
mathematical techniques have been used for analytical solution of proposed models of
chemical reactions (see [19, 21–25]). In this regard, Sharpe and Lotka in 1923 studied a
kinematic enzyme in mathematical form for ecology and epidemiology. Along the same
lines, L. Michaelis and M. Menton [23] proposed a mathematical model for a basic reac-
tion of an enzyme given by

S + E �η1
η2 [SE] →η3 P + E. (1)

Studying the chemical reaction (1), one can infer that when enzyme E of one molecule is
combined with substrate S of one molecule we will obtain a complex SE of one molecule.
Here η1 denotes the rate of formation of enzyme, η2 is the rate of creation of the product.
Assume that the concentrations of S, E, SE are equal to S , E , C , respectively, i.e.,

[S] = S , [E] = E , [SE] = C,

where the concentration of a substance is represented by square brackets [ ]. The author
in [26] used the law of mass action to derive the following four nonlinear differential equa-
tions:

Ṡ(τ ) = η2C – η1ES ,

Ė(τ ) = η3C + η2C – η1ES ,

Ċ(τ ) = –η3C – η2C + η1ES ,

Ṗ(τ ) = η3C.

(2)

In addition, one supplements the conditions S(0) = S0, C(0) = 0, E(0) = E0, and P(0) = 0.
Here η1, η2, η3, S0, and E0 are positive constants.

Alicea [24] solved the system of chemical reaction (2) by using multiple time scales
method asymptotically. Alawneh [27] solved model (2) by a generalized differential trans-
form method with multisteps and discussed the estimation analysis via fractional order
derivative. Using the physical interpretation of the solution of system (2) with concentra-
tions S , E , C , and P at any time τ obtained mathematically, one observes that most of
the time it does not coincide with the results obtained experimentally. In order to over-
come such deficiency, one way is to use another type of differential operator instead of
integer order derivative, which is usually known as fractional derivative. The researchers
paid considerable attention to the aforementioned class of derivatives because they are
more flexible and accurate compared with the classical derivatives, we refer the interested
readers to [4, 28]. Keeping these applications of fractional differential operator in mind,
we introduce the following noninteger order enzyme kinematic system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDμS(τ ) = η2C – η1ES ,
cDμC(τ ) = –η3C – η2C + η1ES ,
cDμE(τ ) = η3C + η2C – η1ES ,
cDμP(τ ) = η3C,

(3)
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subject to the initial conditions S(0) = n1, C(0) = n3, E(0) = n2, P(0) = n4, where cDμ is
noninteger order Caputo derivative and 0 < μ < 1. Further, n1, n2 > 0 and n3 ≥ 0, n4 ≥ 0.
In the proposed system (3), the supplied conditions are independent of each other and also
satisfy the relation M(τ ) = S(τ ) + C(τ ) + E(τ ) +P(τ ). The value of M is used to represent
terms presented in the concerned system of reactions.

Corresponding to model (3), we use the tools of fixed point theory to investigate some
results that ensure the existence of the aforementioned model and its solution. We utilize
Banach and Schauder’s theorems from the proposed existence theory. We obtained the
estimated solution of the model of noninteger order via Laplace transform combined with
Adomian decomposition method which is known as Laplace Adomian Decomposition
Method (LADM). LADM is an efficient technique by which we can find both explicit and
analytic solutions for the system of differential equations. Those techniques are efficient
and work outstandingly in both cases, i.e, in initial and boundary value problems. This
method also works accurately for a system of stochastic differential equations. LADM does
not need liberalization or perturbation like other existing computational and analytical
schemes that need exploring the dynamical behavior of complex dynamical systems. The
adopted techniques provide significant results for the solutions of FODEs, as well as for
analytical solutions for the variety of problems of nonlinear differential equations.

In this paper, we utilize techniques of Adomian polynomials to decompose the nonlin-
earity and Laplace transform to convert the problem in hand into the form of algebraic
equations, see [29]. Recently, the proposed techniques have been used to deal with non-
singular FODEs to obtain a very fruitful results (see [30]). To justify the results obtained via
proposed techniques, we use Maple-13 and assign different values for the parameters and
the supplied conditions. Furthermore, we remark that the obtained results via this method
are in a form of convergent series, converging to the exact result uniformly. Thanks to
the results of analysis obtained in [31–33], one can easily prove the convergence of the
proposed method. Also, we construct the He homotopy perturbation method (HPM) to
compute the concerned solutions for the proposed model. We compare both solutions
and this HPM method worked very well (see [34, 35]).

2 Preliminaries
To make things easier, in this section we provide some well-known definitions, theorems,
and lemmas. Their details are available in [4, 29, 30].

Definition 1 The fractional integral in the sense of Riemann–Liouville of an arbitrary
order μ for f ∈ L1([0,∞),R) is given as

Iμf (τ ) =
1

Γ (μ)

∫ τ

0
(τ – ς )μ–1f (ς ) dς ,

such that the integral on the right-hand side is defined on (0,∞).

Definition 2 The Caputo fractional order derivative of a function f is given by

cDμf (τ ) =
1

Γ (n – μ)

∫ τ

0
(τ – ς )n–μ–1f (n)(ς ) dς ,

the integral part of μ is represented by [μ] and n = [μ] + 1. The concerned derivative is
used through this work.
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Lemma 1 In case of fractional differential equations, the following result holds:

Iμ
[cDμh

]
(τ ) = h(τ ) + ξ0 + ξ1τ + ξ2τ

2 + · · · + ξn–1τ
n–1,

where ξk is any real number, k is a positive integer up to n – 1 and the integral part of μ is
denoted by [μ], while n = [μ] + 1.

Definition 3 The Laplace transform in the sense of proposed derivative (Caputo) as de-
fined by

L
{cDμy(τ )

}
= sμY (s) –

n–1∑

j=0

sμ–j–1y(j)(0), n – 1 < μ < n, n ∈ N .

3 Existence theory of enzyme kinetics model (3)
This section is devoted to determining existence results for the proposed problem (3). In
this connection, we define the following functions:

ψ1(τ ,S ,E ,C,P) = η2C – η1ES ,

ψ2(τ ,S ,E ,C,P) = η3C + η2C – η1ES ,

ψ3(τ ,S ,E ,C,P) = –η3C – η2C + η1ES ,

ψ4(τ ,S ,E ,C,P) = η3C.

Further, we set B = C[0, T] to be a Banach space with

‖X‖B = sup
τ∈[0,T]

[∣
∣S(τ )

∣
∣ +

∣
∣E(τ )

∣
∣ +

∣
∣C(τ )

∣
∣ +

∣
∣P(τ )

∣
∣
]
,

where

X(τ ) =

⎡

⎢
⎢
⎢
⎣

S
E
C
P

⎤

⎥
⎥
⎥
⎦

(τ ), X0 =

⎡

⎢
⎢
⎢
⎣

S0

E0

C0

P0

⎤

⎥
⎥
⎥
⎦

(t), H
(
t,X(t)

)
=

⎡

⎢
⎢
⎢
⎣

ψ1(τ ,S ,E ,C,P)
ψ2(τ ,S ,E ,C,P)
ψ3(τ ,S ,E ,C,P)
ψ4(τ ,S ,E ,C,P)

⎤

⎥
⎥
⎥
⎦

(τ ). (4)

Keeping in mind the above notation, system (3) may be expressed as

cDμ
X(t) = H

(
τ ,X(τ )

)
, τ ∈ [0, T],

X(0) = X0. (5)

In view of Iμ on both sides of (5), we have

X(τ ) = X0 +
∫ τ

0

(τ – y)μ–1

Γ (μ + 1)
H

(
y,X(y)

)
dy, τ ∈ [0, T]. (6)

Let us define A : B → B to be an operator by using (6) as

A(X) = X, τ ∈ [0, T]. (7)
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Further, we assume that the following hypothesis holds:
(T1) There exist constants CH, MH with

∣
∣H

(
τ ,X(τ )

)∣
∣ ≤ CH

∣
∣X(τ )

∣
∣ + MH, ∀X ∈ B.

(T2) There exists a constant LH > 0 such that, for every X,X ∈ B,

∣
∣H(τ ,X) – H(τ ,X)

∣
∣ ≤LH|X – X|.

We established the results for at least one solution by utilizing Leray–Schauder fixed point
theory.

Theorem 1 Under the continuity of H : [0, T] ×R4 → R and assumption (T1), equation
(7) has at least one fixed point. Consequently, the mathematical model (3) under consider-
ation has at least one solution with ωCH < 1, where ω = Tμ

Γ (μ+1) .

Proof Let assumption (T1) hold. Define a set D = {X(τ ) ∈ B : ‖X‖B ≤ ρ, τ ∈ [0, T]}, where
ρ ≥ max 
+ωMH

1–ωCH
. Clearly, D is a closed convex subset of B. Now we prove that A : D → D.

Letting X ∈ D, one has for |X0| = 
 , ω = Tμ

Γ (μ+1) ,

∣
∣AX(τ )

∣
∣ =

∣
∣
∣
∣X0 +

∫ τ

0

(τ – y)μ–1

Γ (μ)
H

(
y,X(y)

)
dy

∣
∣
∣
∣

≤ 
 +
∫ τ

0

(τ – y)μ–1

Γ (μ)
∣
∣H

(
y,X(y)

)∣
∣dy

≤ 
 + ωCHρ + ωMH

≤ ρ.

This means that ‖A(X)‖B ≤ ρ . Hence A(D) ⊂ D. Also A is continuous.
Letting τ1 < τ2 ∈ [0, T], we show that A is a completely continuous operator. For this, we

have

∣
∣AX(τ2) – AX(τ1)

∣
∣ =

∣
∣
∣
∣

∫ τ2

0

(τ2 – y)μ–1

Γ (μ)
H

(
y,X(y)

)
dy –

∫ τ1

0

(τ1 – y)μ–1

Γ (μ)
H

(
y,X(y)

)
dy

∣
∣
∣
∣

≤ (CHρ + ωMH)
Γ (μ + 1)

[
τ

μ
2 – τ

μ
1
]
. (8)

Now in (8), the right-hand side approaches zero when τ2 → τ1. Since A is bounded,

∥
∥AX(τ2) – AX(τ1)

∥
∥ → 0, as τ2 → τ1.

Thus by Arzelá–Ascoli theorem, A is relatively compact. Hence A is completely contin-
uous. Thus via Schauder theorem, system (3) has a solution. �

To ensure uniqueness of solution of (3), we have the next result.

Theorem 2 Under assumption (T2), system (3) has a unique solution if TμLH < Γ (μ + 1).
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Proof Here we state that the first equation in this proof is given in (6). Further, if X,X ∈ B,
A : B → B is the operator defined above. Consider

∥
∥A(X) – A(X)

∥
∥
B = max

τ∈[0,T]

∣
∣
∣
∣

∫ τ

0

(τ – y)μ–1

Γ (μ)
H

(
y,X(y)

)
dy –

∫ τ

0

(τ – y)μ–1

Γ (μ + 1)
H

(
y,X(y)

)
dy

∣
∣
∣
∣

≤ max
τ∈[0,T]

∫ τ

0

(τ – y)μ–1

Γ (μ)
∣
∣H

(
y,X(y)

)
– H

(
y,X(y)

)∣
∣dy

≤ TμLH
Γ (μ + 1)

‖X – X‖B . (9)

Hence, the operator A is a contraction. Thus the system has a unique solution. �

4 Construction of general solution via LADM
In this segment, we discuss the general procedure for solving the proposed system of reac-
tions (3) subject to the given conditions. Taking Laplace transform of the proposed model
(3) yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L{cDμS(τ )} = L{–η1ES + η2C},
L{cDμE(τ )} = L{–η1ES + η2C + η3C},
L{cDμC(τ )} = L{η1ES – η2C – η3C},
L{cDμP(τ )} = L{η3C},

(10)

then, by applying the transformation on (10), we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sμL{S(τ )} – sμ–1S(0) = L{–η1ES + η2C},
sμL{E(τ )} – sμ–1E(0) = L{–η1ES + η2C + η3C},
sμL{C(τ )} – sμ–1C(0) = L{η1ES – η2C – η3C},
sμL{P(τ )} – sμ–1P(0) = L{η3C}.

(11)

Subject to initial conditions, equation (11) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L[S(τ )] – n1
s = 1

sμ L{–η1ES + η2C},
L[E(τ )] – n2

s = 1
sμ L{–η1ES + η2C + η3C},

L[C(τ )] – n3
s = 1

sμ L{η1ES – η2C – η3C},
L[P(τ )] – n4

s = 1
sμ L{η3C}.

(12)

We look for a solutions in the form of infinite series for S(τ ), E(τ ), C(τ ), P(τ ) given as

S(τ ) =
∞∑

n=0

Sn(τ ), E(τ ) =
∞∑

n=0

En(τ ), C(τ ) =
∞∑

n=0

Cn(τ ),

P(τ ) =
∞∑

n=0

Pn(τ ).

(13)
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We decompose the nonlinear term involved in the proposed model E(τ )S(τ ) by “Adomian
polynomial” as

E(τ )S(τ ) =
∞∑

n=0

An(τ ), (14)

where the “Adomian polynomials” An are defined as

An =
1
n!

(
d

dλ

)n
[ n∑

k=0

λkEk

n∑

k=0

λkSk

]∣
∣
∣
∣
∣
λ=0

. (15)

Using (13) and (14) in system (12), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(S0) = n1
s , L(E0) = n2

s , L(C0) = n3
s , L(P0) = n4

s ,

L(S1) = 1
sμ L{–η1E0S0 + η2C0}, L(E1) = 1

sμ L{–η1E0S0 + η2C0 + η3C0},
L(C1) = 1

sμ L{η1E0S0 – η2C0 – η3C0}, L(P1) = 1
sμ L{η3C0},

L(S2) = 1
sμ L{–η1E1S1 + η2C1}, L(E2) = 1

sμ L{–η1E1S1 + η2C1 + η3C1},
L(C2) = 1

sμ L{η1E1S1 – η2C1 – η3C1}, L(P2) = 1
sμ L{η3C1},

...

L(Sn+1) = 1
sμ L{–η1EnSn + η2Cn}, L(En+1) = 1

sμ L{–η1EnSn + η2Cn + η3Cn},
L(Cn+1) = 1

sμ L{η1EnSn – η2Cn – η3Cn}, L(Pn+1) = 1
sμ L{η3Cn}.

(16)

Applying the inverse Laplace transform on (16), we have

S0 = L–�

(
n1

s

)

= n1, E0 = L–�

(
n2

s

)

= n2,

C0 = L–�

(
n3

s

)

= n3, P0 = L–�

(
n4

s

)

= n4,

S1 = (–η1n1n2 + η2n3)
τμ

Γ (μ + 1)
, E1 = (–η1n1n2 + η2n3 + η3n3)

τμ

Γ (μ + 1)
,

C1 =
(
η1n1n2 – (η2 + η3)n3

) τμ

Γ (μ + 1)
, P1 = (η3n3)

τμ

Γ (μ + 1)
,

S2 = –η1n2(–η1n1n2 + η2n3)
τ 2μ

Γ (2μ + 1)
– η1n1

(
–η1n1n2 + (η2 + η3)n3

) τ 2μ

Γ (2μ + 1)

+ η2
(
η1n1n2 – (η2 + η3)n3

) τ 2μ

Γ (2μ + 1)
, (17)

E2 = –η1n2(–η1n1n2 + η2n3)
τ 2μ

Γ (2μ + 1)
– η1n1

(
–η1n1n2 + (η2 + η3)n3

) τ 2μ

Γ (2μ + 1)

+ η2
(
η1n1n2 – (η2 + η3)n3

) τ 2μ

Γ (2μ + 1)
+ η3

(
η1n1n2 – (η2 + η3)n3

) τ 2μ

Γ (2μ + 1)
,

C2 = η1n2(–η1n1n2 + η2n3)
τ 2μ

Γ (2μ + 1)
+ η1n1

(
–η1n1n2 + (η2 + η3)n3

) τ 2μ

Γ (2μ + 1)

– η2
(
η1n1n2 – (η2 + η3)n3

) τ 2μ

Γ (2μ + 1)
– η3

(
η1n1n2 – (η2 + η3)n3

) τ 2μ

Γ (2μ + 1)
,
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P2 = η3
(
η1n1n2 – (η2 + η3)n3

) τ 2μ

Γ (2μ + 1)
.

In the same way, the other terms can be computed too. We assigned random values to μ,
in order to observe the mathematical dynamics of the above results (S(τ ), E(τ ),C(τ ), p(τ )).

5 Numerical results and discussion
This section considers the semianalytic solution of the considered problem. We assigned
the following values to the parameters and obtained estimated solution up to first four
terms for the system:

n1 = 10.00, n2 = 01.00, n3 = n4 = 0,

η1 = 00.0730, η2 = 00.01, η3 = 00.030.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0 = 10.00, E0 = 1.00, C0 = P0 = 0,

S1 = –0.73
Γ (μ+1)τ

μ, E1 = –0.73
Γ (μ+1)τ

μ, C1 = 0.73
Γ (μ+1)τ

μ, P1 = 0,

S2 = 0.59349
Γ (2μ+1)τ

2μ, E2 = 0.61539
Γ (2μ+1)τ

2μ,

C2 = –0.61539
Γ (2μ+1) τ

2μ, P2 = 0.0219
Γ (2μ+1)τ

2μ,

S3 = –0.8765
Γ (3μ+1)τ

3μ + 0.0686
Γ (3μ+1)τ

3μ,

E3 = 0.5986
Γ (3μ+1)τ

3μ – 0.7999
Γ (3μ+1)τ

3μ,

C3 = 0.7756
Γ (3μ+1)τ

3μ – 0.8820
Γ (3μ+1)τ

3μ,

P3 = 0.59349
Γ (3μ+1)τ

3μ.

(18)

Thus solutions with four terms become

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S(τ ) = 10 – 0.73 τμ

Γ (μ+1) + 0.593490 τ2μ

Γ (2μ+1) – 0.8079 τ3μ

Γ (3μ+1) + 0.0769 τ4μ

Γ (4μ+1) + · · · ,

E(τ ) = 1 – 0.73 τμ

Γ (μ+1) + 0.61539 τ2μ

Γ (2μ+1) – 0.2013 τ3μ

Γ (3μ+1) + 0.7891 τ4μ

Γ (4μ+1) + · · · ,

C(τ ) = 0.73 τμ

Γ (μ+1) – 0.61539 τ2μ

Γ (2μ+1) – 0.1064 τ3μ

Γ (3μ+1) + 0.7999 τ4μ

Γ (4μ+1) + · · · ,

P(τ ) = 0.0219 τ2μ

Γ (2μ+1) + 0.59349 τ3μ

Γ (3μ+1) + 0.0054949 τ4μ

Γ (4μ+1) + · · · .

(19)

Now computing equation (19) for μ = 0.9, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(τ ) = 10 – 0.7590205181τ 0.9 + 0.3540073134τ 1.8

– 0.1364823075τ 2.7 + 0.04805750170τ 3.6 + · · · ,

E(τ ) = 1 – 0.7590205181τ 0.9 + 0.3670703139τ 1.8

+ 0.1409088818τ 2.7 + 0.04937504746τ 3.6 + · · · ,

C(τ ) = 0.7590205181τ 0.9 – 0.3670703139τ 1.8

+ 0.1409088818τ 2.7 – 0.04937504746τ 3.6 + · · · ,

P(τ ) = 0.01306300049τ 1.8

+ 0.004426574296τ 2.7 + 0.001317545754τ 3.6 + · · · .

(20)
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The approximate solution of equation (19) at μ = 0.7, is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(τ ) = 10 – 0.8033996060τ 0.7 + 0.4777850967τ 1.4

– 0.2535660087τ 2.1 + 0.1261417992τ 2.8 + · · · ,

E(τ ) = 1 – 0.8033996060τ 0.7 + 0.4954155426τ 1.4

– 0.2619667775τ 2.1 + 0.1298210630τ 2.8 + · · · ,

C(τ ) = 0.8033996060τ 0.7 – 0.4954155426τ 1.4

+ 0.2619667775τ 2.1 – 0.1298210630τ 2.8 + · · · ,

P(τ ) = 0.01763044637τ 1.4

+ 0.00840076885τ 2.1 + 0.003679263766τ 2.8 + · · · .

(21)

Similarly, for μ = 0.5, the approximate solution of equation (19) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(τ ) = 10 – 0.8237167919τ 0.5 + 0.5934900001τ

– 0.4124184879τ 1.5 + 0.2780081511τ 2 + · · · ,

E(τ ) = 1 – 0.8237167919τ 0.5 + 0.6153900001τ

– 0.4263063530τ 1.5 + 0.2865087449τ 2 + · · · ,

C(τ ) = 0.8237167919τ 0.5 – 0.6153900001τ

+ 0.4263063530τ 1.5 – 0.2865087449τ 2 + · · · ,

P(τ ) = 0.02190000000τ

+ 0.01388786511τ 1.5 + 0.008500593795τ 2 · · · .

(22)

6 Construction of general solution via HPM
To illustrate the homotopy perturbation method (HPM) for solving the proposed model,
according to He [36, 37], the perturbation equations are defined from (3) as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 – ε)[cDμS(τ ) – cDμS0(τ )] + ε[cDμS(τ ) – η2C + η1ES] = 0,

(1 – ε)[cDμC(τ ) – cDμC0(τ )] + ε[cDμC(τ ) + η3C + η2C – η1ES] = 0,

(1 – ε)[cDμE(τ ) – cDμE0(τ )] + ε[cDμE(τ ) + η3C – η2C + η1ES] = 0,

(1 – ε)[cDμP(τ ) – cDμP0(τ )] + ε[cDμP(τ ) – η3C] = 0,

(23)

where (S0,C0,E0,P0) is the initial approximation of system (3) and ε ∈ [0, 1] is the embed-
ding parameter. If ε = 0 in (23), we have a system of FDEs as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDμS(τ ) – cDμS0(τ ) = 0,
cDμC(τ ) – cDμC0(τ ) = 0,
cDμE(τ ) – cDμE0(τ ) = 0,
cDμP(τ ) – cDμP0(τ ) = 0

(24)
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whose solution is easy to determine. If ε = 1 in (23), we get the original model (3). We may
derive the required solution in the form of an infinite series for each compartment as

S =
∞∑

n=0

εnSn, C =
∞∑

n=0

εnCn, E =
∞∑

n=0

εnEn, P =
∞∑

n=0

εnPn. (25)

Therefore, the approximate solution of the original system (3) can be obtained by setting
ε = 1 in (25). Therefore, putting (25) into (23) and comparing the coefficients of terms with
identical powers of ε yields:

ε0 :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S0(τ ) = n1,

C0(τ ) = n3,

E0(τ ) = n2,

P0(τ ) = n4.

(26)

Similarly, one has

ε1 :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S1(τ ) = –(η1n1n2 – η2n3) τμ

Γ (μ+1) ,

C1(τ ) = (η1n1n2 – (η2 + η3)n3) τμ

Γ (μ+1) ,

E1(τ ) = (–η1n1n2 + η2n3 + η3n3) τμ

Γ (μ+1) ,

P1(τ ) = (η3n3) τμ

Γ (μ+1)

(27)

and

ε2 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S2 = –η1n2(–η1n1n2 + η2n3) τ2μ

Γ (2μ+1) – η1n1(–η1n1n2 + (η2 + η3)n3) τ2μ

Γ (2μ+1)

+ η2(η1n1n2 – (η2 + η3)n3) τ2μ

Γ (2μ+1) ,

E2 = –η1n2(–η1n1n2 + η2n3) τ2μ

Γ (2μ+1) – η1n1(–η1n1n2 + (η2 + η3)n3) τ2μ

Γ (2μ+1)

+ η2(η1n1n2 – (η2 + η3)n3) τ2μ

Γ (2μ+1) + η3(η1n1n2 – (η2 + η3)n3) τ2μ

Γ (2μ+1) ,

C2 = η1n2(–η1n1n2 + η2n3) τ2μ

Γ (2μ+1) + η1n1(–η1n1n2 + (η2 + η3)n3) τ2μ

Γ (2μ+1)

– η2(η1n1n2 – (η2 + η3)n3) τ2μ

Γ (2μ+1) – η3(η1n1n2 – (η2 + η3)n3) τ2μ

Γ (2μ+1) ,

P2 = η3(η1n1n2 – (η2 + η3)n3) τ2μ

Γ (2μ+1) .

(28)

In this way, the higher order terms may be computed. Here we have obtained the same
solution as obtained by LADM. Hence both methods can be used as a powerful tools to
investigate nonlinear FDEs. Here, we plot the approximate solutions for the first three
terms of both methods, LADM and HPM, via Matlab in Figs. 1, 2, 3, 4.

Figure 1 shows that the concentration of S is decreasing at different rates. For a smaller
fractional order, this decrease is rapid as the order increasing the rate of decreasing is ap-
proaching the integer order. On the other hand, concentrations of the product substrates
C , E , and P are increasing with a different rate as shown in Figs. 2, 3, 4, respectively. The
increase rate is faster for a small fractional order. On the other hand, when enlarging the
order, the process is becoming slow. So, a smaller fractional order model of enzymes will
become more stable compared to larger order. Therefore, fractional order models will
be more suitable for modeling the enzymes process instead of integer order. Also, for a
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Figure 1 Comparison between the approximate solutions for S of model (3) for various fractional orders up
to first three terms

Figure 2 Comparison between the approximate solutions for E of model (3) for various fractional orders up
to first three terms

Figure 3 Comparison between the approximate solutions for C of model (3) for various fractional orders up
to first three terms

smaller order, the reactants are more rapidly converging to the product. Both solutions of
LADM and HPM are closely related with each other.

Remark 1 For the convergence of LADM, we refer to [38, Theorem 4.1], and for the con-
vergence of HPM, see [39, Theorem 3.1].
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Figure 4 Comparison between the approximate solutions for P of model (3) for various fractional orders up
to first three terms

7 Conclusions
The presented work is devoted to a fractional-order model of enzyme kinetics, which plays
a role of a catalyst in various reactions taking place in living organisms. By means of non-
linear analysis, we have derived some results about the existence of at least one solution
for the model under consideration. With the help of LADM, we have developed the semi-
analytic results for the proposed noninteger order model (3). The presented approximate
results have been obtained by using famous He’s HPM. Both methods have resulted the
same solution. We have plotted the proposed solutions for both methods up to the first
three terms, which completely agree with each other. Both methods can be used as a pow-
erful mathematical tools to deal with many nonlinear problems of FDEs.
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