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Abstract
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extinction. The result refines and evolves some prior investigations.
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1 Introduction
This note dissects the following predator–prey model with random perturbations:

⎧
⎨

⎩

dN1 = {N1[r1(t) – a1(t)N1] – f (N1, N2, t)N2}dt + ξ1(t)N1 dB1(t),

dN2 = N2[–r2(t) + η(t)f (N1, N2, t) – a2(t)N2] dt + ξ2(t)N2 dB2(t),
(1)

where N1 = N1(t) and N2 = N2(t) indicate the prey and predator population sizes, respec-
tively. The growth rate r1(t), the death rate r2(t), the intra-specific competition rate ai(t),
and the intensity of the white noise ξi(t) are continuous, positive, and T-periodic functions
onR+ = [0, +∞); B1(t) and B2(t) are two independent Brownian motions defined on a com-
plete probability space (Ω ,F , P) which obeys the usual conditions; η(t) > 0, a T-periodic
function, means the food conversion, the T-periodic function f (N1, N2, t) ∈ C(R3

+,R+) de-
notes the functional response which complies with the follow conditions:

(C1) f (eN1 , eN2 , t) and g(eN1 , eN2 , t) are locally Lipschitz (see, e.g., [16]), where
g(N1, N2, t) = f (N1, N2, t)N2/N1;

(C2) f (0, N2, t) ≡ 0 for all N2 ≥ 0 and t ≥ 0, which indicates that without the prey, the
predator will go to extinction; g(N1, 0, t) ≡ 0 for all N1 ≥ 0 and t ≥ 0, which
indicates that without the predator, the growth of the prey will follow the logistic
rule;

(C3) ∂f (N1,N2,t)
∂N1

≥ 0 and –M ≤ ∂f (N1,N2,t)
∂N2

≤ 0 for all (N1, N2, t) ∈R
3
+, where M is a positive

constant. The former indicates that the more the prey, the more food each
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predator will obtain. The later indicates that the more the predator, the less food
each predator will obtain;

(C4) For arbitrary (N1, N2, t) ∈R
3
+ and arbitrary (x1, x2, t) ∈ R

3
+, f (N1, N2, t) ≤ M1N1,

g(N1, N2, t) ≤ M1N2, |f (x1, 0, t) – f (x2, 0, t)| ≤ M2|x1 – x2|, where M1 and M2 are
positive constants.

Establishing theoretical coexistence-and-extinction threshold is an interesting issue in
the exploration of stochastic ecological models [18] and has attracted many scholars’ at-
tention (see, e.g., [4, 7, 11–15, 19]). However, most prior threshold explorations have con-
centrated on autonomous models (see, e.g., [12]) or single-species nonautonomous mod-
els (see, e.g., [14, 19]), little research has been conducted to provide the coexistence-and-
extinction threshold for the multi-species nonautonomous model (1). For this reason, this
note dissects model (1).

Many functional response functions satisfy (C1)–(C4), for example:
• (Lotka–Volterra) f (N1, N2, t) = m(t)N1;
• (Holling II [17]) f (N1, N2, t) = m1(t)N1

1+m2(t)N1
;

• (Beddington–DeAngelis [1, 3]) f (N1, N2, t) = m1(t)N1
m2(t)N1+m3(t)N2+m4(t) ,

where m(t) and mi(t) are continuous, positive, and T-periodic functions on R+.
For model (1), we are going to prove

Theorem 1 Define

b1(t) = r1(t) – ξ 2
1 (t)/2, Λ1 =

1
T

∫ T

0
b1(s) ds,

b2(t) = r2(t) + ξ 2
2 (t)/2, Λ2 =

1
T

∫ T

0

[

η(s)
∫ +∞

0
f (τ , 0, s)ρs(dτ ) – b2(s)

]

ds,

where ρt(·) is a periodic measure which is given in Lemma 1 below. Under (C1)–(C4),
(i) If Λ1 < 0, then both species 1 and 2 die out almost surely (a.s.), i.e.,

limt→+∞ N1(t) = 0 and limt→+∞ N2(t) = 0 a.s.;
(ii) If Λ1 > 0 and Λ2 < 0, then species 2 dies out a.s. and the distribution of N1(t)

converges weakly to ρt(·);
(iii) If Λ1 > 0 and Λ2 > 0, then species 1 and 2 are uniformly weakly persistent in the

mean (UWPIM), i.e., there is a pair of positive constants β1 and β2 such that

β1 < lim sup
t→+∞

t–1
∫ t

0
Ni(s) ds < β2, i = 1, 2.

Remark 1 Zu et al. [20] investigated model (1) with f (N1, N2, t) = m(t)N1, and testified that
– If Λ1 > 0 and T–1 ∫ T

0 [ηumub1(s) – al
1b2(s)] ds < 0, then species 2 dies out, where

cu = max0≤t≤T {c(t)}, cl = min0≤t≤T {c(t)};
– If Λ1 > 0 and T–1 ∫ T

0 [ηlmlb1(s) – au
1b2(s)] ds > 0, then both species 1 and 2 are weakly

persistent in the mean (WPIM), i.e., lim supt→+∞ t–1 ∫ t
0 Ni(s) ds > 0, i = 1, 2.

Theorem 1 refines and evolves the work of [20]: firstly, the model in [20] is a special case of
model (1); secondly, there is a gap in [20] while we provide the coexistence-and-extinction
threshold; thirdly, we provide the conditions for UWPIM which indicates WPIM, however,
WPIM does not indicate UWPIM.
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Remark 2 Li and Zhang [8] delved into model (1) with

f (N1, N2, t) =
m1(t)N1

m2(t)N1 + m3(t)N2 + m4(t)

in thee nonautonomous case. When their results are restricted to the periodic case, Li and
Zhang [8] testified that

– If Λ1 > 0 and T–1 ∫ T
0 [ ηumu

1
ml

4
b1(s) – al

1b2(s)] ds < 0, then species 2 dies out;

– If Λ1 > 0 and T–1 ∫ T
0 [ η(s)m1(s)ψ∗(s)

m2(s)ψ∗(s)+m3(s)φ∗(s)+m4(s) – b2(s)] ds > 0, then both species 1 and
are WPIM, where (ψ∗(t),φ∗(t)) is the periodic solution of the following equations:

dψ = ψ
[
r1(t) – a1(t)ψ

]
dt + ξ1(t)ψ dB1(t),

dφ = φ
[
–r2(t) + η(t)m1(t)/m2(t) – a2(t)φ

]
dt + ξ2(t)φ dB2(t).

(2)

Theorem 1 refines and evolves the above results in the periodic case: firstly, model (1) is
more general; secondly, we provide the coexistence-and-extinction threshold while there
is a gap in [8]; thirdly, we provide the conditions for UWPIM, the authors [8] provided
conditions for WPIM.

2 Proof
Lemma 1 If Λ1 > 0, then Eq. (2) possesses a positive T-periodic solution ψ∗(t) which com-
plies with

lim
t→+∞

∣
∣ψ(t) – ψ∗(t)

∣
∣ = 0, (3)

where ψ(t) is an arbitrary solution of Eq. (2) with ψ(0) > 0, and there is a continuous T-
periodic function ρs(·) such that the transition function p(s,ψ(s), s + t, ·) converges weakly
to ρs(·) as t → +∞.

Proof The existence of ψ∗(t) follows from Theorem 3.1 in [20]. In accordance with The-
orem 6.2 in [9], one can obtain (3). Analogous to the proof of Lemma 2.6 in [12], one can
obtain the last assertion. �

Lemma 2 For any (N1(0), N2(0)) ∈ R
2,0
+ = {x ∈ R

2 : x1 > 0, x2 > 0}, under (C1), model (1)
possesses a unique solution (N1(t), N2(t)) which is global and positive a.s. Additionally,

lim sup
t→+∞

ln N1(t)/ ln t ≤ 1, lim sup
t→+∞

ln N2(t)/ ln t ≤ 1, a.s. (4)

Proof On the basis of (C1), model (1) possesses a unique solution which is local and
positive. Analogous to the proof of Theorem 2.1 in [9], namely, using Itô’s formula to
V (N1, N2) =

∑
i=1,2(Ni – 1 – ln Ni), one can illustrate that this local solution is global. On

the other hand, analogous to the proof of Lemma 3.4 in [9], one obtains (4). �

Proof of Theorem 1 In the light of Itô’s formula,

t–1 ln
(
N1(t)/N1(0)

)
= t–1

∫ t

0
b1(s) ds – t–1

∫ t

0
a1(s)N1(s) ds

– t–1
∫ t

0
g
(
N1(s), N2(s), s

)
ds + t–1Ψ1(t), (5)
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t–1 ln
(
N2(s)/N2(0)

)
= –t–1

∫ t

0
b2(s) ds – t–1

∫ t

0
a2(s)N2(s) ds

+ t–1
∫ t

0
η(s)f

(
N1(s), N2(s), s

)
ds + t–1Ψ2(t), (6)

where Ψi(t) =
∫ t

0 ξi(s) dBi(s), i = 1, 2. Notice that (see [10])

lim
t→+∞Ψi(t)/t = 0 a.s. (7)

(I) By (5) and (7),

lim sup
t→+∞

t–1 ln N1(t) ≤ lim sup
t→+∞

t–1
∫ t

0
b1(s) ds = Λ1 < 0.

As a result, limt→+∞ N1(t) = 0. Then (6), (7), and (C2) suggest that

lim sup
t→+∞

t–1 ln N2(t) ≤ – lim sup
t→+∞

t–1
∫ t

0
b2(s) ds < 0.

Accordingly, limt→+∞ N2(t) = 0.
(II) We first show

lim
t→+∞ t–1

∫ t

0
η(s)f

(
ψ(s), 0, s

)
ds = T–1

∫ T

0
η(s)

∫ +∞

0
f (τ , 0, s)ρs(dτ ) ds a.s. (8)

As a matter of fact, in accordance with (C4) and (3),

lim
t→+∞ t–1

∫ t

0
η(s)

∣
∣f

(
ψ(s), 0, s

)
– f

(
ψ∗(s), 0, s

)∣
∣ds = 0 a.s. (9)

Define N∗(t) = η(t)f (ψ∗(t), 0, t), then N∗(t) is a T-periodic stochastic process which pos-
sesses a unique T-periodic measure λt(·). For this reason, λ̄(·) := T–1 ∫ T

0 λs(·) ds is the
unique invariant measure of N∗(t) (see [5]). In accordance with Theorem 3.2.6 and Theo-
rem 3.3.1 in [2], λ̄(·) is ergodic. Accordingly,

lim
t→+∞ t–1

∫ t

0
N∗(s) ds =

∫

A
μλ̄(dμ) a.s.,

where A = {μ|μ = η(t)f (x, 0, t), 0 ≤ t ≤ T , x > 0}. Hence

lim
t→+∞ t–1

∫ t

0
η(s)f

(
ψ∗(s), 0, s

)
ds

= lim
t→+∞ t–1

∫ t

0
N∗(s) ds = T–1

∫ T

0

∫

A
μλs(dμ) ds

= T–1
∫ T

0
η(s)

∫ +∞

0
f (τ , 0, s)ρs(dτ ) ds a.s.

Then (8) follows from (9). Now we prove limt→+∞ N2(t) = 0. Let ψ̄(t) be a solution of Eq. (2)
with ψ̄(0) = N1(0). In accordance with the comparison theorem (see [6]) and (C3), one can
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see that

η(t)f
(
N1(t), N2(t), t

) ≤ η(t)f
(
N1(t), 0, t

) ≤ η(t)f
(
ψ̄(t), 0, t

)
.

Then by (6), we get

t–1 ln
(
N2(t)/N2(0)

)
= –t–1

∫ t

0
b2(s) ds – t–1

∫ t

0
a2(s)N2(s) ds

+ t–1
∫ t

0
η(s)f

(
N1(s), N2(s), s

)
ds + t–1Ψ2(t)

≤ –t–1
∫ t

0
b2(s) ds – t–1

∫ t

0
a2(s)N2(s) ds

+ t–1
∫ t

0
η(s)f

(
ψ̄(s), 0, s

)
ds + t–1Ψ2(t). (10)

Applying (7) and (8), one gets

lim sup
t→+∞

t–1 ln N2(t) ≤ –T–1
∫ T

0
b2(s) ds + T–1

∫ T

0
η(s)

∫ +∞

0
f (τ , 0, s)ρs(dτ ) ds

= Λ2 < 0.

Accordingly, limt→+∞ N2(t) = 0 a.s. This suggests that the distribution of N1(t) converges
weakly to ρt(·).

(III) We first show that

lim sup
t→+∞

t–1
∫ t

0
N2(s) ds ≥ β1 a.s. (11)

Otherwise, for any ε > 0, Eq. (1) possesses a solution (Ñ1(t), Ñ2(t)) with Ñ1(0) > 0 and
Ñ2(0) > 0 such that P{lim supt→+∞ t–1 ∫ t

0 Ñ2(s) ds < ε} > 0. Choose a sufficiently small ε such
that

Λ2 –
(
au

2 + Mηu)ε – 2M1M2η
uε > 0.

In the light of (6),

t–1 ln
(
Ñ2(t)/Ñ2(0)

)

= –t–1
∫ t

0
b2(s) ds + t–1

∫ t

0
η(s)f

(
Ñ1(s), Ñ2(s), s

)
ds – t–1

∫ t

0
a2(s)Ñ2(s) ds + t–1Ψ2(t)

= –t–1
∫ t

0
b2(s) ds + t–1

∫ t

0
η(s)f

(
ψ̃(s), 0, s

)
ds – t–1

∫ t

0
a2(s)Ñ2(s) ds + t–1Ψ2(t)

+ t–1
∫ t

0
η(s)f

(
Ñ1(s), 0, s

)
ds – t–1

∫ t

0
η(s)f

(
ψ̃(s), 0, s

)
ds

+ t–1
∫ t

0
η(s)f

(
Ñ1(s), Ñ2(s), s

)
ds – t–1

∫ t

0
η(s)f

(
Ñ1(s), 0, s

)
ds, (12)
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where ψ̃(t) is the solution of Eq. (2) with ψ̃(0) = Ñ1(0). In accordance with the comparison
theorem, one has Ñ1(t) ≤ ψ̃(t). Then (C4) suggests that

f
(
Ñ1(t), 0, t

)
– f

(
ψ̃(t), 0, t

) ≥ –M2
(
ψ̃(t) – Ñ1(t)

)
. (13)

On the basis of (C3),

f
(
Ñ1(t), Ñ2(t), t

)
– f

(
Ñ1(t), 0, t

) ≥ –MÑ2(t). (14)

Substituting (13) and (14) into (12) yields

t–1 ln
(
Ñ2(t)/Ñ2(0)

)

≥ –t–1
∫ t

0
b2(s) ds + t–1

∫ t

0
η(s)f

(
ψ̃(s), 0, s

)
ds – t–1

∫ t

0

(
a2(s) + Mη(s)

)
Ñ2(s) ds

+ t–1Ψ2(t) – M2t–1
∫ t

0
η(s)

(
ψ̃(s) – Ñ1(s)

)
ds

≥ –t–1
∫ t

0
b2(s) ds + t–1

∫ t

0
η(s)f

(
ψ̃(s), 0, s

)
ds –

(
au

2 + Mηu)t–1
∫ t

0
Ñ2(s) ds

+ t–1Ψ2(t) – M2η
ut–1

∫ t

0

(
ψ̃(s) – Ñ1(s)

)
ds. (15)

Define V (t) = | ln ψ̃(t) – ln Ñ1(t)|, then

d+V (t) ≤ [
g
(
Ñ1(t), Ñ2(t), t

)
– al

1
∣
∣ψ̃(t) – Ñ1(t)

∣
∣
]

dt. (16)

For any ω ∈ {lim supt→+∞ t–1 ∫ t
0 Ñ2(s) ds < ε}, (16) and (C4) suggest that

al
1t–1

∫ t

0

∣
∣ψ̃(s,ω) – Ñ1(s,ω)

∣
∣ds ≤ t–1

∫ t

0
g
(
Ñ1(s,ω), Ñ2(s,ω), s

)
ds + t–1V (0)

≤ t–1
∫ t

0
M1Ñ2(s,ω) ds + t–1V (0)

≤ M1ε + t–1V (0).

Let t be sufficiently large such that t–1V (0) ≤ M1ε. Accordingly, for sufficiently large t,

t–1
∫ t

0

∣
∣ψ̃(s,ω) – Ñ1(s,ω)

∣
∣ds ≤ 2M1ε/al

1.

When this inequality is utilized in (15), one can obtain that

lim sup
t→+∞

t–1 ln Ñ2(t,ω) ≥ Λ2 –
(
au

2 + Mηu)ε – 2M1M2η
uε > 0.

This is a contradiction to (4). It follows that (11) holds.
Next we show that

lim sup
t→+∞

t–1
∫ t

0
N1(s) ds ≥ β1 a.s.
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Hypothesize, on the contrary, that for arbitrary ε > 0, there is a solution (N̄1(t), N̄2(t)) with
N̄i(0) > 0 (i = 1, 2) such that P{lim supt→+∞ t–1 ∫ t

0 N̄1(s) ds < ε} > 0. Let ε be sufficiently small
such that

ηuM1ε – T–1
∫ T

0
b2(s) ds < 0. (17)

For any ω ∈ {lim supt→+∞ t–1 ∫ t
0 N̄1(s) ds < ε}, on the basis of (C4), (6), (7), and (17),

lim sup
t→+∞

t–1 ln N̄2(t,ω) ≤ –T–1
∫ T

0
b2(s) ds + ηuM1ε < 0.

Accordingly limt→+∞ N̄2(t,ω) = 0. This is a contradiction to (11).
Finally, we establish

lim sup
t→+∞

t–1
∫ t

0
N1(s) ds ≤ β2, lim sup

t→+∞
t–1

∫ t

0
N2(s) ds ≤ β2 a.s.

Applying Lemma 4(I) in [15] to (5) and (10), one has

lim sup
t→+∞

t–1
∫ t

0
N1(s) ds ≤ Λ1/al

1

and

lim sup
t→+∞

t–1
∫ t

0
N2(s) ds ≤ Λ2/al

2,

respectively. This completes the proof of (III). �

Remark 3 This note imposes technical assumptions (i.e., (C1) and (C4)) in Theorem 1.
How to weaken them is an interesting topic. In addition, this note assumes that the coef-
ficients in model (1) are T-periodic. For nonperiodic model (1), this note fails to provide
the coexistence-and-extinction threshold. We leave these problems for further research.
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