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Abstract
In this paper, we study the reasonability of linearized approximation and Hopf
bifurcation control for a fractional-order delay Bhalekar–Gejji (BG) chaotic system.
Since the current study on Hopf bifurcation for fractional-order delay systems is
carried out on the basis of analyses for stability of equilibrium of its linearized
approximation system, it is necessary to verify the reasonability of linearized
approximation. Through Laplace transformation, we first illustrate the equivalence of
stability of equilibrium for a fractional-order delay Bhalekar–Gejji chaotic system and
its linearized approximation system under an appropriate prior assumption. This
semianalytically verifies the reasonability of linearized approximation from the
viewpoint of stability. Then we theoretically explore the relationship between the
time delay and Hopf bifurcation of such a system. By introducing the delayed
feedback controller into the proposed system, the influence of the feedback gain
changes on Hopf bifurcation is also investigated. The obtained results indicate that
the stability domain can be effectively controlled by the proposed delayed feedback
controller. Moreover, numerical simulations are made to verify the validity of the
theoretical results.

Keywords: Fractional-order BG system; Hopf bifurcation; Delayed feedback control;
Linearization; Stability

1 Introduction
For a long time, researches on fractional-order calculus were mainly concentrated in the
field of pure mathematics [1]. The main reason for abandoning fractional-order models in
practical application was their computational complexity. With the development of com-
puter technology, the application of fractional-order calculus has attracted the interest
of many researchers in different fields, including mathematics, physics, chemistry, engi-
neering, and even financial and social sciences. It has been found in some fields that using
fractional-order is more appropriate than employing integer-order to describe the dynam-
ical behavior and characteristics [2–6] of models, such as the classical predator–prey sys-
tem [7, 8], the fractional-order model of the dengue virus infection [9], the simulated tidal
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wave fractional-order model [10], the fractional-order viscoelastic non-Newtonian fluid
model [11], and so on. It is proved that the fractional-order dynamical system can more
accurately respond to the time variation of general nature [12–14].

In order to describe those phenomena whose evolutions not only depend on the state of
current time, but also on the state at a previous time, the time delay needs to be introduced
into many differential equations which are defined as delayed differential equation (DDE).
DDEs arise in many fields, for example, metal cutting, epidemiology, neuroscience, popu-
lation dynamics [15], biological systems [16, 17], financial system [18], and traffic models
[19]. The time delay is often considered as the parameter of fractional-order systems ac-
cording to the actual background of the problems [20–22]. In 1992, Pyragas originally pro-
posed the delayed feedback controller to study the control issue of nonlinear autonomous
differential equations [23]. Now the delayed feedback has become an adjustment mech-
anism that is widely used in many nonlinear control systems. For example, in order to
stabilize the unstable periodic orbit by the difference between the current state and the
delay state, a suitable delayed feedback controller can be designed to achieve the desired
dynamic behavior [24–26].

In 2011, Bhalekar and Daftardar-Gejji [27] constructed a three-dimensional chaotic dy-
namic system (shortly called as BG system subsequently):

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = dx(t) – y2(t),

ẏ(t) = c(z(t) – y(t)),

ż(t) = ay(t) – bz(t) + x(t)y(t),

(1.1)

where a, b, c, d are constants. Then Bhalekar [28] further explored the forming mechanism
of the BG system. In recent years, some valuable results about the BG system have been
obtained. Aqeel and Ahmad [29] studied the Hopf bifurcation and chaos of the integer-
order BG system. Deshpande et al. [30] found that the fractional-order BG system allows
chaotic solutions and the fractional-order could be regarded as the control parameter of
chaos. Shahzad et al. [31] added a single time delay into the third equation of (1.1) and
studied a delay Bhalekar–Gejji chaotic system of the form:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = dx(t) – y2(t),

ẏ(t) = d(z(t) – y(t)),

ż(t) = ay(t) – bz(t – τ ) + x(t)y(t).

(1.2)

They derived some algebraic sufficient conditions that guarantee the globally and asymp-
totically stable synchronization and antisynchronization between two identical time de-
lay Bhalekar–Gejji chaotic systems. To the best of our knowledge, there are few literature
sources discussing the Hopf bifurcation of the fractional-order BG system with time delay.
This motivates us to investigate the effect of time-delay and fractional-order on the oc-
currence of the Hopf bifurcation and to introduce an appropriate delayed state-feedback
controller to control the Hopf bifurcation.
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In this paper, we consider the fractional-order time delay Bhalekar–Gejji system of the
form:

⎧
⎪⎪⎨

⎪⎪⎩

Dq1 x(t) = dx(t) – y2(t),

Dq2 y(t) = c(z(t) – y(t)),

Dq3 z(t) = ay(t) – bz(t – τ ) + x(t)y(t),

(1.3)

where qi ∈ (0, 1] (i = 1, 2, 3) and a, b, c, d are parameters; c is generally taken as positive,
while d is a negative real number; τ ≥ 0 is the time delay.

The main purpose of this paper is to seek for the conditions of the occurrence of Hopf
bifurcation for system (1.3) by using time delay as the bifurcation parameter based on the
approach of stability analysis [32]. Especially, we give a semianalytical verification of the
reasonability of linearized approximation of system (1.3) from the viewpoint of stability.
In addition, we also design a delayed feedback controller to control the emergence of Hopf
bifurcation and further study the effect of feedback gain on the bifurcation control of the
proposed system.

This paper is organized as follows. In Sect. 2, we introduce the relevant preliminary
knowledge of fractional calculus and fractional-order dynamical system. In Sect. 3, we an-
alyze system (1.3) to get the conditions of the occurrence of Hopf bifurcation and the value
range of delay in which Hopf bifurcation appears. We also verify the reasonability of the
linearized approximation by the equivalence of stability of equilibrium points between the
original system (1.3) and its linearized system. In Sect. 4, the delayed feedback controller is
added to system (1.3) to control the Hopf bifurcation. In Sect. 5, numerical simulations are
performed to verify the validity of the theoretical results by choosing appropriate values
of the constants a, b, c, d, τ . Finally, necessary conclusions and a discussion are presented
in Sect. 6.

2 Preliminaries
In this section, some preliminary knowledge of fractional calculus and fractional-order
dynamical system are introduced. In fact, the concept of fractional derivative has many
classical definitions. This paper is based on the most widely used definition of Caputo
fractional derivative.

Definition 1 ([1, 33]) The fractional-order integral of order α > 0 of a real-valued function
x(t) is defined as

C
t0 D–α

t x(t) =
1

Γ (α)

∫ t0

t
(t – τ )α–1x(τ ) dτ , (2.1)

where Γ (·) is the Gamma function, Γ (s) =
∫ ∞

0 ts–1e–t ds.

Definition 2 ([1, 33]) The Caputo fractional derivative can be written as

C
t0 Dα

t x(t) =
1

Γ (m – α)

∫ t

t0

x(m)(τ )
(t – τ )α–m+1 dτ , m – 1 < α ≤ m, (2.2)
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where x(t) ∈ Cn([t0,∞),R). In particular, if 0 < α ≤ 1, (2.2) can be written as

C
t0 Dα

t x(t) =
1

Γ (1 – α)

∫ t

t0

x′(τ )
(t – τ )α

dτ , 0 < α ≤ 1, t > 0. (2.3)

For brevity, in what follows, we use the notation Dαx(t) to denote the Caputo fractional-
order derivative operator C

t0 Dα
t x(t).

Definition 3 ([34]) The Laplace transform of Caputo fractional derivative of order α (n –
1 < α ≤ n) for a function x(t) ∈ Cn([a,∞),R) is

L
{
Dαx(t); s

}
= sαF(s) –

n–1∑

k=0

sα–k–1x(k)(a), (2.4)

where F(s) is the Laplace transform of x(t), and x(k)(a) (k = 0, 1, . . . , n – 1) are the initial
conditions. Obviously, if x(k)(a) = 0 for k = 0, 1, . . . , n – 1, (2.4) can be written as

L
{
Dq

t x(t); s
}

= sqF(s). (2.5)

Definition 4 ([35]) Consider the following n-dimensional fractional-order system with
time delay:

Dαxi(t) = fi
(
x1(t), . . . , xn(t); τ

)
, i = 1, 2, . . . , n, (2.6)

where 0 < α ≤ 1 and the time delay τ ≥ 0. System (2.6) undergoes a Hopf bifurcation at the
equilibrium x∗ = (x∗

1, x∗
2, . . . , x∗

n) when τ = τ0 if the following three conditions are satisfied:
(C1) When τ = 0, all the eigenvalues λj (j = 1, 2, . . . , n) of the coefficient matrix J of the

linearized system of (2.6) satisfy | arg(λj)| > απ
2 .

(C2) The characteristic equation of the linearized system of (2.6) has a pair of purely
imaginary roots ±ω0 when τ = τ0.

(C3) Re[ ds(τ )
dτ

]|τ=τ0,ω=ω0 > 0, where Re[·] denotes the real part of the complex number and
s refers to the eigenvalue of the associated characteristic equation of the linearized
system.

3 Reasonability of linearized approximation and Hopf bifurcation for
fractional-order delay BG system

In this paper, we only consider the nonzero real equilibrium points of the fractional-order
delay BG system (1.3). Hence, we need to assume that

(H1) d(b – a) > 0.
It is obvious that system (1.3) has two nonzero real equilibrium points:

(
b – a,

√
d(b – a),

√
d(b – a)

)
,

(
b – a, –

√
d(b – a), –

√
d(b – a)

)
.

We use the delay τ as a bifurcation parameter to find the conditions on the occurrence of
Hopf bifurcation at the equilibria of system (1.3).
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For brevity, the nonzero equilibrium point is denoted as (x∗, y∗, z∗). Using the transfor-
mations u(t) = x(t) – x∗, v(t) = y(t) – y∗, w(t) = z(t) – z∗, system (1.3) can be reduced to

⎧
⎪⎪⎨

⎪⎪⎩

Dq1 u(t) = d(u(t) + x∗) – (v(t) + y∗)2,

Dq2 v(t) = c(w(t) + z∗ – v(t) – y∗),

Dq3 w(t) = a(v(t) + y∗) – b(w(t – τ ) + z∗) + (u(t) + x∗)(v(t) + y∗),

(3.1)

that is,

⎧
⎪⎪⎨

⎪⎪⎩

Dq1 u(t) = du(t) – 2y∗v(t) – v(t)2,

Dq2 v(t) = –cv(t) + cw(t),

Dq3 w(t) = y∗u(t) + (a + x∗)v(t) – bw(t – τ ) + u(t)v(t).

(3.2)

System (3.2) has two equilibria

(
u∗, v∗, w∗) = (0, 0, 0),

(

–
y∗2

d
, –y∗, –y∗

)

.

The linearized system of (3.2) at the origin is

⎧
⎪⎪⎨

⎪⎪⎩

Dq1 ū(t) = dū(t) – 2y∗v̄(t),

Dq2 v̄(t) = –cv̄(t) + cw̄(t),

Dq3 w̄(t) = y∗ū(t) + (a + x∗)v̄(t) – bw̄(t – τ ).

(3.3)

3.1 Analysis of reasonability of linearized approximation
Since the stability change of an equilibrium involves the appearance of Hopf bifurcation,
we need to verify the reasonability of the above linearized approximation by the equiva-
lence of stability of equilibrium for systems (3.2) and (3.3).

Following a similar idea as in [36], we prove the equivalence of stability of equilibrium
for systems (3.2) and (3.3) in the sense that

lim
t→+∞ ū(t) = 0, lim

t→+∞ v̄(t) = 0, lim
t→+∞ w̄(t) = 0

is equivalent to

lim
t→+∞ u(t) = u∗, lim

t→+∞ v(t) = v∗, lim
t→+∞ w(t) = w∗,

where the initial values are taken as u(t) = ū(t) = ρ(t) > 0, v(t) = v̄(t) = φ(t) > 0 and w(t) =
w̄(t) = ψ(t) > 0 (t ∈ [–τ , 0]).

Set e1(t) = u(t) – ū(t), e2(t) = v(t) – v̄(t), e3(t) = w(t) – w̄(t). By (3.2) and (3.3), we obtain
the error system

⎧
⎪⎪⎨

⎪⎪⎩

Dq1 e1(t) = de1(t) – 2y∗e2(t) – (e2(t) + v̄(t))2,

Dq2 e2(t) = –ce2(t) + ce3(t),

Dq3 e3(t) = y∗e1(t) + (a + x∗)e2(t) – be3(t – τ ) + (e1(t) + ū(t))(e2(t) + v̄(t))

(3.4)
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and
⎧
⎪⎪⎨

⎪⎪⎩

Dq1 e1(t) = de1(t) – 2y∗e2(t) – v(t)2,

Dq2 e2(t) = –ce2(t) + ce3(t),

Dq3 e3(t) = y∗e1(t) + (a + x∗)e2(t) – be3(t – τ ) + u(t)v(t).

(3.5)

We have two basic assertions.

Assertion (a) If the solutions ū(t), v̄(t), w̄(t) of system (3.3) satisfy

lim
t→+∞ ū(t) = 0, lim

t→+∞ v̄(t) = 0, lim
t→+∞ w̄(t) = 0,

then the solutions u(t), v(t), w(t) of system (3.2) satisfy

lim
t→+∞ u(t) = u∗, lim

t→+∞ v(t) = v∗, lim
t→+∞ w(t) = w∗.

Taking the Laplace transform [34, 37] of both sides of the error system (3.4) gives

⎧
⎪⎪⎨

⎪⎪⎩

sq1 F1(s) = dF1(s) – 2y∗F2(s) – L [(e2(t) + v̄(t))2],

sq2 F2(s) = –cF2(s) + cF3(s),

sq3 F3(s) = y∗F1(s) + (a + x∗)F2(s) – be–sτ F3(s) + L [(e1(t) + ū(t))(e2(t) + v̄(t))],

(3.6)

where Fk(s) = L [ek(t)] (k = 1, 2, 3), L [·] is the Laplace transform operator.
By (3.6), one gets

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sq1 sF1(s) = dsF1(s) – 2y∗sF2(s) – sL [(e2(t) + v̄(t))2],

sq2 sF2(s) = –csF2(s) + csF3(s),

sq3 sF3(s) = y∗sF1(s) + (a + x∗)sF2(s) – be–sτ sF3(s)

+ sL [(e1(t) + ū(t))(e2(t) + v̄(t))].

(3.7)

Similar to the prior assumption made in theoretical analysis of [38], we make the following
prior assumption: ei(t) (i = 1, 2, 3) are bounded. Then by the final-value theorem of the
Laplace transformation [37] and (3.7), we have

⎧
⎪⎪⎨

⎪⎪⎩

de∗
1 – 2y∗e∗

2 – e∗2
2 = 0,

e∗
2 = e∗

3,

y∗e∗
1 + (a + x∗)e∗

2 – be∗
3 + e∗

1e∗
2 = 0,

(3.8)

where e∗
i := limt→+∞ ei(t) (i = 1, 2, 3).

By (3.8), we obtain

(
e∗

1, e∗
2, e∗

3
)

= (0, 0, 0) or
(

–
y∗2

d
, –y∗, –y∗

)

, (3.9)

which implies

lim
t→+∞ u(t) = u∗, lim

t→+∞ v(t) = v∗, lim
t→+∞ w(t) = w∗.
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On the other hand, by taking the Laplace transform [34, 37] of both sides of the error
system (3.5), we have

⎧
⎪⎪⎨

⎪⎪⎩

sq1 F1(s) = dF1(s) – 2y∗F2(s) – L [v(t)2],

sq2 F2(s) = –cF2(s) + cF3(s),

sq3 F3(s) = y∗F1(s) + (a + x∗)F2(s) – be–sτ F3(s) + L [u(t)v(t)].

(3.10)

Similarly, by (3.10), we can also prove that (e∗
1, e∗

2, e∗
3) = (u∗, v∗, w∗). Hence, we have the

following result.

Assertion (b) If the solutions u(t), v(t), w(t) of system (3.2) satisfy

lim
t→+∞ u(t) = u∗, lim

t→+∞ v(t) = v∗, lim
t→+∞ w(t) = w∗,

then the solutions ū(t), v̄(t), w̄(t) of system (3.3) satisfy

lim
t→+∞ ū(t) = 0, lim

t→+∞ v̄(t) = 0, lim
t→+∞ w̄(t) = 0.

Thus, by Assertions (a) and (b), we verified the reasonability of the above linearized
approximation from the viewpoint of stability of equilibrium.

3.2 Hopf bifurcation analysis
The linearized system of (3.2) at the origin can be expressed as

⎧
⎪⎪⎨

⎪⎪⎩

Dq1 u(t) = c11u(t) + c12v(t),

Dq2 v(t) = c22v(t) + c23w(t),

Dq3 w(t) = c31u(t) + c32v(t) + c33w(t – τ ),

(3.11)

where c11 = d, c12 = –2y∗, c22 = –c, c23 = c, c31 = y∗, c32 = a + x∗, c33 = –b.
It is easy to obtain the associated characteristic equation by using Laplace transform on

system (3.11):

∣
∣
∣
∣
∣
∣
∣

sq1 – c11 –c12 0
0 sq2 – c22 –c23

–c31 –c32 sq3 – c33e–sτ

∣
∣
∣
∣
∣
∣
∣

= 0. (3.12)

Equation (3.12) can be equivalently rewritten as

E1(s) + E2(s)e–sτ = 0, (3.13)

where

E1(s) = –sq1 c23c32 + sq3 c11c22 + c11c23c32 – c31c12c23 – sq1+q3 c22 – sq2+q3 c11

+ sq1+q2+q3 ,

E2(s) = –c33
(
–sq1 c22 – sq2 c11 + c11c22 + sq1+q2

)
.
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Assume that s = iω = ω(cos π
2 + i sin π

2 ) is a root of Eq. (3.13), ω > 0. Substituting s = iω
into Eq. (3.13) and separating the real and imaginary parts, then it results in

⎧
⎨

⎩

α2 cosωτ + α4 sinωτ = –α1,

α4 cosωτ – α2 sinωτ = –α3,
(3.14)

where αi (i = 1, 2, 3, 4) are defined in Appendix A.
Solving (3.14), one obtains

⎧
⎨

⎩

cosωτ = – α1α2+α3α4
α2

2 +α2
4

= P1(ω),

sinωτ = α2α3–α1α4
α2

2 +α2
4

= P2(ω).
(3.15)

With the formula P2
1(ω) + P2

2(ω) = 1, we can calculate ω easily. We might as well suppose
that ωi (i = 1, 2, . . . , n) are positive solutions. There are four cases of τi as follows:

I. When P1(ωi) > 0, P2(ωi) > 0, and k = 0, 1, 2, . . . ,

τ
(k)
i =

arccos P1(ωi) + 2kπ

ωi
=

arcsin P2(ωi) + 2kπ

ωi
.

II. When P1(ωi) < 0, P2(ωi) > 0, and k = 0, 1, 2, . . . ,

τ
(k)
i =

arccos P1(ωi) + 2kπ

ωi
=

π – arcsin P2(ωi) + 2kπ

ωi
.

III. When P1(ωi) > 0, P2(ωi) < 0, and k = 0, 1, 2, . . . ,

τ
(k)
i =

2π – arccos P1(ωi) + 2kπ

ωi
=

2π + arcsin P2(ωi) + 2kπ

ωi
.

IV. When P1(ωi) < 0, P2(ωi) < 0, and k = 0, 1, 2, . . . ,

τ
(k)
i =

2π – arccos P1(ωi) + 2kπ

ωi
=

π – arcsin P2(ωi) + 2kπ

ωi
.

According to the actual meaning of time delay τ , we are only interested in the first pos-
itive real value of τ . Define the bifurcation point as follows:

τ0 = min
{
τ

(k)
i

}
, ω0 = ωi, i = 1, 2, . . . , n, k = 0, 1, 2, . . . , (3.16)

where τ
(k)
i is defined in cases I–IV and ωi corresponds to min{τ (k)

i }.
In order to find the bifurcation point, we need to have an in-depth study of Eq. (3.13).

Differentiating both sides of Eq. (3.13) with respect to τ , one gets

E′
1(s)

ds
dτ

+ E′
2(s)e–sτ ds

dτ
+ E2(s)e–sτ

(

–τ
ds
dτ

– s
)

= 0,

where E′
i(s) are the derivatives of Ei(s) (i = 1, 2). Hence,

ds
dτ

=
A(s)
B(s)

, (3.17)



Shi and Ruan Advances in Difference Equations        (2020) 2020:588 Page 9 of 22

where

A(s) = –c33
(
–sq1 c22 – sq2 c11 + c11c22 + sq1+q2

)
se–sτ ,

B(s) = –sq1–1q1c23c32 + sq3–1q3c11c22 – sq1+q3–1(q1 + q3)c22 – sq2+q3–1(q2 + q3)c11

+ sq1+q2+q3–1(q1 + q2 + q3) – c33
(
–sq1–1q1c22 – sq2–1q2c11

+ sq1+q2–1(q1 + q2)
)
e–sτ + c33τ

(
–sq1 c22 – sq2 c11 + c11c22 + sq1+q2

)
e–sτ .

Substituting s = iω = ω(cos π
2 + i sin π

2 ) into A(s), B(s), and letting A1, A2 and B1, B2 be the
real and imaginary parts of A(s), B(s), respectively, it can be deduced from Eq. (3.17) that

Re

[
ds
dτ

]

=
A1B1 + A2B2

B2
1 + B2

2
, (3.18)

where Ai, Bi (i = 1, 2) are defined in Appendix B.
Basing on the aforementioned analysis, we get

Lemma 1 Let s(τ ) = γ (τ ) + iω(τ ) be the root of Eq. (3.13) near τ = τ
(k)
i satisfying γ (τ (k)

i ) = 0,
ω(τ (k)

i ) = ωi, then the transversality condition

Re

[
ds
dτ

]∣
∣
∣
∣
(τ=τ0,ω=ω0)

> 0 (3.19)

holds if the following assumption is satisfied:
(H2) A1B1+A2B2

B2
1+B2

2
> 0,

where Ai, Bi (i = 1, 2) are defined in Appendix B.

Next, to verify Assumption (C1) in Definition 4, we need the following lemma.

Lemma 2 If the following assumptions hold:
(H3) c11 + c22 + c33 < 0.
(H4) c2

11c22 + c2
11c33 + c11c2

22 + 2c11c22c33 + c11c2
33 – c12c23c31 + c2

22c33 – c22c23c32 + c22c2
33 –

c23c32c33 < 0.
(H5) c11c22c33 – c11c23c32 + c31c12c23 < 0,

then all the eigenvalues λj (j = 1, 2, 3) of the coefficient matrix J of the linearized system
(3.11) of system (3.2) with τ = 0 satisfy | arg(λj)| > qiπ

2 (i, j = 1, 2, 3).

Proof Neglecting the time delay, i.e., τ = 0, the characteristic equation of coeffitient matrix
J of the linearized system (3.11) becomes

∣
∣
∣
∣
∣
∣
∣

λ – c11 –c12 0
0 λ – c22 –c23

–c31 –c32 λ – c33

∣
∣
∣
∣
∣
∣
∣

= 0, (3.20)

which is equivalent to

λ3 – (c11 + c22 + c33)λ2 + (c11c22 + c11c33 + c22c33 – c32c23)λ

– c11c22c33 + c11c23c32 – c31c12c23 = 0.
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If Assumptions (H3)–(H5) are satisfied, it is easy to check from Routh–Hurwitz crite-
rion that three eigenvalues λj (j = 1, 2, 3) of Eq. (3.20) have negative real parts. Therefore,
| arg(λj)| > qiπ

2 (i, j = 1, 2, 3). �

Remark 1 It is apparent that the derived conditions in Lemma 2 are only sufficient condi-
tions. According to Definition 4, if conditions (H3)–(H5) are replaced by other conditions
which can guarantee that all the roots of Eq. (3.20) satisfy | arg(λj)| > qiπ

2 (i, j = 1, 2, 3), then
Lemma 2 may still hold.

Basing on Definition 4, we achieve the first primary theorem of this paper.

Theorem 1 Suppose (H1)–(H5) hold, when 0 < qi ≤ 1 (i = 1, 2, 3) and the time delay τ ≥ 0.
The fractional-order delay system (1.3) undergoes a Hopf bifurcation at the nonzero equi-
librium point (x∗, y∗, z∗) when τ = τ0, where τ0 is defined by formula (3.16).

4 Delayed feedback control of fraction-order delay BG systems
In this section, a delayed feedback controller k[y(t) – y(t – τ )] is added to the second equa-
tion of uncontrolled system (1.3), and then the delay feedback control system can be ac-
quired as

⎧
⎪⎪⎨

⎪⎪⎩

Dq1 x(t) = dx(t) – y2(t),

Dq2 y(t) = c(z(t) – y(t)) + k[y(t) – y(t – τ )],

Dq3 z(t) = ay(t) – bz(t – τ ) + x(t)y(t).

(4.1)

For the sake of revealing the relationship between the controller and Hopf bifurcation,
we still use the delay τ as a parameter in Eq. (4.1). Analogous to the previous analysis, by
performing transformations u(t) = x(t) – x∗, v(t) = y(t) – y∗, w(t) = z(t) – z∗, with the help
of the linearized scheme, the linearization of the controlled system (4.1) has the form:

⎧
⎪⎪⎨

⎪⎪⎩

Dq1 u(t) = c11u(t) + c12v(t),

Dq2 v(t) = c22v(t) + c23w(t) + k[v(t) – v(t – τ )],

Dq3 w(t) = c31u(t) + c32v(t) + c33w(t – τ ),

(4.2)

where c11, c12, c22, c23, c31, c32, and c33 are defined as system (3.11).
Therefore, the associated characteristic equation of system (4.2) is

∣
∣
∣
∣
∣
∣
∣

sq1 – c11 –c12 0
0 sq2 – c22 – k + ke–sτ –c23

–c31 –c32 sq3 – c33e–sτ

∣
∣
∣
∣
∣
∣
∣

= 0. (4.3)

Obviously, Eq. (4.3) is equivalent to

F1(s) + F2(s)e–sτ + F3(s)e–2sτ = 0, (4.4)
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where

F1(s) = ksq3 c11 – sq1 c23c32 + sq3 c11c22 + c11c23c32 – c31c12c23 – ksq1+q3 – sq2+q3 c11

– sq1+q3 c22 + sq1+q2+q3 ,

F2(s) = ksq1+q3 + ksq1 c33 – ksq3 c11 – kc11c33 – sq1+q2 c33 + sq1 c22c33

+ sq2 c11c33 – c11c22c33,

F3(s) = –kc33
(
sq1 – c11

)
.

By multiplying esτ on both sides of Eq. (4.4), it is obvious that

F1(s)esτ + F2(s) + F3(s)e–sτ = 0. (4.5)

Assume that s = iω = ω(cos π
2 + i sin π

2 ) is a root of Eq. (4.5), ω > 0. Substituting s = iω
into Eq. (4.5) and separating the real and imaginary parts, we have

⎧
⎨

⎩

β1 cosωτ + β3 sinωτ = –β5,

β2 cosωτ + β4 sinωτ = –β6,
(4.6)

where βi (i = 1, 2, . . . , 6) are defined in Appendix C.
From Eq. (4.6), we have

⎧
⎨

⎩

cosωτ = – β6β3–β5β4
β4β1–β3β2

= Q1(ω),

sinωτ = β5β2–β6β1
β4β1–β3β2

= Q2(ω).
(4.7)

Consistent with the previous section, with the formula Q2
1(ω) + Q2

2(ω) = 1, we can calcu-
late ω easily. We might as well suppose that ωi (i = 1, 2, . . . , n) are positive solutions, and
can get the same four cases of τ

(k)
i (k = 0, 1, 2, . . . ) as in Sect. 3.

Next we define the bifurcation point

τ ∗
0 = min

{
τ

(k)
i

}
, ω∗

0 = ωi, i = 1, 2, . . . , n, k = 0, 1, 2, . . . , (4.8)

where ωi corresponds to min{τ (k)
i }. It needs to be noticed that the calculation of τ

(k)
i and

ωi is relying on the feedback grain coefficient k (see Appendix C).
Differentiating both sides of Eq. (4.5) with respect to τ , one obtains

F ′
1(s)

ds
dτ

+ F ′
2(s)e–sτ ds

dτ
+ F2(s)e–sτ

(

–τ
ds
dτ

– s
)

+ F ′
3(s)e–2sτ ds

dτ

+ F3(s)e–2sτ
(

–2τ
ds
dτ

– 2s
)

= 0,

where F ′
i (s) are the derivatives of Fi(s) (i = 1, 2, 3).

Therefore,

ds
dτ

=
C(s)
D(s)

, (4.9)



Shi and Ruan Advances in Difference Equations        (2020) 2020:588 Page 12 of 22

where

C(s) = s
[
F2(s)e–sτ + 2F3(s)e–2sτ ],

D(s) = F ′
1(s) +

[
F ′

2(s) – τF2(s)
]
e–sτ +

[
F ′

3(s) – 2τF3(s)
]
e–2sτ .

(4.10)

It can be deduced from Eq. (4.9) that

Re

[
ds
dτ

]

=
C1D1 + C2D2

D2
1 + D2

2
, (4.11)

where C1, C2, D1, D2 are the real and imaginary parts of C(s) and D(s), respectively, and
the exact expressions are given in Appendix D.

Thus, we obtain the following lemma:

Lemma 3 Let s(τ ) = δ(τ ) + iω(τ ) be the root of Eq. (4.5) near τ = τ
(k)
i satisfying δ(τ (k)

i ) = 0,
ω(τ (k)

i ) = ω∗
i . Then the transversality condition

Re

[
ds
dτ

]∣
∣
∣
∣
(τ=τ∗

0 ,ω=ω∗
0)

> 0 (4.12)

holds if the following assumption is satisfied:
(H6) C1D1+C2D2

D2
1+D2

2
> 0,

where Ci, Di (i = 1, 2) are defined as in (4.11).

Based on the previous discussion, the following theorem can be concluded.

Theorem 2 Suppose (H1), (H3)–(H6) hold, when 0 < qi ≤ 1 (i = 1, 2, 3) and the delay τ ≥ 0.
The delay feedback control system (4.1) undergoes a Hopf bifurcation at the nonzero equi-
librium (x∗, y∗, z∗) when τ = τ ∗

0 , where τ ∗
0 is defined as in (4.8).

Remark 2 In this section, we use the same method as in Sect. 3 to discuss the delay feed-
back control system (4.1). In reality, the Hopf bifurcation points (τ ∗

0 ,ω∗
0) of system (4.1) can

be controlled successfully by changing the feedback gain coefficient k. We will illustrate
this fact in the next section by numerical simulations.

5 Numerical simulations
Adams–Bashforth–Moulton predictor–corrector scheme [39] has been widely used in nu-
merical simulation for fractional-order differential equation. In this section, this method
is adopted in two examples to verify the efficiency and feasibility of our theoretical results,
in which step-length is taken as h = 0.001.

5.1 Example 1
For the convenience of comparison, all the system parameters come from the literature
[31]: a = 22, b = 10, c = 10, d = –2.667. Without loss of generality, let q1 = 0.91, q2 = 0.98,
q3 = 0.95, then system (1.3) can be changed into

⎧
⎪⎪⎨

⎪⎪⎩

Dq1 x(t) = –2.667x(t) – y2(t),

Dq2 y(t) = 10(z(t) – y(t)),

Dq3 z(t) = 22y(t) – 10z(t – τ ) + x(t)y(t).

(5.1)
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Figure 1 Waveform plots of system (5.1) with initial values (0.1, 0.1, 0.1) and (–0.1, –0.1, –0.1), q1 = 0.91,
q2 = 0.98, q3 = 0.95, and τ = 0.0949 < τ0 = 0.09517856. The nonzero equilibrium points of system (5.1) are
asymptotically stable

Figure 2 Portraits of system (5.1) with initial values
(0.1, 0.1, 0.1) and (–0.1, –0.1, –0.1), q1 = 0.91, q2 = 0.98,
q3 = 0.95, and τ = 0.0949 < τ0 = 0.09517856. Two
nonzero equilibrium points of system (5.1) are
asymptotically stable

Figure 3 Waveform plots of system (5.1) with initial values (0.1, 0.1, 0.1) and (–0.1, –0.1, –0.1), q1 = 0.91,
q2 = 0.98, q3 = 0.95, and τ = 0.0952 > τ0 = 0.09517856. The nonzero equilibrium points of system (5.1) are
unstable

For system (5.1), it is easy to verify that (H1)–(H5) are all satisfied. The nonzero equilib-
rium points are (–12, 5.657, 5.657) and (–12, –5.657, –5.657). One can obtain the critical
frequency ω0 = 9.35083452 and bifurcation point τ0 = 0.09517856. By Theorem 1, Hopf
bifurcation of system (5.1) appears at τ0. To better present our results, we give two simu-
lations. One uses τ = 0.0949 < τ0 = 0.09517856, which is displayed in Figs. 1 and 2. Under
this condition, we can see that two nonzero equilibria are asymptotically stable. The other
uses τ = 0.0952 > τ0 = 0.09517856, which is displayed in Figs. 3 and 4. It is apparent that
two nonzero equilibria are unstable and Hopf bifurcation occurs. Therefore, Theorem 1
is verified by these simulations.

5.2 Example 2
In this example, a linear delayed feedback controller is added to the uncontrolled system
(5.1) so as to control the Hopf bifurcation. In order to illustrate the effects of bifurcation
control via the proposed controller preferably, three fractional orders and all the system
parameters are chosen the same as in Example 1, then the controlled system is shown as
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Figure 4 Portraits of system (5.1) with initial values
(0.1, 0.1, 0.1) and (–0.1, –0.1, –0.1), q1 = 0.91, q2 = 0.98,
q3 = 0.95, and τ = 0.0952 > τ0 = 0.09517856. Hopf
bifurcation occurs

Table 1 The impact of k on the values of ω∗
0 and τ ∗

0 for the controlled system (5.2) with q1 = 0.91,
q2 = 0.98, q3 = 0.95

Feedback gain k Critical frequency ω∗
0 Bifurcation point τ ∗

0

–3 9.653358584 0.108321963
–2.5 9.595547511 0.106433652
–2 9.539410105 0.104408781
–1.5 9.485911614 0.102254645
–1 9.436041308 0.099984585
–0.5 9.390741645 0.097617839
0 9.350834520 0.095178561
0.5 9.316958928 0.092694075
1 9.289532626 0.090192707
1.5 9.268743775 0.087701612
2 9.254570242 0.085245013
2.5 9.246818131 0.082843069
3 9.245168793 0.080511419

follows:

⎧
⎪⎪⎨

⎪⎪⎩

Dq1 x(t) = –2.667x(t) – y2(t),

Dq2 y(t) = 10(z(t) – y(t)) + k[y(t) – y(t – τ )],

Dq3 z(t) = 22y(t) – 10z(t – τ ) + x(t)y(t).

(5.2)

For exhibiting the impact of feedback gain coefficient k on the Hopf bifurcation for
the controlled system (5.2), we calculate a group of critical frequency ω∗

0 and bifurcation
points τ ∗

0 corresponding to ever-increasing k, see Table 1. According to Table 1, system
(5.2) is controlled by the delayed feedback controller k[y(t) – y(t – τ )] effectively. When
k increases from negative to positive, τ ∗

0 decreases gradually. This means that the stable
domain wanes and the emergence of Hopf bifurcation is advanced. Moreover, by choos-
ing three different k, Figs. 5–7 illustrate that the effect of Hopf bifurcation control is much
better as k decreases.

6 Conclusions and discussion
In this paper, sufficient conditions on the emergence of Hopf bifurcation have been es-
tablished for a fractional-order delay Bhalekar–Gejji chaotic system. The delay feedback
control issue of Hopf bifurcations for such a system has been investigated by theoretical
analysis and numerical simulation.

This paper mainly focused on three aspects: the reasonability of the linearized approx-
imation, delay-induced Hopf bifurcation, and delay feedback control of Hopf bifurcation
for a fractional-order delay Bhalekar–Gejji chaotic system. Comparing to the previous
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Figure 5 Waveform plot of system (5.2) with initial
values (0.1, 0.1, 0.1), q1 = 0.91, q2 = 0.98, q3 = 0.95,
and τ = 0.1, the feedback gain k = 0, k = –1.5, k = –3.
The effect of bifurcation control for the controlled
system (5.2) becomes better as the feedback gain k
decreases

Figure 6 Waveform plot of system (5.2) with initial
values (0.1, 0.1, 0.1), q1 = 0.91, q2 = 0.98, q3 = 0.95,
and τ = 0.1, the feedback gain k = 0, k = –1.5, k = –3.
The effect of bifurcation control for the controlled
system (5.2) becomes better as the feedback gain k
decreases

Figure 7 Waveform plot of system (5.2) with initial
values (0.1, 0.1, 0.1), q1 = 0.91, q2 = 0.98, q3 = 0.95,
and τ = 0.1, the feedback gain k = 0, k = –1.5, k = –3.
The effect of bifurcation control for the controlled
system (5.2) becomes better as the feedback gain k
decreases

similar works, we semianalytically verified the reasonability of the linearized approxima-
tion by the equivalence of stable equilibrium for the converted systems (3.2) and (3.3)
under an appropriate prior assumption. To some extent, this provides a theoretical sup-
port for the definition of Hopf bifurcation for fractional-order delay systems proposed by
[35].

We find that the time delay has an important influence on the stability of the fractional-
order delay Bhalekar–Gejji chaotic system. The delay can be used as the bifurcation pa-
rameter to derive the asymptotic stability interval of the system and in which conditions
the system will exhibit dynamic behavior such as Hopf bifurcation. In addition, for the
fractional-order delay Bhalekar–Gejji chaotic system, the feedback gain can control the
bifurcation value and expand the stability range of the system.
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In the simulations, we can also observe the stability of equilibrium points of the pro-
posed system. In fact, it is difficult to analytically prove stability of equilibrium points of
the original system (1.3), which is not only because of the complexity of the system, but
also due to the lack of a well-developed stability theory of nonlinear fractional-order delay
systems.

In the subsequent research, we would also like to explore the effect of the fractional order
and time delay on the occurrence of chaos for the fractional-order delay Bhalekar–Gejji
chaotic system.

Appendix A
The expressions of α1, α2, α3, and α4 in Eq. (3.14) are computed as follows:

α1 = –ωq1 cos

(
q1π

2

)

c23c32 + ωq3 cos

(
q3π

2

)

c11c22 + c11c23c32 – c31c12c23

– ωq1+q3 cos

(
(q1 + q3)π

2

)

c22 – ωq2+q3 cos

(
(q2 + q3)π

2

)

c11

+ ωq1+q2+q3 cos

(
(q1 + q2 + q3)π

2

)

,

α2 = ωq1 cos

(
q1π

2

)

c22c33 + ωq2 cos

(
q2π

2

)

c11c33 – ωq1+q2 cos

(
(q3 + q2)π

2

)

c33

– c11c22c33,

α3 = ωq3 sin

(
q3π

2

)

c11c22 – ωq1 sin

(
q1π

2

)

c23c32 – ωq1+q3 sin

(
q1π

2
+

q3π

2

)

c22

– ωq2+q3 sin

(
q2π

2
+

q3π

2

)

c11 + ωq1+q2+q3 sin

(
q1π

2
+

q2π

2
+

q3π

2

)

,

α4 = ωq1 sin

(
q1π

2

)

c22c33 + ωq2 sin

(
q2π

2

)

c11c33 – ωq1+q2 sin

(
(q1 + q2)π

2

)

c33.

Appendix B
The expressions of A1, A2, B1, and B2 in Eq. (3.18) are given as:

A1 = ω0c33

(

–ω
q1
0 sin

(
q1π

2

)

c22 – ω
q2
0 sin

(
q2π

2

)

c11 + sin

(
(q1 + q2)π

2

)

ω
q1+q2
0

)

× cos(τ0ω0) + ω0c33

(

ω
q1
0 cos

(
q1π

2

)

c22 + ω
q2
0 cos

(
q2π

2

)

c11

– cos

(
(q1 + q2)π

2

)

ω
q1+q2
0 – c11c22

)

sin(τ0ω0),

A2 = ω0c33

(

ω
q1
0 cos

(
q1π

2

)

c22 + ω
q2
0 cos

(
q2π

2

)

c11

– cos

(
(q1 + q2)π

2

)

ω
q1+q2
0 – c11c22

)

× cos(τ0ω0) + ω0c33

(

ω
q1
0 sin

(
q1π

2

)

c22 + ω
q2
0 sin

(
q2π

2

)

c11

– sin

(
(q1 + q2)π

2

)

ω
q1+q2
0

)

sin(τ0ω0),
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B1 = cos(τ0ω0)
1
ω0

(

c11c22c33ω0τ0 + ω
q1+q2+1
0 cos

(
(q1 + q2)π

2

)

c33τ0

+ ω
q2
0 c11c33

(

sin

(
q2π

2

)

q2 – cos

(
q2π

2

)

τ0ω0

)

+ ω
q1
0 c22c33

(

sin

(
q1π

2

)

q1 – cos

(
q1π

2

)

τ0ω0

)

– sin

(
(q1 + q2)π

2

)

ω
q1+q2
0 c33(q1 + q2)

)

+ sin(τ0ω0)
1
ω0

(

ω
q2
0 c11c33

(

– cos

(
q2π

2

)

q2

– sin

(
q2π

2

)

ω0τ0

)

– ω
q1
0 c22c33

(

cos

(
q1π

2

)

q1 + sin

(
q1π

2

)

ω0τ0

)

+ cos

(
(q1 + q2)π

2

)

ω
q1+q2
0 c33(q1 + q2) + ω

q1+q2+1
0 sin

(
(q1 + q2)π

2

)

c33τ0

)

+
1
ω0

(

–ω
q1
0 sin

(
q1π

2

)

q1c23c32 – ω
q1+q3
0 sin

(
(q1 + q3)π

2

)

c22(q1 + q3)

+ ω
q1+q2+q3
0 sin

(
(q1 + q2 + q3)π

2

)

(q1 + q2 + q3)

– ω
q2+q3
0 sin

(
(q2 + q3)π

2

)

c11(q2 + q3) + ω
q3
0 sin

(
q3π

2

)

q3c11c22

)

,

B2 = cos(τ0ω0)
1
ω0

(

–ω
q2
0 c11c33

(

cos

(
q2π

2

)

q2 + sin

(
q2π

2

)

ω0τ0

)

– ω
q1
0 c22c33

(

cos

(
q1π

2

)

q1 + sin

(
q1π

2

)

ω0τ0

)

+ ω
q1+q2
0 c33 cos

(
(q1 + q2)π

2

)

(q1 + q2)

+ ω
q1+q2+1
0 sin

(
(q1 + q2)π

2

)

c33τ0

)

+ sin(τ0ω0)
1
ω0

(

–c11c22c33ω0τ0

– ω
q1
0 c22c33

(

sin

(
q1π

2

)

q1 – cos

(
q1π

2

)

ω0τ0

)

– ω
q2
0 c11c33

(

sin

(
q2π

2

)

q2

– cos

(
q2π

2

)

ω0τ0

)

+ sin

(
(q1 + q2)π

2

)

ω
q1+q2
0 c33(q1 + q2)

– ω
q1+q2+1
0 cos

(
(q1 + q2)π

2

)

c33τ0

)

+
1
ω0

(

ω
q1
0 cos

(
q1π

2

)

q1c23c32

+ ω
q1+q3
0 cos

(
(q1 + q3)π

2

)

c22(q1 + q3) + ω
q2+q3
0 cos

(
(q2 + q3)π

2

)

c11(q2 + q3)

– ω
q1+q2+q3
0 cos

(
(q1 + q2 + q3)π

2

)

(q1 + q2 + q3) – ω
q3
0 cos

(
q3π

2

)

q3c11c22

)

.

Appendix C
The expressions of β1, β2, β3, β4, β5, and β6 in Eq. (4.6) are:

β1 = ωq1+q2+q3 sin

(
q1π

2
+

q2π

2
+

q3π

2

)

– kωq1 sin

(
q1π

2

)

c33 – ωq1 sin

(
q1π

2

)

c23c32
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+ ωq3 sin

(
q3π

2

)

c11 + ωq3 sin

(
q3π

2

)

c11c22 – kωq1+q3 sin

(
q1π

2
+

q3π

2

)

– ωq1+q3 sin

(
q1π

2
+

q3π

2

)

c22 – ωq2+q3 sin

(
q2π

2
+

q3π

2

)

c11,

β2 = c11c23c32 – c31c12c23 + kc11c33 + ωq1+q2+q3 cos

(
(q1 + q2 + q3)π

2

)

+ kωq3 cos

(
q3π

2

)

c11 + ωq3 cos

(
q3π

2

)

c11c22 – kωq1 cos

(
q1π

2

)

c33

– ωq1 cos

(
q1π

2

)

c23c32 – kωq1+q3 cos

(
(q1 + q3)π

2

)

– ωq1+q3 cos

(
(q1 + q3)π

2

)

c22

– ωq2+q3 cos

(
(q2 + q3)π

2

)

c11,

β3 = ωq1+q2+q3 cos

(
q1π

2
+

q2π

2
+

q3π

2

)

– ωq1 cos

(
q1π

2

)

c23c32 + kωq3 cos

(
q3π

2

)

c11

+ ωq3 cos

(
q3π

2

)

c11c22 + kωq1 cos

(
q1π

2

)

c33 – kωq1+q3 cos

(
q1π

2
+

q3π

2

)

– ωq1+q3 cos

(
q1π

2
+

q3π

2

)

c22 – ωq2+q3 cos

(
q2π

2
+

q3π

2

)

c11

+ c11c23c32 – c31c12c23 – kc11c33,

β4 = –ωq1+q2+q3 sin

(
(q1 + q2 + q3)π

2

)

+ ωq1 sin

(
q1π

2

)

c23c32 – kωq3 sin

(
q3π

2

)

c11

– ωq3 sin

(
q3π

2

)

c11c22 – kωq1 sin

(
q1π

2

)

c33 + kωq1+q3 sin

(
(q1 + q3)π

2

)

+ ωq1+q3 sin

(
(q1 + q3)π

2

)

c22 + ωq2+q3 sin

(
(q2 + q3)π

2

)

c11,

β5 = –kωq3 sin

(
q3π

2

)

c11 + kωq1 sin

(
q1π

2

)

c33 + ωq2 sin

(
q2π

2

)

c11c33

+ ωq1 sin

(
q1π

2

)

c22c33 + kωq1+q3 sin

(
q1π

2
+

q3π

2

)

– ωq1+q2 sin

(
q1π

2
+

q2π

2

)

c33,

β6 = kωq1 cos

(
q1π

2

)

c33 – kωq3 cos

(
q3π

2

)

c11

+ ωq1 cos

(
q1π

2

)

c22c33 + ωq2 cos

(
q2π

2

)

c11c33

+ kωq1+q3 cos

(
(q1 + q3)π

2

)

– kc11c33 – ωq1+q2 cos

(
(q1 + q2)π

2

)

c33 – c11c22c33.

Appendix D
The expressions of C1, C2, D1, and D2 in Eq. (4.11) are:

C1 = –ω0 cos(τ0ω0)
(

–kω
q1
0 sin

(
q1π

2

)

c33 – kω
q3
0 sin

(
q3π

2

)

c11 + ω
q1
0 sin

(
q1π

2

)

c22c33
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+ ω
q2
0 sin

(
q2π

2

)

c11c33 + kω
q1+q3
0 sin

(
(q1 + q3)π

2

)

– ω
q1+q2
0 sin

(
(q1 + q2)π

2

)

c33

)

– ω0 sin(τ0ω0)
(

kω
q1
0 cos

(
q1π

2

)

c33 + kω
q3
0 cos

(
q3π

2

)

c11 – ω
q1
0 cos

(
q1π

2

)

c22c33

– ω
q2
0 cos

(
q2π

2

)

c11c33 – kω
q1+q3
0 cos

(
(q1 + q3)π

2

)

+ ω
q1+q2
0 cos

(
(q1 + q2)π

2

)

c33

– kc11c33 + c11c22c33

)

,

D1 =
1
ω0

((

kω
q3
0 c11

(

cos

(
q3π

2

)

ω0τ0 – sin

(
q3π

2

)

q3

)

+ ω
q1
0 sin

(
q1π

2

)

c33q1(k + c22)

+ ω
q2
0 c11c33

(

sin

(
q2π

2

)

q2 – cos

(
q2π

2

)

ω0τ0

)

– ω
q1+1
0 cos

(
q1π

2

)

c33τ0(k + c22)

– ω
q1+q2
0 sin

(
(q1 + q2)π

2

)

c33(q1 + q2) – kω
q1+q3+1
0 cos

(
(q1 + q3)π

2

)

τ0

+ kω
q1+q3
0 sin

(
(q1 + q3)π

2

)

(q1 + q3) + ω
q1+q2+1
0 cos

(
(q1 + q2)π

2

)

c33τ0

+ c11c22c33ω0τ0 + kc11c33ω0τ0

)

cos(τ0ω0)
)

+
1
ω0

((

kω
q3
0 c11

(

sin

(
q3π

2

)

ω0τ0

+ cos

(
q3π

2

)

q3

)

– ω
q1+1
0 sin

(
q1π

2

)

c33τ0(k + c22) – ω
q2
0 c11c33

(

sin

(
q2π

2

)

ω0τ0

– cos

(
q2π

2

)

q2

)

– ω
q1
0 cos

(
q1π

2

)

c33q1(c22 + k) – kω
q1+q3+1
0 sin

(
(q1 + q3)π

2

)

τ0

– kω
q1+q3
0 cos

(
(q1 + q3)π

2

)

(q1 + q3) + ω
q1+q2+1
0 sin

(
(q1 + q2)π

2

)

c33τ0

+ ω
q1+q2
0 cos

(
(q1 + q2)π

2

)

c33(q1 + q2)
)

sin(τ0ω0)
)

+
1
ω0

(

kω
q1
0 c33q1 sin

(

2τ0ω0 –
q1π

2

)

+ 2kω
q1+1
0 c33τ0 cos

(

2τ0ω0 –
q1π

2

)

+ ω
q1+q2+q3
0 sin

(
(q1 + q2 + q3)π

2

)

(q1 + q2 + q3) + ω
q3
0 sin

(
q3π

2

)

q3c11(c22 + k)

– ω
q1
0 sin

(
q1π

2

)

q1c23c32 – ω
q2+q3
0 sin

(
(q2 + q3)π

2

)

c11(q2 + q3)

– ω
q1+q3
0 sin

(
(q1 + q3)π

2

)

c22(q1 + q3) – kω
q1+q3
0 sin

(
(q1 + q3)π

2

)

(q1 + q3)

– 2kω0τ0 cos(2ω0τ0)c11c33

)

,

C2 = ω0

(

–kω
q1
0 cos

(
q1π

2

)

c33 – kω
q3
0 cos

(
q3π

2

)

c11 + kc11c33 + ω
q1
0 cos

(
q1π

2

)

c22c33

+ ω
q2
0 cos

(
q2π

2

)

c11c33 – c11c22c33 + kω
q1+q3
0 cos

(
(q1 + q3)π

2

)

– ω
q1+q2
0 cos

(
(q1 + q2)π

2

)

c33

)

cos(τ0ω0) + ω0
(

–kω
q1
0 sin

(
q1π

2

)

c33
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– kω
q3
0 sin

(
q3π

2

)

c11 + ω
q1
0 sin

(
q1π

2

)

c22c33 + ω0q2 sin

(
q2π

2

)

c11c33

+ kω
q1+q3
0 sin

(
(q1 + q3)π

2

)

– ω
q1+q2
0 sin

(
(q1 + q2)π

2

)

c33

)

sin(τ0ω0),

D2 =
1
ω0

((

kω
q3
0 c11

(

sin

(
q3π

2

)

ω0τ0 + cos

(
q3π

2

)

q3

)

– ω
q1+1
0 sin

(
q1π

2

)

c33τ0(k + c22)

– ω
q2
0 c11c33

(

sin

(
q2π

2

)

ω0τ0 + cos

(
q2π

2

)

q2

)

– ω
q1
0 cos

(
q1π

2

)

c33q1(c22 + k)

– kω
q1+q3+1
0 sin

(
(q1 + q3)π

2

)

τ0 – kω
q1+q3
0 cos

(
(q1 + q3)π

2

)

(q1 + q3)

+ ω
q1+q2+1
0 sin

(
(q1 + q2)π

2

)

c33τ0

+ ω
q1+q2
0 cos

(
(q1 + q2)π

2

)

c33(q1 + q2)
)

cos(τ0ω0)
)

+
1
ω0

((

kω
q1+q3+1
0 cos

(
(q1 + q3)π

2

)

τ0 + ω
q1+q2
0 sin

(
(q1 + q2)π

2

)

c33(q1 + q2)

– ω
q1+q2+1
0 cos

(
(q1 + q2)π

2

)

c33τ0 – kω
q1+q3
0 sin

(
(q1 + q3)π

2

)

(q1 + q3)

+ kω
q1
0 cos

(
q1π

2

)

c33τ0(ω0 + c22) + ω
q2
0 c11c33

(

cos

(
q2π

2

)

τ0ω0 – sin

(
q2π

2

)

q2

)

– kω
q3
0 c11

(

cos

(
q3π

2

)

ω0τ0 – sin

(
q3π

2

)

q3

)

– ω
q1
0 c33 sin

(
q1π

2

)

(c22 + k)

– kc11c33ω0τ0 – c11c22c33τ0

)

sin(τ0ω0)
)

+
1
ω0

(

–2kc11c33ω0τ0 sin(2τ0ω0)

+ ω
q1
0 cos

(
q1π

2

)

q1c23c32 – ω
q3
0 cos

(
q3π

2

)

q3c11(c22 + k)

+ kω
q1
0 c33q1

(

cos

(

2τ0ω0 –
q1π

2

))

– 2kω
q1+1
0 c33τ0

(

sin

(

2τ0ω0 –
q1π

2

))

– ω
q1+q2+q3
0 cos

(
(q1 + q2 + q3)π

2

)

(q1 + q2 + q3)

+ ω
q2+q3
0 cos

(
(q2 + q3)π

2

)

c11(q2 + q3)

+ ω
q1+q3
0 cos

(
(q1 + q3)π

2

)

(q1 + q3)(c22 + k)
)

.
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