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Abstract
Acknowledging many effects on humans, which are ignored in deterministic models
for COVID-19, in this paper, we consider stochastic mathematical model for COVID-19.
Firstly, the formulation of a stochastic susceptible–infected–recovered model is
presented. Secondly, we devote with full strength our concentrated attention to
sufficient conditions for extinction and persistence. Thirdly, we examine the threshold
of the proposed stochastic COVID-19 model, when noise is small or large. Finally, we
show the numerical simulations graphically using MATLAB.

Keywords: Stochastic COVID-19 model; Itô’s formula; Extinction; Persistence;
Numerical analysis

1 Introduction
There are many people who are currently alert of the outburst of COVID-19, which was
recognized in China in December of 2019. As of this conformation, each continent has
been influenced by this profoundly infectious disease, with about million cases analyzed
in more than 200 nations around the world. The reason for this episode is another infec-
tion, known as the extremely intense respiratory disorder coronavirus 2 (SARS-CoV-2).
On February 12, 2020, WHO named this disease coronavirus. The rapid spread of coron-
avirus COVID-19 is of great interest and has the attention of governments, medical doc-
tors and public/private health organizations because of its high rate of spreading and the
significant number of deaths that occurred specially in China, Italy, Iran, USA, UK, Turkey,
Pakistan, and India. In the meantime, many doctors, mathematicians, pharmacists, biol-
ogists and chemists are trying to study the behavior of COVID-19, which is a pandemic
initiated from China [1]. Actually, this virus was initiated from Wuhan, China. This is a
vector transmission because its required source is in the form of human-to-human spread.
It means the vector for this disease is people; so far all the governments restricted the
people to keep distance from each other but the public is careless in this situation. On the
mathematical side, the authors applied modified SIR (susceptible, infected and recovered),
SEIR (susceptible, exposed, infected and recovered) and SIRS (susceptible, infected and
recovered, susceptible) models to determine the actual number of infected by COVID-19,
and specific burdens on isolation wards and intensive care units, similarly, using different
scenarios for how to control the quick spread of this viral disease. Nesteruk [2], studied the

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02909-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02909-1&domain=pdf
mailto:anwar@cuiatd.edu.pk


Zhang et al. Advances in Difference Equations        (2020) 2020:451 Page 2 of 12

SIR model for control of this pandemic. But there is no one until now who could control
this virus. If we make the contact rates very small it will show the best effect on the fur-
ther spreading of COVID-19, so for this purpose all governments take action for in terms
of the household effect. For the estimation of the final size of the coronavirus epidemic,
Batista [3] presented the logistic growth regression model. Many researchers discussed
this COVID-19 in different models in integer and in fractional order, see [1–17], because
of many applications of fractional calculus, stochastic modeling and bifurcation analysis
[18–26]. For the more realistic models, several authors studied the stochastic models by
introducing white noise [27–31]. The effects of the environment in the AIDS model were
studied by Dalal et al. [27] using the method of parameter perturbation. Stochastic mod-
els will likely produce results different from deterministic models every time the model is
run for the same parameters. Stochastic models possess some inherent randomness. The
same set of parameter values and initial conditions for deterministic models will lead to
an ensemble of different outputs. Tornatore et al. [28–30] studied the stochastic epidemic
models with vaccination. In this work, they proved the existence, uniqueness, and positiv-
ity of the solution. A stochastic SIS epidemic model containing vaccination is discussed
by Zhu et al. [31]. They obtained the condition of the disease extinction and persistence
according to noise and threshold of the deterministic system. Similarly, several authors
discussed the same conditions for stochastic models; see [32–39].

To study the effects of the environment on spreading of COVID-19 and make the re-
search more realistic, first we formulate a stochastic mathematical COVID-19 model.
Then sufficient conditions for extinction and persistence are examined. Furthermore, the
threshold of the proposed stochastic COVID-19 model is determined. It plays an impor-
tant role in mathematical models as a backbone, when there is small or large noise. Finally,
we show the numerical simulations graphically with the aid of MATLAB.

The rest of the paper is organized as follows: Sect. 2 is concerned with the COVID-19
model with random perturbation formulation. Section 3 is related to the unique positive
solution of proposed model. Furthermore, we investigate the exponential stability of the
proposed model in Sect. 4. The persistent conditions are shown in Sect. 5. Finally, we
conclude with the results and outcomes of the paper in Sect. 6.

2 Model formulation
In this section, a COVID-19 mathematical model with random perturbation is formulated
as follows:

dS(t)
dt

= Λ – βS(t)I(t) – μS(t) + δR(t) – ρS(t)I(t) dB(t),

dI(t)
dt

= βS(t)I(t) – (γ + μ)I + ρS(t)I(t) dB(t),

dR(t)
dt

= γ I(t) – μR(t) – δR(t),

(1)

where the description of parameters and variables are given in Table 1.
In deterministic form the model (1) is given by

dS(t)
dt

= Λ – βS(t)I(t) – μS(t) + δR(t),
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Table 1 Parameters and description

Notations Description

S(t) Represents susceptible population
I(t) Represents infectious people class
R(t) Denotes recovered population
Λ The joining rate of people to susceptible class through birth or migration
β Rate at which the susceptible tends to infected class
μ Represents natural and due to coronavirus death
γ Represents the recovered rate
B(t) The standard Brownian motions, with ρ2 > 0 and with intensity of white noise
δ The rate of deteriorate in health

dI(t)
dt

= βS(t)I(t) – (γ + μ)S, (2)

dR(t)
dt

= γ I(t) – μR(t) – δR(t),

and

dN
dt

= Λ – μN , (3)

where N(t) = S(t) + I(t) + R(t) shows the total constant population for Λ ≈ μN and N(0) =
S(0) + I(0) + R(0). Equation (3) has the exact solution

N(t) = e–μt
[

N(0) +
Λ

μ
eμt

]
. (4)

Also, we have

S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0 �⇒ S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0.

So, the solution has a positivity property. For stability analysis of model (2), we have the
reproductive number, which is

R0 =
β

γ + μ
N . (5)

If R0 < 1, then system (2) will be locally stable and unstable if R0 ≥ 1. Similarly for � = 0,
the system (2) will be globally asymptotically stable.

3 Existence and uniqueness of the positive solution
Here, we first make the following assumptions:

• Set Rd
+ = {χi ∈ Rd,χi > 0, 1 ≤ d}.

• Suppose a complete probability space (Ω ,F, {F}t≥0, P) with filtration {F}t≥0, which
satisfies the usual conditions.

Generally, consider a stochastic differential equation of n-dimensions as

dx(t) = F
(
y(t), t

)
dt + G

(
y(t), t

)
dB(t), for t ≥ t0, (6)
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with initial value y(t0) = y0 ∈ Rd . By defining the differential operator L with Eq. (6)

L =
∂

∂t
+

d∑
i=1

Fi(y, t)
∂

∂yi
+

1
2

d∑
i,j=1

[
GT (y, t)G(y, t)

]
ij

∂2

∂yi ∂yj
. (7)

If the operator L acts on a function V = (Rd × R̃+; R̃+), then

LV (y, t) = Vt(y, t) + Vy(y, t)F(y, t) +
1
2

trace
[
GT (y, t)Vyy(y, t)G(y, t)

]
. (8)

Theorem 3.1 There is a unique positive solution (S(t), I(t), R(t)) of system (1) for t ≥ 0 with
(S(0), I(0), R(0)) ∈ R3

+, and solution will be left in R3
+, with probability 1.

Proof Since the coefficient of the differential equations of system (1) are locally Lipschitz
continuous for (S(0), I(0), R(0)) ∈ R3

+, there is a unique local solution (S(t), I(t), R(t)) on
t ∈ [0, τe), where τe is the time for noise caused by an explosion (see [6]). For demonstrating
the solution to be global, it is sufficient that τe = ∞ a.s. Suppose that k0 ≥ 0 is sufficiently
large so that (S(0), I(0), R(0)) ∈ [ 1

k0
, k0]. For each integer k ≥ k0, define the stopping time

τe = inf

[
t ∈ [0, τe) : min

(
S(t), I(t), R(t)

) ≤ 1
k0

or max
(
S(t), I(t), r(t)

) ≥ k
]

,

where we set infφ(empty set) = ∞ throughout the paper. For k → ∞, τk is clearly increas-
ing. Set τ∞ = limk→∞ τk whither τ∞ ≤ τe. If we can show that τ∞ = ∞ a.s, then τe = ∞. If
false, then there are a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

So there is an integer k1 ≥ k0, which satisfies

P{τk ≤ T} ≥ ε for all k ≥ k1.

Define a C2-function V : R3
+ → R̃+ by

V (S, I, R) =
(

S – c – c ln
S
c

)
+ (I – 1 – ln I) + (R – 1 – ln R). (9)

By applying the Itô formula, we obtain

dV (S, I, R) =
(

1 –
c
S

)
dS +

1
2S2 (dS)2 +

(
1 –

1
I

)
dI +

1
2I2 (dI)2 +

(
1 –

1
R

)
dR (10)

= LV dt + ρ(I – S) dB(t), (11)

where LV : R3
+ → R̃+ is defined by

LV =
(

1 –
c

S(t)

)(
Λ – βS(t)I(t) – μS(t) + δR(t)

)
+

1
2
ρ2I2

+
(

1 –
1
I

)(
βS(t)I(t) – (γ + μ)I

)
+

1
2
ρ2S2 +

(
1 –

1
R

)(
γ I(t) – μR(t) – δR(t)

)
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= Λ – βS(t)I(t) – μS(t) + δR(t) –
cΛ
S(t)

+ cβI(t) + cμ – cδ
R(t)
S(t)

+
1
2
ρ2I2

+ βS(t)I(t) – (γ + μ)I(t) – βS(t) + (γ + μ) +
1
2
ρ2S2 + γ I(t) – μR(t) – δR(t)

– γ
I(t)
R(t)

+ μ + δ

≤ Λ – (γ + μ)I + cβI(t) + cμ + γ + μ + μ + δ +
1
2
ρ2I2 +

1
2
ρ2S2.

By choosing c = γ +μ

β
, it follows that

LV ≤ Λ + cμ + γ + μ + μ + δ +
1
2
ρ2I2 +

1
2
ρ2S2 � B. (12)

Further proof follows from Ji et al. [31]. �

4 Extinction
In this section, we investigate the condition for extinction of the spread of the coronavirus.
Here, we define

〈
y(t)

〉
=

1
t

∫ t

0
y(s) ds (13)

and


̃ = β

(
Λ

μ

)
1

(γ + μ) + 1
2ρ2( Λ

μ
)2

. (14)

A useful lemma concerned with this work is as follows.

Lemma 4.1 ([31]) Let M = {Mt}t≥0 have a real value, and be continuous, local martingale
and vanishing at t = 0. Then

lim
t→∞〈M, M〉t = ∞

a.s. implies that

lim
t→∞

Mt

〈M, M〉t
= 0

and also

lim
t→∞ sup

〈M, M〉t

t
< ∞ �⇒ lim

t→∞
Mt

t
= 0.

Theorem 4.1 Let (S(t), I(t), R(t)) be the solution of system (1) with initial value (S(0), I(0),
R(0)) ∈∈ R3

+. If
1. ρ2 > max( β2

2(γ +δ+μ+α) , βμ

Λ
), or

2. R̃ < 1 and ρ2 ≤ βμ

Λ
.
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Then

lim
t→∞ sup

log I(t)
t

≤ –(γ + μ) +
β

2ρ2 < 0 a.s. if (1) holds, (15)

lim
t→∞ sup

log I(t)
t

≤ β
Λ

μ

(
1 –

1

̃

)
< 0 a.s. if (2) holds. (16)

In addition

lim
t→∞ S(t) =

Λ

μ
= S0, lim

t→∞ I(t) = 0 and lim
t→∞ R(t) = 0, a.s.

Proof Performing the integration of system (1)

S(t) – S(0)
t

= Λ – β
〈
S(t)I(t)

〉
– μ

〈
S(t)

〉
+ δ

〈
R(t)

〉
– ρS(t)I(t) dB(t),

I(t) – I(0)
t

= β
〈
S(t)I(t)

〉
– (γ + μ)

〈
I(t)

〉
+ ρS(t)I(t) dB(t),

R(t) – R(0)
t

= γ
〈
I(t)

〉
– (μ + δ)

〈
R(t)

〉
.

Then we have

S(t) – S(0)
t

+
I(t) – I(0)

t
+

δ

μ + δ

R(t) – R(0)
t

= Λ – β
〈
S(t)I(t)

〉
– μ

〈
S(t)

〉
+ δ

〈
R(t)

〉
– ρS(t)I(t) dB(t)

+ β
〈
S(t)I(t)

〉
– (γ + μ)

〈
I(t)

〉
+ ρS(t)I(t) dB(t)

+ γ
〈
I(t)

〉
– (μ + δ)

〈
R(t)

〉

= Λ – μ
〈
S(t)

〉
–

(
(γ + μ) –

δγ

μ + δ

)〈
I(t)

〉

= Λ – μ
〈
S(t)

〉
–

(
(γ + μ)(μ + δ) – γ δ

μ + δ

)〈
I(t)

〉

〈
S(t)

〉
= –

1
μ

[
S(t) – S(0)

t
+

I(t) – I(0)
t

+
δ

μ + δ

R(t) – R(0)
t

]

+
Λ

μ
–

1
μ

(
(γ + μ)(μ + δ) – γ δ

μ + δ

)〈
I(t)

〉
.

By applying limt→0

〈
S(t)

〉
=

Λ

μ
–

1
μ

(
(γ + μ)(μ + δ) – γ δ

μ + δ

)〈
I(t)

〉
, (17)

d log I(t) =
(

βS – (γ + μ) –
1
2
ρ2S2

)
dt + ρS dB(t), (18)

log I(t) – log I(0)
t

= β
〈
S(t)

〉
– (γ + μ) –

1
2
ρ2〈S(t)2〉 +

ρ

t

∫ t

0
S(r) dB(r) (19)

≤ β
〈
S(t)

〉
– (γ + μ) –

1
2
ρ2〈S(t)

〉2 +
ρ

t

∫ t

0
S(r) dB(r). (20)
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By putting in the value of 〈S(t)〉 from Eq. (17)

log I(t) – log I(0)
t

≤ β

[
Λ

μ
–

1
μ

(
(γ + μ)(μ + δ) – γ δ

μ + δ

)〈
I(t)

〉]
– (γ + μ)

–
1
2
ρ2

[
Λ

μ
–

1
μ

(
(γ + μ)(μ + δ) – γ δ

μ + δ

)〈
I(t)

〉]2

+
ρ

t

∫ t

0
S(r) dB(r)

= β

[
Λ

μ
–

(
γ + μ

μ + δ

)〈
I(t)

〉]
– (γ + μ)

–
1
2
ρ2

[(
Λ

μ

)2

–
(

γ + μ

μ + δ

)2〈
I(t)

〉2] + 2
Λ

μ

(
γ + μ

μ + δ

)〈
I(t)

〉

+
ρ

t

∫ t

0
S(r) dB(r)

=
βΛ

μ
– (γ + μ) –

1
2
ρ2

(
Λ

μ

)2

–
(

β(γ + μ)
μ + δ

)〈
I(t)

〉

+ 2
Λ

μ

(
γ + μ

μ + δ

)〈
I(t)

〉
–

1
2
ρ2

[
–
(

γ + μ

μ + δ

)2〈
I(t)

〉2]

+
ρ

t

∫ t

0
S(r) dB(r)

=
βΛ

μ
–

[
(γ + μ) +

1
2
ρ2

(
Λ

μ

)2]
–

(
β(γ + μ)

μ + δ

)〈
I(t)

〉

+ 2
Λ

μ

(
γ + μ

μ + δ

)〈
I(t)

〉
–

1
2
ρ2

[
–
(

γ + μ

μ + δ

)2〈
I(t)

〉2]

+
ρ

t

∫ t

0
S(r) dB(r)

=
βΛ

μ

[
1 –

μ((γ + μ) + 1
2ρ2( Λ

μ
)2)

βΛ

]
–

(
β(γ + μ)

μ + δ

)〈
I(t)

〉

+ 2
Λ

μ

(
γ + μ

μ + δ

)〈
I(t)

〉
–

1
2
ρ2

[
–
(

γ + μ

μ + δ

)2〈
I(t)

〉2]

+
ρ

t

∫ t

0
S(r) dB(r)

=
βΛ

μ

[
1 –

1
R̃

]
–

(
β(γ + μ)

μ + δ

)〈
I(t)

〉

+ 2
Λ

μ

(
γ + μ

μ + δ

)〈
I(t)

〉
–

1
2
ρ2

(
–
(

γ + μ

μ + δ

)2〈
I(t)

〉2)

+
ρ

t

∫ t

0
S(r) dB(r).

If condition (2) is satisfied, then

lim
t→∞ sup

log I(t)
t

≤ β
Λ

μ

(
1 –

1

̃

)
< 0, (21)
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and conclusion (16) is proved. Next, according to inequality (19)

log I(t) – log I(0)
t

≤ β
〈
S(t)

〉
– (γ + μ) –

1
2
ρ2〈S(t)

〉2 +
ρ

t

∫ t

0
S(r) dB(r)

= –
1
2
ρ2

(〈
S(t)

〉
–

β

ρ2

)
+

β

2ρ2 – (γ + μ) +
ρ

t

∫ t

0
S(r) dB(r).

If condition (1) is satisfied, then

log I(t)
t

≤ β

2ρ2 – (γ + μ) +
ρ

t

∫ t

0
S(r) dB(r) +

log I(0)
t

, (22)

and conclusion (15) is proved. We have

lim
t→∞

log I(t)
t

≤ –(γ + μ) +
β

2ρ2 < 0 is a.s.

According to (15) and (16)

lim
t→∞ I(t) = 0. (23)

Now, from third equation of system (1), it follows that

R(t) = e–(μ+δ)t
[

R(0) +
∫ t

0
δI(r)e(μ+δ)r dr

]
. (24)

By applying the L’Hospital’s rule to the previous result, we have

lim
t→∞ R(t) = 0. (25)

From Eq. (4), it follows that

N(t) = e–μt
[

N(0) +
Λ

μ
eμt

]
,

S(t) + I(t) + R(t) =
[S(0) + I(0) + R(0) + Λ

μ
eμt]

eμt ,

lim
t→∞ S(t) = lim

t→∞

[ {S(0) + I(0) + R(0) + Λ
μ

eμt}
eμt – I(t) – R(t)

]
,

lim
t→∞ S(t) =

Λ

μ
.

Hence, we have completed the proof. �

5 Persistence
This section concerns the persistence of system (1).

Theorem 5.1 Suppose that μ > ρ2

2 . Let (S(t), I(t), R(t)) be any solution of model (1) with
initial conditions (S(0), I(0), R(0)) ∈ R3

+. If 
̃ > 1, then

lim
t→∞

〈
S(t)

〉
=

Λ

μ
–

1
μ

(
(γ + μ)(μ + δ) – γ δ

μ + δ

)〈
I(t)

〉
(26)
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=
Λ

μ
–

βΛ

μ
[1 – 1

R̃
]

(β – 2Λ
μ

)
, (27)

lim
t→∞

〈
I(t)

〉
=

βΛ

μ
[1 – 1

R̃ ]

( γ +μ

μ+δ
)(β – 2Λ

μ
)
, (28)

lim
t→∞

〈
R(t)

〉
=

γ

γ + μ

βΛ

μ
[1 – 1

R̃
]

(β – 2Λ
μ

)
. (29)

Proof We have

log I(t))
t

≤ βΛ

μ

[
1 –

1
R̃

]
–

(
γ + μ

μ + δ

)(
β –

2Λ

μ

)〈
I(t)

〉

+
ρ

t

∫ t

0
S(r) dB(r) +

log I(0)
t

.

We apply the limit

lim
t→∞

〈
I(t)

〉
=

βΛ

μ
[1 – 1

R̃
]

( γ +μ

μ+δ
)(β – 2Λ

μ
)
.

Using Eq. (17) we have

lim
t→∞

〈
S(t)

〉
=

Λ

μ
–

1
μ

(
(γ + μ)(μ + δ) – γ δ

μ + δ

)
lim

t→∞
〈
I(t)

〉

=
Λ

μ
–

βΛ

μ
[1 – 1

R̃ ]

(β – 2Λ
μ

)
.

Furthermore,

R(t) – R(0)
t

= γ
〈
I(t)

〉
– (μ + δ)

〈
R(t)

〉
.

By applying the limit t → ∞, we have

lim
t→∞

〈
R(t)

〉
=

γ

μ + δ
lim

t→∞
〈
I(t)

〉

=
γ

μ + δ

βΛ

μ
[1 – 1

R̃
]

( γ +μ

μ+δ
)(β – 2Λ

μ
)

=
γ

γ + μ

βΛ

μ
[1 – 1

R̃
]

(β – 2Λ
μ

)
.

Hence, the proof is complete. �

6 Numerical simulation
For the illustration of our obtained results, we use the values of the parameters and the
variables given in Table 2.
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Table 2 Values of variables and parameters for numerical solution

Variables and
parameters

Values of variables and
parameters

S(t) 59
I(t) 40
R(t) 30
Λ 0.008
β 0.002
μ 0.001
γ 0.02011
ρ 0.0045
δ 0.001

Figure 1 Graphs of (S) susceptible community using a deterministic method (green line) and from a
stochastic solution (blue line), (I) infected people by coronavirus using a deterministic method (green line)
and from a stochastic solution (blue line) and (R) recovered using a deterministic method (green line) and
from a stochastic solution (blue line). The stability of stochastic graphs shows a better expression than
deterministic graphs

Now for the numerical simulation, we use Milstein’s higher order method [40]. The re-
sults obtained through this method are shown graphically in Fig. 1 for both deterministic
and stochastic forms.

7 Conclusion
In this work, a formulation of a stochastic COVID-19 mathematical model is presented.
The sufficient conditions are determined for extinction and persistence. Furthermore, we
discussed the threshold of proposed stochastic model when there is small or large noise.
Finally, we showed numerical simulations graphically with the help of software MATLAB.
The conclusions obtained are that the spread of COVID-19 will be under control if R̃ < 1
and ρ2 ≤ βμ

Λ
means that white noise is not large and the value of R̃ > 1 will lead to the

prevailing of COVID-19.
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