RESEARCH

Open Access

Check for updates

An increasing variables singular system of fractional *q*-differential equations via numerical calculations

Mohammad Esmael Samei¹, Dumitru Baleanu^{2,3} and Shahram Rezapour^{4,5,6*}

 *Correspondence: shahramrezapour@duytan.edu.vn; sh.rezapour@mail.cmuh.org.tw; sh.rezapour@azaruniv.ac.ir; rezapourshahram@yahoo.ca
 ⁴ Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
 ⁵ Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
 Full list of author information is available at the end of the article

Abstract

We investigate the existence of solutions for an increasing variables singular m-dimensional system of fractional *q*-differential equations on a time scale. In this singular system, the first equation has two variables and the number of variables increases permanently. By using some fixed point results, we study the singular system under some different conditions. Also, we provide two examples involving practical algorithms, numerical tables, and some figures to illustrate our main results.

MSC: Primary 34A08; 39A13; secondary 39B72

Keywords: Computational algorithm; Singularity; System of *q*-differential equations; The Caputo *q*-derivative

1 Introduction

The subject of *q*-difference equations was introduced by Jackson in the first decade of the last century [1]. The fractional calculus provides a meaningful generalization for the classical integration and differentiation to any order. It is known that working on quantum calculus is equivalent to traditional infinitesimal calculus without the notion of limits. In last decades, some researchers studied *q*-fractional difference equations [2–5]. Later, *q*-fractional boundary value problems have been considered by many researchers (see, for example, [6–13]). Nowadays many researchers focus on applications of fractional calculus [14–25] or analytical studies [26–36].

In 2013, Baleanu *et al.* investigated the coupled system of multi-term singular fractional integro-differential boundary value problem

 $\begin{cases} \mathcal{D}_{0^{+}}^{\sigma_{1}}[k](t) + w_{1}(t,k(t),l(t),\psi_{11}[k](t),\psi_{21}[l](t),\\ \mathcal{D}_{0^{+}}^{\alpha_{1}}[k](t),\mathcal{D}_{0^{+}}^{\beta_{11}}[l](t),\mathcal{D}_{0^{+}}^{\beta_{12}}[l](t),\ldots,\mathcal{D}_{0^{+}}^{\beta_{1m}}[l](t)) = 0,\\ \mathcal{D}_{0^{+}}^{\sigma_{2}}[l](t) + w_{2}(t,k(t),l(t),\psi_{12}[k](t),\psi_{22}[l](t),\\ \mathcal{D}_{0^{+}}^{\alpha_{2}}[l](t),\mathcal{D}_{0^{+}}^{\beta_{21}}[k](t),\mathcal{D}_{0^{+}}^{\beta_{22}}[k](t),\ldots,\mathcal{D}_{0^{+}}^{\beta_{2m}}[k](t)) = 0, \end{cases}$

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

via boundary conditions $k^{(i)}(0) = l^{(i)}(0) = 0$ for $0 \le i \le n-2$, $\mathcal{D}_{0^+}^{\delta_1}[k](1) = 0$ for $2 < \delta_1 < n-1$, $\sigma_1 - \delta_1 \ge 1$, and $\mathcal{D}_{0^+}^{\delta_2}[l](1) = 0$ for $2 < \delta_2 < n-1$, $\sigma_2 - \delta_2 \ge 1$, where $n \ge 4$, $n-1 < \sigma_i < n$, $0 < \alpha_i < 1$, $1 < \beta_{ij} < 2$ for i = 1, 2 and j = 1, 2, ..., m, γ_{ij} is positive-valued continuous functions on $[0,1] \times [0,1]$ (i,j = 1,2), $\psi_{ij}[k](t) = \int_0^t \gamma_{ij}(t,r)k(r) dr$, w_1 , w_2 satisfy the local Caratheodory condition on $[0,1] \times D(w_1, w_2 \in \operatorname{Car}([0,1] \times D))$, where $D \subset \mathbb{R}^{m+5}$ and w_i may be singular at the value zero of all its variables [37]. In 2016, Taieb *et al.* reviewed the fractional coupled system of nonlinear differential equations

$$\begin{cases} \mathcal{D}^{\sigma_1}[k](t) + \sum_{i=1}^m w_{1i}(t,k(t),l(t),\mathcal{D}^{\beta_1}[k](t),\mathcal{D}^{\beta_2}[l](t)) = 0, \\ \mathcal{D}^{\sigma_2}[l](t) + \sum_{i=1}^m w_{2i}(t,k(t),l(t),\mathcal{D}^{\beta_1}[k](t),\mathcal{D}^{\beta_2}[l](t)) = 0, \end{cases}$$

with boundary conditions $k(0) = k_0^*$, $l(0) = l_0^*$, k'(0) = k''(0) = l'(0) = l''(0) = 0, $k'''(0) = \mathcal{J}^{\alpha_1}[k](a_1)$, and $l'''(0) = \mathcal{J}^{\alpha_2}[k](a_2)$, where $t \in [0,1]$, $m \in \mathbb{N}^*$, $\alpha_j > 0$, $\sigma_j \in (3,4)$, $a_j \in (0,1)$, \mathcal{D}^{σ_j} , \mathcal{D}^{β_j} are the Caputo derivatives and \mathcal{J}^{α_j} are the Riemann–Liouville fractional integrals [38]. In 2017, El Abidine studied the coupled system of nonlinear fractional equations

$$\begin{cases} \mathcal{D}^{\sigma_1}[k](t) = w_{1i}(t, l(t), \mathcal{D}^{\beta_1}[l](t)), \\ \mathcal{D}^{\sigma_2}[l](t) = w_{2i}(t, k(t), \mathcal{D}^{\beta_2}[k](t)), \end{cases}$$

with boundary conditions $k(0) = k^{(j)}(0) = 0$ and $l(0) = l^{(j)}(0) = 0$ for $1 \le j \le m - 2$ with $m \ge 2$, where $t \in \mathbb{R}^+ = (0, \infty)$, $m - 1 < \sigma_i \le m$, $\beta_i \in (0, 3)$ for $i = 1, 2, 0 < \beta_1 \le \sigma_2 - 1$, $0 < \beta_2 \le \sigma_1 - 1$, the differential operator is in the Riemann–Liouville sense and w_i are Borel measurable functions in \mathbb{R}^{+3} satisfying some conditions [39].

By using the main idea of the above works, we investigate the increasing variables mdimensional singular system of fractional q-differential equations

$$\begin{cases} {}^{c}\mathcal{D}_{q}^{\sigma_{1}}[k_{1}](t) = w_{1}(t,k_{1}(t)), \\ {}^{c}\mathcal{D}_{q}^{\sigma_{2}}[k_{2}](t) = w_{2}(t,k_{1}(t),k_{2}(t)), \\ \vdots \\ {}^{c}\mathcal{D}_{q}^{\sigma_{m}}[k_{m}](t) = w_{m}(t,k_{1}(t),k_{2}(t),\dots,k_{m}(t)), \end{cases}$$
(1)

with boundary conditions $k_1(0) = {}_1b_0$, $k_i^{(j)}(0) = {}_ib_j$ for j = 0, 1, ..., i - 2 and $2 \le i \le m$, ${}^c\mathcal{D}_q^{\zeta_{i-1}}k_i(1) = 0$ for $\zeta_{i-1} \in [i-2, i-1]$ and $2 \le i \le m$, where $t \in J := (0,1]$, $m \ge 2$, $\sigma_i \in (i-1,i)$ for $1 \le i \le m$, ${}^c\mathcal{D}_q^{\sigma_i}$ denotes the Caputo fractional *q*-derivative of order σ_i , $w_i : J \times \mathbb{R}^i \to \mathbb{R}$ are continuous, $w_i(t, k_1, k_2, ..., k_i)$ may be singular at t = 0 of its space variables, $\lim_{t\to 0^+} w_i(t, k_1, k_2, ..., k_i) = \infty$, and there exists $0 < \alpha_1, ..., \alpha_m < 1$ such that $t^{\alpha_1}w_1, ..., t^{\alpha_m}w_m$ are continuous on $\overline{J} := [0, 1]$.

2 Essential preliminaries

Throughout this article, we apply the time scales calculus notation [40]. In fact, we consider the fractional *q*-calculus on the time scale $\mathbb{T}_{t_0} = \{0\} \cup \{t : t = t_0q^n\}$, where $n \ge 0$, $t_0 \in \mathbb{R}$, and $q \in (0, 1)$. Let $a \in \mathbb{R}$. Define $[a]_q = \frac{1-q^a}{1-q}$ [1]. The power function $(x - y)_q^{(n)}$ with $n \in \mathbb{N}_0$ is defined by $(x - y)_q^{(n)} = \prod_{k=0}^{n-1} (x - yq^k)$ for $n \ge 1$ and $(x - y)_q^{(0)} = 1$, where *x* and *y* are real numbers and $\mathbb{N}_0 := \{0\} \cup \mathbb{N}$ [1, 2]. Also, $(x - y)_q^{(\alpha)} = x^{\alpha} \prod_{k=0}^{\infty} (x - yq^k)/(x - yq^{\alpha+k})$

Algorithm 1 The proposed method for calculated $(a - b)_a^{(\alpha)}$

```
function p = powerfunction(a, b, n, q)
           %Power Gamma (a-b)^(n)
           s=1;
           if n==0
           p=1
           else
           for k=1:n-1
           s=s*(a-b*q^k)/(a-b*q^(alpha+k));
           end
9
10
           p=a^alpha * s;
11
           end
12
           end
```

```
Algorithm 2 The proposed method for calculated \Gamma_q(x)
```

```
1 function g = qGamma(q, x, n)
2 %q-Gamma Function
3 p=1;
4 for k=0:n
5 p=p*(1-q^(k+1))/(1- q^(x+k));
6 end;
7 g=p/(1-q)^(x-1);
8 end
```

Algorithm 3 The proposed method for calculated $(D_a f)(x)$

```
1 function g = Dq(q, x, n, fun)
2 if x==0
3 g=limit ((fun(x)-fun(q*x))/((1-q)*x),x,0);
4 else
5 g=(fun(x)-fun(q*x))/((1-q)*x);
6 end;
7 end
```

for $\alpha \in \mathbb{R}$ and $q \neq 0$. If y = 0, then it is clear that $x^{(\alpha)} = x^{\alpha}$ [6] (see Algorithm 1). The q-gamma function is given by $\Gamma_q(z) = (1 - q)^{(z-1)}/(1 - q)^{z-1}$, where $z \in \mathbb{R} \setminus \{0, -1, -2, ...\}$ [1]. Note that $\Gamma_q(z + 1) = [z]_q \Gamma_q(z)$. Algorithm 2 shows a pseudo-code description of the technique for estimating q-gamma function of order n. The q-derivative of function f is defined by $(\mathcal{D}_q f)(x) = \frac{f(x) - f(qx)}{(1 - q)x}$ and $(\mathcal{D}_q f)(0) = \lim_{x \to 0} (\mathcal{D}_q f)(x)$, which is shown in Algorithm 3 [2, 3]. Furthermore, the higher order q-derivative of a function f is defined by $(\mathcal{D}_q^n f)(x) = D_q(\mathcal{D}_q^{n-1}f)(x)$ for $n \ge 1$, where $(\mathcal{D}_q^0 f)(x) = f(x)$ [2, 3]. The q-integral of a function f is defined on [0, b] by $I_q f(x) = \int_0^x f(s) d_q s = x(1 - q) \sum_{k=0}^{\infty} q^k f(xq^k)$ for $0 \le x \le b$, provided the series absolutely converges [2, 3]. If x in [0, T], then

$$\int_{x}^{T} f(r) d_{q}r = I_{q}f(T) - I_{q}f(x) = (1 - q) \sum_{k=0}^{\infty} q^{k} [Tf(Tq^{k}) - xf(xq^{k})],$$

whenever the series exists. In addition, we can interchange the order of double *q*-integral by $\int_0^t \int_0^s h(r) d_q r d_q s = \int_0^t \int_{qr}^t h(r) d_q s d_q r$ [41]. Actually, the interchange of order is true

since

$$\int_{0}^{t} \int_{qr}^{t} d_{q}s d_{q}r = \int_{0}^{t} (t - qr)^{(\sigma - 1)}h(r) d_{q}r$$
$$= t(1 - q) \sum_{i=0}^{\infty} q^{i}h(q^{i}t)(t - q^{i+1}t)$$
$$= t^{2}(1 - q)^{2} \sum_{i=0}^{\infty} q^{i}h(q^{i}t)\left(\sum_{i=0}^{\infty} q^{i}\right)$$

In addition the left-hand side can be written as follows:

$$\int_{0}^{t} \int_{0}^{r} h(s) \, \mathrm{d}_{q} s \, \mathrm{d}_{q} r = t(1-q) \sum_{i=0}^{\infty} q^{i} \int_{0}^{tq^{i}} h(r) \, \mathrm{d}_{q} r$$
$$= t^{2} (1-q)^{2} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} q^{i+2j} h(q^{i+j}t).$$
(2)

The operator I_q^n is given by $(I_q^0 h)(x) = h(x)$ and $(I_q^n h)(x) = (I_q(I_q^{n-1}h))(x)$ for all $n \ge 1$ and $h \in C([0, T])$ [2, 3]. It has been proved that $(D_q(I_q h))(x) = h(x)$ and $(I_q(D_q h))(x) =$ h(x) - h(0) whenever h is continuous at x = 0 [2, 3]. The fractional Riemann–Liouville type q-integral of the function h on J = (0, 1) for $\sigma \ge 0$ is defined by $\mathcal{I}_q^0[h](t) = h(t)$ and

$$\begin{aligned} \mathcal{I}_{q}^{\sigma}[h](t) &= \frac{1}{\Gamma_{q}(\sigma)} \int_{0}^{t} (t - qr)^{(\sigma - 1)} h(r) \, \mathrm{d}_{q}r \\ &= t^{\sigma} (1 - q)^{\sigma} \sum_{k=0}^{\infty} q^{k} \frac{\prod_{i=1}^{k-1} (1 - q^{\sigma + i})}{\prod_{i=1}^{k-1} (1 - q^{i+1})} h(tq^{k}) \end{aligned}$$

for $t \in J$ [42]. Also, the Caputo fractional *q*-derivative of a function *h* is defined by

$${}^{c}\mathcal{D}_{q}^{\sigma}[h](t) = \mathcal{I}_{q}^{[\sigma]-\sigma} \left[\mathcal{D}_{q}^{[\sigma]}[h]\right](t)$$
$$= \frac{1}{\Gamma_{q}([\sigma]-\sigma)} \int_{0}^{t} (t-qr)^{([\sigma]-\sigma-1)} \mathcal{D}_{q}^{[\sigma]}[h](r) \,\mathrm{d}_{q}r,$$

where $t \in J$ and $\sigma > 0$ [42]. It has been proved that $\mathcal{I}_q^{\beta}(\mathcal{I}_q^{\alpha}[h])(x) = \mathcal{I}_q^{\alpha+\beta}[h](x)$ and $\mathcal{D}_q^{\alpha}[\mathcal{I}_q^{\alpha}[h]](x) = h(x)$, where $\alpha, \beta \geq 0$ [42]. Algorithm 5 shows MATLAB lines for $\mathcal{I}_q^{\alpha}[h](x)$.

Let (\mathcal{E}, ρ) be a metric space. Denote by $\mathcal{P}(\mathcal{E})$ and $2^{\mathcal{E}}$ the class of all subsets and the class of all nonempty subsets of \mathcal{E} , respectively. Thus, $\mathcal{P}_{cl}(\mathcal{E})$, $\mathcal{P}_{bd}(\mathcal{E})$, $\mathcal{P}_{cv}(\mathcal{E})$, and $\mathcal{P}_{cp}(\mathcal{E})$ denote the class of all closed, bounded, convex, and compact subsets of \mathcal{E} , respectively. For each *i*, consider the space $E_i = \{k_i(t) : k_i(t) \in \mathcal{A}\}$ endowed with the norm $||k_i||_{\infty} = \max_{t \in \overline{J}} |k_i(t)|$, where $\mathcal{A} = C(\overline{J}, \mathbb{R})$. Also, define the product space $\mathcal{E} = E_1 \times \cdots \times E_m$ endowed with the norm $||(k_1, \ldots, k_m)|| = \max_{1 \le i \le m} ||k_i||_{\infty}$. Then $(\mathcal{E}, ||.||)$ is a Banach space [43]. Similar to the idea of the works [44, 45], define the set of the selections of \mathcal{S} at k

by

$$S = \{k = (k_1, k_2, \dots, k_m) : k_i \in \mathcal{A}, i = 1, 2, \dots, m\}$$

for all $t \in \overline{J}$ and $k = (k_1, \dots, k_m) \in \mathcal{E}$. One can check that $S \neq \emptyset$ for all $k \in \mathcal{E}$ whenever dim $\mathcal{E} < \infty$ [46]. We need next results.

Lemma 1 ([47, 48]) The general solution of the *q*-fractional equation ${}^{c}\mathcal{D}_{q}^{\sigma}[k](t) = 0$ is given by $k(t) = d_{0} + d_{1}t + d_{2}t^{2} + \cdots + d_{m-1}t^{m-1}$ for $\sigma > 0$, where $d_{i} \in \mathbb{R}$ for $i = 0, 1, \dots, m-1$ and $m = [\sigma] + 1$.

Theorem 2 ([43], Schauder's fixed point) Assume that (\mathcal{E}, ρ) is a complete metric space, S is a closed convex subset of \mathcal{E} , and $\mathcal{N} : \mathcal{E} \to \mathcal{E}$ is a map such that the set $K = \{\mathcal{N}(k) : k \in S\}$ is relatively compact in \mathcal{E} . Then \mathcal{N} has at least one fixed point.

3 Main results

Now, we are ready to provide our results about the *m*-dimensional system of singular fractional *q*-differential equations. First, we prove next basic result to give the integral representation of problem (1).

Lemma 3 Let $m \ge 2$ for $i \in \{1, 2, ..., m\}$, $\sigma_i \in (i - 1, i)$, $\varrho_1, ..., \varrho_m \in A$, and $t \in J$. Then the *m*-dimensional system

$$\begin{cases} {}^{c}\mathcal{D}_{q}^{\sigma_{1}}[k_{1}](t) = \varrho_{1}(t), \\ {}^{c}\mathcal{D}_{q}^{\sigma_{2}}[k_{2}](t) = \varrho_{2}(t), \\ \vdots \\ {}^{c}\mathcal{D}_{q}^{\sigma_{m}}[k_{m}](t) = \varrho_{m}(t), \end{cases}$$
(3)

under the conditions

$$\begin{cases} k_1(0) = {}_1b_0, \\ k_i^{(j)}(0) = {}_ib_j, \qquad j = 0, 1, \dots i - 2, \\ {}^c\mathcal{D}_q^{\zeta_{i-1}}k_i(1) = 0, \quad i - 2 < \zeta_{i-1} < i - 1(2 \le i \le m), \end{cases}$$

$$\tag{4}$$

has a unique solution $k = (k_1, k_2, ..., k_m)$, where

$$k_{i}(t) = \begin{cases} \mathcal{I}_{q}^{\sigma_{i}}[\varrho_{i}](t) + _{1}b_{0}, & i = 1, \\ \mathcal{I}_{q}^{\sigma_{i}}[\varrho_{i}](t) + \sum_{j=0}^{i-2} \frac{_{i}b_{j}}{_{j!}}t^{j} \\ - \frac{\Gamma_{q}(i-\zeta_{i-1})}{_{(i-1)!}}t^{i-1}\mathcal{I}_{q}^{\sigma_{i}-\zeta_{i-1}}[\varrho_{i}](1), & 2 \leq i \leq m. \end{cases}$$
(5)

Proof By using Lemma 1, we obtain the fractional *q*-integral equation

$$k_{i}(t) = \mathcal{I}_{q}^{\sigma_{i}}[\varrho_{i}](t) - \sum_{j=0}^{i-1} {}_{i}d_{j}t^{j}$$
(6)

for $1 \le i \le m$. Let

$$D = \begin{pmatrix} 1d_0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 2d_0 & 2d_1 & 0 & 0 & \cdots & 0 & 0 \\ 3d_0 & 3d_1 & 3d_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 & 0 \\ m_{-1}d_0 & m_{-1}d_1 & m_{-1}d_2 & m_{-1}d_3 & \cdots & m_{-1}d_{m-2} & 0 \\ md_0 & md_1 & md_2 & md_3 & \cdots & md_{m-2} & md_{m-1} \end{pmatrix} \in M_m(\mathbb{R}).$$

By using the assumptions, we find $k_1(0) = -_1 d_0 = _1 b_0$, $k_i^{(j)}(0) = -j!_i d_j = _i b_j$ for j = 0, 1, 2, ..., i - 2 and

$${}^{c}\mathcal{D}_{q}^{\zeta_{i-1}}[k_{i}](1) = \mathcal{I}_{q}^{\sigma_{i}-\zeta_{i-1}}[\varrho_{i}](1) - \frac{\Gamma_{q}(i)}{\Gamma_{q}(i-\zeta_{i-1})}id_{i-1} = 0$$

for $i - 2 < \zeta_{i-1} < i - 1$, where $2 \le i \le m$. Thus, $_1d_0 = -_1b_0$ and

$${}_{i}d_{j} = \begin{cases} -\frac{ib_{j}}{j!}, & j = 0, 1, \dots, i-2, \\ \frac{\Gamma_{q}(i-\zeta_{i-1})}{\Gamma_{q}(i)} \mathcal{I}_{q}^{\sigma_{i}-\zeta_{i-1}}[\varrho_{i}](1), & j = i-1, \end{cases}$$
(7)

for $2 \le i \le m$. By substituting these constants and (7) in (6), we find (5).

Now, define the nonlinear operator $\mathcal{N} : S \to S$ by

$$\mathcal{N}[k_1, k_2, \dots, k_m](t) = \begin{pmatrix} N_1(k_1)(t) \\ N_2(k_1, k_2)(t) \\ N_3(k_1, k_2, k_3)(t) \\ \vdots \\ N_m(k_1, k_2, \dots, k_m)(t) \end{pmatrix},$$
(8)

where

$$N_{i}(k_{1},k_{2},\ldots,k_{i})(t) = \begin{cases} \mathcal{I}_{q}^{\sigma_{i}}[w_{i}](t,k_{1}(t)) + {}_{1}b_{0}, & i = 1, \\ \mathcal{I}_{q}^{\sigma_{i}}[w_{i}](t,k_{1}(t),\ldots,k_{i}(t)) \\ + [\sum_{j=0}^{i-2}\frac{ib_{j}}{j!}t^{j}] - \frac{\Gamma_{q}(i-\zeta_{i-1})}{(i-1)!}t^{i-1} \\ \times \mathcal{I}_{q}^{\sigma_{i}-\zeta_{i-1}}[w_{i}](1,k_{1}(1),\ldots,k_{i}(1)), & 2 \le i \le m, \end{cases}$$

for $t \in \overline{J}$.

Lemma 4 Let $m \ge 2$, $\sigma_1 \in (0, 1)$, $\sigma_1 > \alpha_1$, $\sigma_i \in (i - 1, i)$ for i = 2, ..., m, $\alpha_i \in (0, 1)$ for i = 1, 2, ..., m, $f_i : J \to \mathbb{R}$ be a function with $\lim_{t\to 0^+} f_i(t) = \infty$, and the maps $t^{\alpha_i} f_i(t)$ be continuous on \overline{J} . Then the maps

$$k_{i}(t) = \begin{cases} \mathcal{I}_{q}^{\sigma_{i}}[f_{i}](t) + {}_{i}b_{0}, & i = 1, \\ \mathcal{I}_{q}^{\sigma_{i}}[f_{i}](t) + \sum_{j=0}^{i-2} \frac{ib_{j}}{j!}t^{j} \\ - \frac{\Gamma_{q}(i-\zeta_{i-1})}{(i-1)!}t^{i-1}\mathcal{I}_{q}^{\sigma_{i}-\zeta_{i-1}}[f_{i}](1) & 2 \leq i \leq m, \end{cases}$$

are continuous on \overline{J} .

Proof By using the definition of the maps $k_i(t)$, we have

$$\begin{split} k_i(t) &= \begin{cases} \frac{1}{\Gamma_q(\sigma_i)} \int_0^t (t-qr)^{(\sigma_i-1)} f_i(r) \, \mathrm{d}_q r + {}_i b_0, & i=1, \\ \frac{1}{\Gamma_q(\sigma_i)} \int_0^t (t-qr)^{(\sigma_i-1)} f_i(r) \, \mathrm{d}_q r + \sum_{j=0}^{i-2} \frac{{}_i b_j}{j!} t^j \\ &- \frac{\Gamma_q(i-\zeta_{i-1})}{(i-1)!\Gamma_q(\sigma_i-\zeta_{i-1})} t^{i-1} \\ &\times \int_0^1 (1-qr)^{(\sigma_i-\zeta_{i-1}-1)} f_i(r) \, \mathrm{d}_q r, & 2 \le i \le m, \end{cases} \\ &= \begin{cases} \frac{1}{\Gamma_q(\sigma_i)} \int_0^t (t-qr)^{(\sigma_i-1)} r^{-\alpha_i} r^{\alpha_i} f_i(r) \, \mathrm{d}_q r + {}_i b_0, & i=1, \\ \frac{1}{\Gamma_q(\sigma_i)} \int_0^t (t-qr)^{(\sigma_i-1)} r^{-\alpha_i} r^{\alpha_i} f_i(r) \, \mathrm{d}_q r \\ &+ \sum_{j=1}^{i-2} \frac{{}_j b_j}{j!} t^j - \frac{\Gamma_q(i-\zeta_{i-1})}{(i-1)!\Gamma_q(\sigma_i-\zeta_{i-1})} t^{i-1} \\ &\times \int_0^1 (1-qr)^{(\sigma_i-\zeta_{i-1}-1)} r^{-\alpha_i} r^{\alpha_i} f_i(r) \, \mathrm{d}_q r, & 2 \le i \le m, \end{cases} \end{split}$$

and by the continuity of the maps $t^{\alpha_i} f_i(t)$, we get $k_i(0) = {}_i b_0$ for i = 1, 2, ..., m. Now, we consider some cases.

(I) Let $t_0 = 0$ and $t \in J$. Since $t^{\alpha_i} f_i(t)$ is continuous, there exist $M_1, \ldots, M_n > 0$ such that $|t^{\alpha_i} f_i(t)| \le M_i$ for all $t \in \overline{J}$. Thus,

$$\begin{split} \left| k_{i}(t) - k_{i}(0) \right| \\ &= \begin{cases} \left| \frac{1}{\Gamma_{q}(\sigma_{i})} \int_{0}^{t} (t - qr)^{(\sigma_{i} - 1)} r^{-\alpha_{i}} r^{\alpha_{i}} f_{i}(r) \, \mathrm{d}_{q} r \right|, & i = 1, \\ \left| \frac{1}{\Gamma_{q}(\sigma_{i})} \int_{0}^{t} (t - qr)^{(\sigma_{i} - 1)} r^{-\alpha_{i}} r^{\alpha_{i}} f_{i}(r) \, \mathrm{d}_{q} r \right| \\ &+ \sum_{j=0}^{i-2} \frac{i b_{j}}{j!} t^{j} - \frac{\Gamma_{q}(i - \zeta_{i-1})}{(i - 1)! \Gamma_{q}(\sigma_{i} - \zeta_{i-1})} t^{i-1} \\ &\times \int_{0}^{1} (t - qr)^{(\sigma_{i} - 1)} r^{-\alpha_{i}} r^{\alpha_{i}} f_{i}(r) \, \mathrm{d}_{q} r \right|, \quad 2 \leq i \leq m, \end{cases} \\ &\leq \begin{cases} \frac{M_{i}}{\Gamma_{q}(\sigma_{i})} \int_{0}^{t} (t - qr)^{(\sigma_{i} - 1)} r^{-\alpha_{i}} \, \mathrm{d}_{q} r, & i = 1, \\ \frac{M_{i}}{\Gamma_{q}(\sigma_{i})} \int_{0}^{t} (t - qr)^{(\sigma_{i} - 1)} r^{-\alpha_{i}} \, \mathrm{d}_{q} r \\ &+ \sum_{j=1}^{i-2} \frac{|_{i}b_{j}|}{j!} t^{j} + \frac{\Gamma_{q}(i - \zeta_{i-1})M_{i}}{(i - 1)! \Gamma_{q}(\sigma_{i} - \zeta_{i-1})} t^{i-1} \\ &\times \int_{0}^{1} (1 - qr)^{(\sigma_{i} - \zeta_{i-1} - 1)} r^{-\alpha_{i}} \, \mathrm{d}_{q} r. \qquad 2 \leq i \leq m. \end{cases} \end{split}$$

Hence, by using the q-beta function, we get

$$\begin{split} \left| k_{i}(t) - k_{i}(0) \right| \\ &\leq \begin{cases} \frac{M_{i}t^{\sigma_{i} - \alpha_{i}}}{\Gamma_{q}(\sigma_{i})} \int_{0}^{1} (1 - qr)^{(\sigma_{i} - 1)} r^{-\alpha_{i}} \, \mathrm{d}_{q}r, & i = 1, \\ \frac{M_{i}t^{\sigma_{i} - \alpha_{i}}}{\Gamma_{q}(\sigma_{i})} \int_{0}^{1} (1 - qr)^{(\sigma_{i} - 1)} r^{-\alpha_{i}} \, \mathrm{d}_{q}r \\ &+ \sum_{j=1}^{i-2} \frac{|ib_{j}|}{i!} t^{j} \\ &+ \frac{\Gamma_{q}(i - \zeta_{i-1})M_{i}B_{q}(\sigma_{i} - \zeta_{i-1}, 1 - \alpha_{i})}{(i - 1)!\Gamma_{q}(\sigma_{i} - \zeta_{i-1})} t^{i-1}, \quad 2 \leq i \leq m, \end{cases} \\ &\leq \begin{cases} \frac{M_{i}B_{q}(\sigma_{i}, 1 - \alpha_{i})t^{\sigma_{i} - \alpha_{i}}}{\Gamma_{q}(\sigma_{i})} , & i = 1, \\ \frac{M_{i}B_{q}(\sigma_{i}, 1 - \alpha_{i})t^{\sigma_{i} - \alpha_{i}}}{\Gamma_{q}(\sigma_{i})} + \sum_{j=1}^{i-2} \frac{|ib_{j}|}{j!} t^{j} \\ &+ \frac{\Gamma_{q}(i - \zeta_{i-1})M_{i}B_{q}(\sigma_{i} - \zeta_{i-1})}{(i - 1)!\Gamma_{q}(\sigma_{i} - \zeta_{i-1})} t^{i-1}, \quad 2 \leq i \leq m, \end{cases} \end{split}$$

which, by assumption $\sigma_1 > \alpha_1$ and the fact $\sigma_i > \alpha_i$, tend to zero as $t \to 0$ for i = 1, 2, ..., m.

(II) Let $t_0 \in (0, 1)$ and $t \in (t_0, 1]$. Then we have

$$\begin{split} \left|k_{i}(t)-k_{i}(t_{0})\right| \\ &= \begin{cases} \left|\frac{1}{\Gamma_{q}(\sigma_{i})}\int_{0}^{t}(t-qr)^{(\sigma_{i}-1)}r^{-\alpha_{i}}r^{\alpha_{i}}f_{i}(r)\,\mathrm{d}_{q}r\right|, \quad i=1, \\ \left|\frac{1}{\Gamma_{q}(\sigma_{i})}\int_{0}^{t}(t-qr)^{(\sigma_{i}-1)}r^{-\alpha_{i}}r^{\alpha_{i}}f_{i}(r)\,\mathrm{d}_{q}r\right|, \quad i=1, \\ \left|\frac{1}{\Gamma_{q}(\sigma_{i})}\int_{0}^{t}(t-qr)^{(\sigma_{i}-1)}r^{-\alpha_{i}}r^{\alpha_{i}}f_{i}(r)\,\mathrm{d}_{q}r\right| \\ &\quad -\frac{1}{\Gamma_{q}(\sigma_{i})}\int_{0}^{t}(t-qr)^{(\sigma_{i}-1)}r^{-\alpha_{i}}r^{\alpha_{i}}f_{i}(r)\,\mathrm{d}_{q}r\right| \\ &\quad +\sum_{j=0}^{i-2}\frac{ib_{j}}{j!}(t^{j}-t_{0}^{j}) \\ &\quad +\frac{\Gamma_{q}(i-\zeta_{i-1})}{(i-1)!\Gamma_{q}(\sigma_{i}-\zeta_{i-1}-1)}r^{-\alpha_{i}}r^{\alpha_{i}}f_{i}(r)\,\mathrm{d}_{q}r\right|, \quad 2\leq i\leq m, \end{cases} \\ &\leq \begin{cases} \frac{M_{i}}{\Gamma_{q}(\sigma_{i})}\left[\int_{0}^{t}(t-qr)^{(\sigma_{i}-1)}r^{-\alpha_{i}}\,\mathrm{d}_{q}r \\ &\quad -\int_{0}^{t_{0}}(t_{0}-qr)^{(\sigma_{i}-1)}r^{-\alpha_{i}}\,\mathrm{d}_{q}r\right] \\ &\quad +\sum_{j=0}^{i-2}\frac{|ib_{j}|}{j!}(t^{j}-t_{0}^{j}) \\ &\quad +\sum_{j=0}^{i-2}\frac{|ib_{j}|}{j!}(t^{j}-t_{0}^{j}) \\ &\quad +\frac{\Gamma_{q}(i-\zeta_{i-1})M_{i}}{(i-1)!\Gamma_{q}(\sigma_{i}-\zeta_{i-1}-1)}r^{-\alpha_{i}}\,\mathrm{d}_{q}r. \quad 2\leq i\leq m. \end{cases} \end{split}$$

Hence,

$$\begin{split} k_{i}(t) - k_{i}(t_{0}) \Big| \\ &\leq \begin{cases} \frac{M_{i}B_{q}(\sigma_{i}, 1-\alpha_{i})}{\Gamma_{q}(\sigma_{i})} (t^{\sigma_{i}-\alpha_{i}} - t_{0}^{\sigma_{i}-\alpha_{i}}), & i = 1, \\ \frac{M_{i}B_{q}(\sigma_{i}, 1-\alpha_{i})}{\Gamma_{q}(\sigma_{i})} (t^{\sigma_{i}-\alpha_{i}} - t_{0}^{\sigma_{i}-\alpha_{i}}) \\ &+ \sum_{j=0}^{i-2} \frac{|ib_{j}|}{j!} (t^{j} - t_{0}^{j}) \\ &+ \frac{\Gamma_{q}(i-\zeta_{i-1})M_{i}B_{q}(\sigma_{i}-\zeta_{i-1}, 1-\alpha_{i})}{(i-1)!\Gamma_{q}(\sigma_{i}-\zeta_{i-1})} \\ &\times (t^{i-1} - t_{0}^{i-1}), \qquad 2 \leq i \leq m, \end{cases}$$

which similar to case I tends to zero as $t \to 0$ for i = 1, 2, ..., m.

(III) Let $t_0 = 1$ and $t \in [0, t_0)$. By using similar arguments as in the previous case, one can obtain

$$\begin{split} k_{i}(t) - k_{i}(t_{0}) \Big| \\ &\leq \begin{cases} \frac{M_{i}B_{q}(\sigma_{i}, 1-\alpha_{i})}{\Gamma_{q}(\sigma_{i})} (t_{0}^{\sigma_{i}-\alpha_{i}} - t^{\sigma_{i}-\alpha_{i}}), & i = 1, \\ \frac{M_{i}B_{q}(\sigma_{i}, 1-\alpha_{i})}{\Gamma_{q}(\sigma_{i})} (t_{0}^{\sigma_{i}-\alpha_{i}} - t^{\sigma_{i}-\alpha_{i}}) \\ &+ \sum_{j=0}^{i-2} \frac{|ib_{j}|}{j!} (t_{0}^{j} - t^{j}) \\ &+ \frac{\Gamma_{q}(i-\zeta_{i-1})M_{i}B_{q}(\sigma_{i}-\zeta_{i-1}, 1-\alpha_{i})}{(i-1)!\Gamma_{q}(\sigma_{i}-\zeta_{i-1})} \\ &\times (t_{0}^{i-1} - t^{i-1}), \qquad 2 \leq i \leq m, \end{cases}$$

which similar to the previous case tends to zero as $t \rightarrow 1$ for i = 1, 2, ..., m. This completes the proof.

Lemma 5 Let $m \ge 2$, $\sigma_1 \in (0, 1)$, $\sigma_1 > \alpha_1$, $\sigma_i \in (i - 1, i)$ for i = 2, ..., m, $\alpha_i \in (0, 1)$ for i = 1, 2, ..., m, $w_i : J \times \mathbb{R}^i \to \mathbb{R}$ be a function with $\lim_{t\to 0^+} w_i(t,...) = \infty$, and $t^{\alpha_i}w_i(t)$ be continuous on $\overline{J} \times \mathbb{R}^i$. Then the operator $\mathcal{N} : S \to S$ defined by Eq. (8) is completely continuous.

Proof Let $(_0k_1, _0k_2, \ldots, _0k_m) \in S$ with

$$\|(k_1, k_2, \ldots, k_m) - (_0k_1, _0k_2, \ldots, _0k_m)\| < 1,$$

and $||(_0k_1, _0k_2, ..., _0k_m)|| = l_0$ for all $(k_1, k_2, ..., k_m) \in S$. Hence,

$$||(k_1, k_2, \ldots, k_m)|| < 1 + l_0 := l.$$

By using the continuity of the map $t^{\alpha_i} \varrho_i(t, k_1, k_2, ..., k_m)$, we get the map

 $t^{\alpha_i}\varrho_i(t,k_1,k_2,\ldots,k_m)$

is uniformly continuous on $\overline{J} \times [-l, l]^i$. For each $\varepsilon > 0$, choose $\lambda \in (0, 1)$ such that

$$\left|t^{\alpha_{i}}w_{i}(t,k_{1}(t),k_{2}(t),\ldots,k_{i}(t))-t^{\alpha_{i}}w_{i}(t,_{0}k_{1}(t),_{0}k_{2}(t),\ldots,_{0}k_{i}(t))\right|<\varepsilon$$
(9)

for all $t \in \overline{J}$ whenever $||(k_1, k_2, \dots, k_m) - (_0k_1, _0k_2, \dots, _0k_m)|| < \lambda$. Thus,

$$\|\mathcal{N}[k_1, k_2, \dots, k_m](t) - \mathcal{N}[_0k_1, _0k_2, \dots, _0k_m](t)\|$$

= $\max_{1 \le i \le m} \|N_i(k_1, k_2, \dots, k_i)(t) - N_i(_0k_1, _0k_2, \dots, _0k_i)(t)\|_{\infty}$ (10)

and

-

$$N_{i}(k_{1}, k_{2}, \dots, k_{i})(t) - N_{i}(_{0}k_{1}, _{0}k_{2}, \dots, _{0}k_{i})(t) \|_{\infty}$$

$$\begin{cases} \max_{t \in \overline{I}} \int_{0}^{t} \frac{(t-qr)^{(\sigma_{i}-1)}r^{-\alpha_{i}}}{\Gamma_{q}(\sigma_{i})} \\ \times |r^{\alpha_{i}}w_{i}(r, k_{i}(r)) - r^{\alpha_{i}}w_{i}(r, _{0}k_{i}(r))| \, \mathbf{d}_{q}r, \quad i = 1, \\ \max_{t \in \overline{I}} \int_{0}^{t} \frac{(t-qr)^{(\sigma_{i}-1)}r^{-\alpha_{i}}}{\Gamma_{q}(\sigma_{i})} \\ \times |r^{\alpha_{i}}w_{i}(r, k_{1}(r), \dots, k_{i}(r)) \\ - r^{\alpha_{i}}w_{i}(r, _{0}k_{1}(r), \dots, _{0}k_{i}(r))| \, \mathbf{d}_{q}r \\ + \max_{t \in \overline{I}} \frac{\Gamma_{q}(i-\xi_{i-1})}{\Gamma_{q}(\sigma_{i}-\xi_{i-1}-1)}t^{i-1} \\ \times \int_{0}^{1} \frac{(1-qr)^{(\sigma_{i}-\xi_{i-1}-1)}r^{-\alpha_{i}}}{\Gamma_{q}(\sigma_{i}-\xi_{i-1}-1)} \\ \times |r^{\alpha_{i}}w_{i}(r, k_{1}(r), \dots, k_{i}(r))| \, \mathbf{d}_{q}r, \qquad 2 \leq i \leq m. \end{cases}$$

Now, by using (9), we obtain

$$\begin{split} \left\| N_{i}(k_{1},k_{2},\ldots,k_{i})(t) - N_{i}(_{0}k_{1},_{0}k_{2},\ldots,_{0}k_{i})(t) \right\|_{\infty} \\ &\leq \begin{cases} \frac{\varepsilon}{\Gamma_{q}(\sigma_{i})} \max_{t \in \overline{I}} \int_{0}^{t} (t - qr)^{(\sigma_{i} - 1)} r^{-\alpha_{i}} \, d_{q}r, \quad i = 1, \\ \frac{\varepsilon}{\Gamma_{q}(\sigma_{i})} \max_{t \in \overline{I}} \int_{0}^{t} (t - qr)^{(\sigma_{i} - 1)} r^{-\alpha_{i}} \, d_{q}r \\ &+ \frac{\varepsilon\Gamma_{q}(i - \zeta_{i - 1})}{(i - 1)!\Gamma_{q}(\sigma_{i} - \zeta_{i - 1})} \\ \max_{t \in \overline{J}} \int_{0}^{t} (1 - qr)^{(\sigma_{i} - \zeta_{i - 1} - 1)} r^{-\alpha_{i}} \, d_{q}r, \quad 2 \leq i \leq m, \end{cases} \\ &\leq \begin{cases} \frac{\varepsilon B_{q}(\sigma_{i}, 1 - \alpha_{i})}{\Gamma_{q}(\sigma_{i})} \max_{t \in \overline{J}} t^{\sigma_{i} - \alpha_{i}}, \quad i = 1, \\ \varepsilon [\frac{B_{q}(\sigma_{i}, 1 - \alpha_{i})}{\Gamma_{q}(\sigma_{i})} \max_{t \in \overline{J}} t^{\sigma_{i} - \alpha_{i}} \\ &+ \frac{\Gamma_{q}(i - \zeta_{i - 1})B_{q}(\sigma_{i} - \zeta_{i - 1}, 1 - \alpha_{i})}{(i - 1)!\Gamma_{q}(\sigma_{i} - \zeta_{i - 1})}], \quad 2 \leq i \leq m, \end{cases} \\ &\leq \varepsilon \Lambda_{i}, \end{split}$$

where $\Lambda_i = \frac{\Gamma_q(1-\alpha_i)}{\Gamma_q(\sigma_i+1-\alpha_i)}$ whenever i = 1 and

$$\Lambda_i = \frac{\Gamma_q(1-\alpha_i)}{\Gamma_q(\sigma_i+1-\alpha_i)} + \frac{\Gamma_q(i-\zeta_{i-1})\Gamma_q(1-\alpha_i)}{(i-1)!\Gamma_q(\sigma_i-\zeta_{i-1}+1-\alpha_i)},\tag{11}$$

whenever $2 \le i \le m$. Now, by applying last result and (11), we get

$$\|N_{i}(k_{1},k_{2},\ldots,k_{i})(t)-N_{i}(_{0}k_{1},_{0}k_{2},\ldots,_{0}k_{i})(t)\|_{\infty} \leq \begin{cases} \varepsilon \Lambda_{1}, & i=1, \\ \varepsilon \Lambda_{i}, & 2 \leq i \leq m. \end{cases}$$
(12)

Also, (10) and (11) imply that

$$\left\|\mathcal{N}[k_1,k_2,\ldots,k_m](t)-\mathcal{N}[_0k_1,_0k_2,\ldots,_0k_m](t)\right\| \leq \varepsilon \max_{1\leq i\leq m} \Lambda_i$$

for all $t \in \overline{J}$. Hence, $\|\mathcal{N}[k_1, k_2, \dots, k_m](t) - \mathcal{N}[{}_0k_1, {}_0k_2, \dots, {}_0k_m](t)\| \to 0$ as

$$||(k_1, k_2, \ldots, k_m) - (_0k_1, _0k_2, \ldots, _0k_m)|| \to 0.$$

Thus, the operator \mathcal{N} is continuous. Now consider a bounded subset $K \subset S$. Then there exists a positive constant δ such that $||(k_1, k_2, \ldots, k_m)|| \leq \delta$ for all $(k_1, k_2, \ldots, k_m) \in K$. Since the maps $t^{\alpha_i} w_i(t, k_1, k_2, \ldots, k_i)$ are continuous on $\overline{J} \times [-\delta, \delta]^i$ for $i = 1, 2, \ldots, m$, there exist positive constants L_i such that

$$\left|t^{\alpha_{i}}w_{i}(t,k_{1}(t),k_{2}(t),\ldots,k_{i}(t))\right| \leq L_{i}$$

$$(13)$$

for all $t \in \overline{J}$ and $(k_1, k_2, \dots, k_m) \in K$. Consider the norm

$$\left\| \mathcal{N}[k_1, k_2, \dots, k_m](t) \right\| = \max_{1 \le i \le m} \left\| N_i(k_1, k_2, \dots, k_i)(t) \right\|_{\infty}.$$
 (14)

Page 11 of 32

Note that

$$\begin{split} \left\| N_{i}(k_{1},k_{2},\ldots,k_{i})(t) \right\|_{\infty} \\ &\leq \begin{cases} \max_{t\in\overline{J}} \int_{0}^{t} \frac{(t-qr)^{(\sigma_{i}-1)}r^{-\alpha_{i}}}{\Gamma_{q}(\sigma_{i})} \\ &\times |r^{\alpha_{i}}w_{i}(r,k_{i}(r))| \, \mathrm{d}_{q}r + |_{1}b_{0}|, \qquad i=1, \\ \max_{t\in\overline{J}} \int_{0}^{t} \frac{(t-qr)^{(\sigma_{i}-1)}r^{-\alpha_{i}}}{\Gamma_{q}(\sigma_{i})} \\ &\times |r^{\alpha_{i}}w_{i}(r,k_{1}(r),\ldots,k_{i}(r))| \, \mathrm{d}_{q}r \\ &+ \sum_{j=0}^{i-2} \frac{|_{i}b_{j}|}{j!} \max_{t\in\overline{J}} t^{j} + \frac{\Gamma_{q}(i-\zeta_{i-1})}{(i-1)!} \max_{t\in\overline{J}} t^{i-1} \\ &\times \int_{0}^{1} \frac{(1-qr)^{(\sigma_{i}-\zeta_{i-1}-1)}r^{-\alpha_{i}}}{\Gamma_{q}(\sigma_{i}-\zeta_{i-1})} \\ &\times |r^{\alpha_{i}}w_{i}(r,k_{1}(r),\ldots,k_{i}(r))| \, \mathrm{d}_{q}r, \qquad 2 \leq i \leq m. \end{split}$$

Now, by using (13), we get

$$\begin{split} \left\| N_{i}(k_{1},k_{2},...,k_{i})(t) \right\|_{\infty} \\ &\leq \begin{cases} \frac{L_{i}}{\Gamma_{q}(\sigma_{i})} \max_{t \in \overline{J}} \int_{0}^{t} (t-qr)^{(\sigma_{i}-1)} r^{-\alpha_{i}} d_{q}r + |_{i}b_{0}|, & i = 1, \\ \frac{L_{i}}{\Gamma_{q}(\sigma_{i})} \max_{t \in \overline{J}} \int_{0}^{t} (t-qr)^{(\sigma_{i}-1)} r^{-\alpha_{i}} d_{q}r \\ &+ \sum_{j=0}^{i-2} \frac{|_{i}b_{j}|}{j!} + \frac{L_{i}\Gamma_{q}(i-\zeta_{i-1})}{\Gamma_{q}(\sigma_{i}-\zeta_{i-1}-1)} \\ &\times \int_{0}^{1} (1-qr)^{(\sigma_{i}-\zeta_{i-1}-1)} r^{-\alpha_{i}} d_{q}r, \qquad 2 \leq i \leq m, \end{cases} \\ &\leq \begin{cases} \frac{L_{i}\Gamma_{q}(1-\alpha_{i})}{\Gamma_{q}(\sigma_{i}+1-\alpha_{i})} \max_{t \in \overline{J}} t^{\sigma_{i}-\alpha_{i}} + |_{i}b_{0}|, & i = 1, \\ L_{i}[\frac{\Gamma_{q}(1-\alpha_{i})}{\Gamma_{q}(\sigma_{i}-\zeta_{i-1}+1-\alpha_{i})}] + \sum_{j=0}^{i-2} \frac{|_{i}b_{j}|}{j!}, \quad 2 \leq i \leq m, \end{cases} \\ &\leq \begin{cases} L_{i}\Lambda_{i} + |_{i}b_{0}|, & i = 1, \\ L_{i}\Lambda_{i} + \sum_{j=0}^{i-2} \frac{|_{i}b_{j}|}{j!}, & 2 \leq i \leq m. \end{cases} \end{split}$$
(15)

On the other hand, by using (14) and (15), we get

$$\|\mathcal{N}[k_1,k_2,\ldots,k_m](t)\| \leq \max_{1\leq i\leq m} \left\{ L_1\Lambda_1 + |_ib_0|, L_i\Lambda_i + \sum_{j=0}^{i-2} \frac{|_ib_j|}{j!} \right\}.$$

Thus $\mathcal{N}(K)$ is bounded. Let $(k_1, k_2, \dots, k_m) \in K$ and $t_1, t_2 \in \overline{J}$ with $t_1 < t_2$. Then we have

$$\left\| \mathcal{N}[k_1, k_2, \dots, k_m](t_2) - \mathcal{N}[k_1, k_2, \dots, k_m](t_1) \right\|$$

=
$$\max_{1 \le i \le m} \left\| N_i(k_1, k_2, \dots, k_i)(t_2) - N_i(k_1, k_2, \dots, k_i)(t_1) \right\|_{\infty}$$
(16)

and

Hence,

$$\left| N_{i}(k_{1},k_{2},\ldots,k_{i})(t_{2}) - N_{i}(k_{1},k_{2},\ldots,k_{i})(t_{1}) \right\|_{\infty} \\ \leq \begin{cases} \frac{L_{i}\Gamma_{q}(1-\alpha_{i})}{\Gamma_{q}(\sigma_{i}+1-\alpha_{i})} (t_{2}^{\sigma_{i}-\alpha_{i}} - t_{1}^{\sigma_{i}-\alpha_{i}}), & i = 1, \\ \frac{L_{i}\Gamma_{q}(1-\alpha_{i})}{\Gamma_{q}(\sigma_{i}+1-\alpha_{i})} (t_{2}^{\sigma_{i}-\alpha_{i}} - t_{1}^{\sigma_{i}-\alpha_{i}}) \\ + \sum_{j=0}^{i-2} \frac{|ib_{j}|}{j!} (t_{2}^{j} - t_{1}^{j}) \\ + \frac{L_{i}\Gamma_{q}(i-\zeta_{i-1})\Gamma_{q}(1-\alpha_{i})}{(i-1)!\Gamma_{q}(\sigma_{i}-\zeta_{i-1}+1-\alpha_{i})} (t_{2}^{i-1} - t_{1}^{i-1}), \quad 2 \leq i \leq m. \end{cases}$$

$$(17)$$

Now, by using (16) and (17), we obtain

$$\begin{split} \left\| \mathcal{N}[k_{1},k_{2},\ldots,k_{m}](t_{2}) - \mathcal{N}[k_{1},k_{2},\ldots,k_{m}](t_{1}) \right\| \\ &= \max_{1 \leq i \leq m} \left\{ \frac{L_{i}\Gamma_{q}(1-\alpha_{1})}{\Gamma_{q}(\sigma_{1}+1-\alpha_{1})} (t_{2}^{\sigma_{1}-\alpha_{1}} - t_{1}^{\sigma_{1}-\alpha_{1}}), \\ \frac{L_{i}\Gamma_{q}(1-\alpha_{i})}{\Gamma_{q}(\sigma_{i}+1-\alpha_{i})} (t_{2}^{\sigma_{i}-\alpha_{i}} - t_{1}^{\sigma_{i}-\alpha_{i}}) + \sum_{j=0}^{i-2} \frac{|ib_{j}|}{j!} (t_{2}^{j} - t_{1}^{j}) \\ &+ \frac{L_{i}\Gamma_{q}(i-\zeta_{i-1})\Gamma_{q}(1-\alpha_{i})}{(i-1)!\Gamma_{q}(\sigma_{i}-\zeta_{i-1}+1-\alpha_{i})} (t_{2}^{i-1} - t_{1}^{i-1}) \right\}. \end{split}$$
(18)

The right-hand side of (18) is independent of $(k_1, k_2, ..., k_m)$ and, by assumption $\sigma_1 > \alpha_1$ and the fact $\sigma_i > \alpha_i$, tends to zero as $t_1 \rightarrow t_2$. This implies that $\mathcal{N}(K)$ is equicontinuous. Now, by using the Arzelà–Ascoli theorem, we conclude that \mathcal{N} is completely continuous.

Theorem 6 The *m*-dimensional system of singular fractional q-differential equations (1) has a unique solution on \overline{J} whenever there exist nonnegative constants $_i\eta_j$ (j = 1, 2, ..., i, $i = 1, 2, ..., m, m \ge 2$) satisfying

$$t^{\alpha_{i}} |w_{i}(t, k_{1}, \dots, k_{i}) - w_{i}(t, l_{1}, \dots, l_{i})| \leq \sum_{j=1}^{i} i\eta_{j} |k_{j} - l_{j}|$$
(19)

for all $t \in \overline{J}$ and (k_1, \ldots, k_i) , $(l_1, \ldots, l_i) \in \mathbb{R}^i$, and also

$$\Sigma = \max_{2 \le i \le m} \left\{ {}_1\eta_1 \Lambda_1, \sum_{j=1}^i {}_i\eta_j \Lambda_i \right\} < 1,$$
(20)

where the constants Λ_i are defined by (11).

Proof We prove that \mathcal{N} is a contractive operator on S. Assume that $(k_1, k_2, \dots, k_m) \in S$ and $(l_1, l_2, \dots, l_m) \in S$. Then we have

$$\|\mathcal{N}[k_1, k_2, \dots, k_m](t) - \mathcal{N}[l_1, l_2, \dots, l_m](t)\|$$

=
$$\max_{1 \le i \le m} \|N_i(k_1, k_2, \dots, k_i)(t) - N_i(l_1, l_2, \dots, l_i)(t)\|_{\infty}$$
(21)

for almost all $t \in \overline{J}$. Hence,

Now, by using (19), we obtain

$$\begin{split} \left| N_{i}(k_{1},k_{2},\ldots,k_{i})(t) - N_{i}(l_{1},l_{2},\ldots,l_{i})(t) \right\|_{\infty} \\ &\leq \begin{cases} \frac{i\eta_{1}}{\Gamma_{q}(\sigma_{i})} \|k_{i} - l_{i}\|_{\infty} \max_{t \in \overline{J}} \int_{0}^{t} (t - qr)^{(\sigma_{i} - 1)} r^{-\alpha_{i}}, & i = 1, \\ (\sum_{j=1}^{i} \eta_{j} \|k_{i} - l_{j}\|_{\infty}) [\max_{t \in \overline{J}} \int_{0}^{t} \frac{(t - qr)^{(\sigma_{i} - 1)} r^{-\alpha_{i}}}{\Gamma_{q}(\sigma_{i})} \\ &+ \frac{\Gamma_{q}(i - \zeta_{i-1})}{(i - 1)!\Gamma_{q}(\sigma_{i} - \zeta_{i-1} - 1)} r^{-\alpha_{i}} d_{q}r], & 2 \leq i \leq m, \end{cases} \\ &\leq \begin{cases} \frac{i\eta_{1}B_{q}(\sigma_{i}, 1 - \alpha_{i})}{\Gamma_{q}(\sigma_{i})} \|k_{i} - l_{i}\|_{\infty} \max_{t \in \overline{J}} t^{\sigma_{i} - \alpha_{i}}, & i = 1, \\ \sum_{j=1}^{i} \eta_{j} \max_{1 \leq i \leq m} \|k_{i} - l_{i}\|_{\infty} [\frac{B_{q}(\sigma_{i}, 1 - \alpha_{i})}{\Gamma_{q}(\sigma_{i})} \max_{t \in \overline{J}} t^{\sigma_{i} - \alpha_{i}} \\ &+ \frac{\Gamma_{q}(i - \zeta_{i-1})B_{q}(\sigma_{i} - \zeta_{i-1}, 1 - \alpha_{i})}{(i - 1)!\Gamma_{q}(\sigma_{i} - \zeta_{i-1})}], & 2 \leq i \leq m, \end{cases} \\ &\leq \begin{cases} \frac{i\eta_{1}\Gamma_{q}(1 - \alpha_{i})}{\Gamma_{q}(\sigma_{i} + 1 - \alpha_{i})} \|k_{i} - l_{i}\|_{\infty}, & i = 1, \\ \sum_{j=1}^{i} i\eta_{j} [\frac{\Gamma_{q}(1 - \alpha_{i})}{\Gamma_{q}(\sigma_{i} + 1 - \alpha_{i})}] \\ &+ \frac{\Gamma_{q}(i - \zeta_{i-1})\Gamma_{q}(1 - \alpha_{i})}{(i - 1)!\Gamma_{q}(\sigma_{i} - \zeta_{i-1} + 1 - \alpha_{i})}] \\ &\times \|(k_{1} - l_{1}, k_{2} - l_{2}, \dots, k_{i} - l_{i})\|_{\infty}, & 2 \leq i \leq m. \end{cases} \end{aligned}$$

If we apply (21) and (22), then we get

$$\|\mathcal{N}[k_1, k_2, \dots, k_m](t) - \mathcal{N}[l_1, l_2, \dots, l_m](t)\| \\ \leq \max_{2 \leq i \leq m} \left\{ {}_1\eta_1 \Lambda_1, \sum_{j=1}^i {}_i\eta_j \Lambda_i \right\} \|(k_1 - l_1, k_2 - l_2, \dots, k_i - l_i)(t)\|_{\infty}.$$

Now, by using (20), we have

$$\Sigma = \max_{2 \le i \le m} \left\{ {}_1\eta_1 \Lambda_1, \sum_{j=1}^i {}_i\eta_j \Lambda_i \right\} < 1.$$

Hence, \mathcal{N} is a contraction. By using the Banach contraction principle, \mathcal{N} has a unique fixed point which is the unique solution for system (1).

Now, we consider different conditions on system (1).

Theorem 7 Let $m \ge 2$, $\sigma_1 \in (0,1)$, $\sigma_1 > \alpha_1$, $\sigma_i \in (i-1,i)$ for i = 2,...,m, $\alpha_i \in (0,1)$ for i = 1, 2, ..., m, $w_i : J \times \mathbb{R}^i \to \mathbb{R}$ be functions with $\lim_{t\to 0^+} w_i(t,...) = \infty$, and $t^{\alpha_i} w_i(t,...)$ be continuous maps on $\overline{J} \times \mathbb{R}^i$. Then system (1) has a solution on \overline{J} .

Proof Assume that

$$L_i = \max_{t \in \overline{J}} t^{\alpha_i} \left| w_i(t, k_1(t), \dots, k_i(t)) \right|$$
(23)

and define the set $K_r \subset S$ by

$$K_r = \{(k_1, k_2, \dots, k_m) \in S : ||(k_1, k_2, \dots, k_m)|| \le r\},\$$

where

$$r = \max_{2 \le i \le m} \left\{ L_1 \Lambda_1 + |_1 b_0|, L_i \Lambda_i + \sum_{j=0}^{i-2} \frac{|_i b_j|}{j!} \right\}.$$
(24)

We show that \mathcal{N} maps K_r into K_r . For $(k_1, k_2, \dots, k_m) \in K_r$ and $t \in \overline{J}$, put

$$\mathcal{N}[k_1, k_2, \dots, k_m](t) = \max_{1 \le i \le m} \|N_i(k_1, k_2, \dots, k_i)(t)\|_{\infty}.$$
(25)

$$\begin{split} \left\| N_{i}(k_{1},k_{2},\ldots,k_{i})(t) - N_{i}(l_{1},l_{2},\ldots,l_{i})(t) \right\|_{\infty} \\ & \leq \begin{cases} \max_{t\in\overline{J}} \int_{0}^{t} \frac{(t-qr)^{(\alpha_{i}-1)}r^{-\alpha_{i}}}{\Gamma_{q}(\alpha_{i})} r^{\alpha_{i}} \\ & \times |w_{i}(r,k_{i}(r)) - w_{i}(r,l_{i}(r))| \, d_{q}r, & i = 1, \\ \max_{t\in\overline{J}} \int_{0}^{t} \frac{(t-qr)^{(\alpha_{i}-1)}r^{-\alpha_{i}}}{\Gamma_{q}(\alpha_{i})} r^{\alpha_{i}} \\ & \times |w_{i}(r,k_{1}(r),\ldots,k_{i}(r)) - w_{i}(r,l_{1}(r),\ldots,l_{i}(r))| \, d_{q}r \\ & + \max_{t\in\overline{J}} \frac{\Gamma_{q}(i-\zeta_{i-1})}{\Gamma_{q}(\alpha_{i}-\zeta_{i-1})} t^{i-1} \\ & \times \int_{0}^{1} \frac{(1-qr)^{(\alpha_{i}-\zeta_{i-1}-1)r^{-\alpha_{i}}}{\Gamma_{q}(\alpha_{i}-\zeta_{i-1})} r^{\alpha_{i}} \\ & \times |w_{i}(r,k_{1}(r),\ldots,k_{i}(r)) \\ -w_{i}(r,l_{1}(r),\ldots,l_{i}(r))| \, d_{q}r, & 2 \leq i \leq m, \end{cases} \\ & \leq \begin{cases} \frac{L_{i}}{\Gamma_{q}(\alpha_{i})} \max_{t\in\overline{J}} \int_{0}^{t} (t-qr)^{(\alpha_{i}-1)}r^{-\alpha_{i}}r^{\alpha_{i}} \, d_{q}r \\ & + [\sum_{j=0}^{i-2} \frac{ib_{j}}{j!}] + \frac{L_{i}\Gamma_{q}(i-\zeta_{i-1})}{(i-1)!\Gamma_{q}(\alpha_{i}-\zeta_{i-1})} \\ & \times \int_{0}^{1} (1-qr)^{(\alpha_{i}-\zeta_{i-1}-1)}r^{-\alpha_{i}} \, d_{q}r, & 2 \leq i \leq m. \end{cases} \end{split}$$

Hence,

$$\begin{split} \left\| N_{i}(k_{1},k_{2},\ldots,k_{i})(t) \right\|_{\infty} \\ &\leq \begin{cases} \frac{L_{1}\Gamma_{q}(1-\alpha_{i})}{\Gamma_{q}(\sigma_{i}+1-\alpha_{i})} \max_{t\in\bar{J}} t^{\sigma_{i}-\alpha_{i}} + |_{i}b_{0}|, & i=1, \\ L_{i}\left[\frac{\Gamma_{q}(1-\alpha_{i})}{\Gamma_{q}(\sigma_{i}-1-\alpha_{i})} \max_{t\in\bar{J}} t^{\sigma_{i}-\alpha_{i}} + \frac{\Gamma_{q}(i-\zeta_{i-1})}{(i-1)!\Gamma_{q}(\sigma_{i}-\zeta_{i-1}1-\alpha_{i})}\right] + \sum_{j=0}^{i-2} \frac{|_{i}b_{j}|}{j!}, \quad 2 \leq i \leq m, \\ &\leq \begin{cases} L_{i}\Lambda_{i} + |_{i}b_{0}|, & i=1, \\ L_{i}\Lambda_{i} + \sum_{j=0}^{i-2} \frac{|_{i}b_{j}|}{j!}, & 2 \leq i \leq m. \end{cases}$$

$$\end{split}$$

$$(26)$$

Now, by using (25) and (26), we conclude that

$$\left\| \mathcal{N}[k_1, k_2, \dots, k_m](t) \right\| \le \max_{2 \le i \le m} \left\{ L_1 \Lambda_1 + |_1 b_0|, L_i \lambda_i + \sum_{j=0}^{i-2} \frac{|_i b_j|}{j!} \right\},\tag{27}$$

and so $\|\mathcal{N}[k_1, k_2, \dots, k_m](t)\| \le r$. By using Lemma 4, we get

$$\mathcal{N}[k_1, k_2, \dots, k_m](t) \in C(\overline{J}).$$

Moreover, $\mathcal{N}[k_1, k_2, ..., k_m](t) \in K_r$ for $(k_1, k_2, ..., k_m) \in K_r$. Thus $\mathcal{N}(K_r) \subset K_r$, and so \mathcal{N} maps K_r into K_r . On the other hand, by using Lemma 5, \mathcal{N} is completely continuous. Now, by using Lemma 2, the map \mathcal{N} has a fixed point which is a solution for system (1). \Box

Now, we provide two examples to illustrate our main results. In this way, we give a computational technique for checking the m-dimensional system (1). We need to present a

Algorithm 4 The proposed method for calculated $\int_{a}^{b} f(r) d_{q}r$

1 function g = Iq(q, x, n, fun)
2 p=1;
3 for k=0:n
4 p=p+q^k*fun(x*q^k);
5 end;
6 g=x* (1-q) * p;
7 end

Algorithm 5 The proposed method for calculated $I_a^{\sigma}[x]$

```
function g = Iq_sigma(q, sigma, x, n, fun)
1
2
            p=0;
            for k=0:n
3
            s1=1;
4
            for i=0:k-1
5
            s1=s1*(1-q^(sigma+i));
6
7
            end
8
            s2=1;
            for i=0:k-1
9
10
            s2=s2*(1-q^(i+1));
11
            end
            p=p + q^k*s1*fun(x*q^k)/s2;
12
13
            end;
            g=round((x^sigma)* ((1-q)^sigma)* p, 6);
14
15
            end
```

simplified analysis which is able to execute the values of the q-gamma function. For this purpose, we provide a pseudo-code description of the method for calculation of the q-gamma function of order n in Algorithms 2, 3, 5, and 4.

Example 1 Consider the increasing variables singular 5-dimensional system of fractional *q*-differential equations

under the boundary value conditions $k_1(0) = \frac{7}{9}$, $k_2(0) = \frac{3}{5}$,

$$\begin{cases} k_3(0) = \frac{1}{2}, & k'_3(0) = 2\sqrt{3}, \\ k_4(0) = \sqrt{5}, & k'_4(0) = \frac{\sqrt{5}}{3}, & k''_4(0) = \frac{15}{7}, \\ k_5(0) = \frac{\sqrt{3}}{3}, & k'_5(0) = 1, & k''_5(0) = 0, & k'''_5(0) = \frac{13}{4}, \end{cases}$$

and ${}^{c}\mathcal{D}_{q}^{\frac{1}{2}}[k_{2}](1) = {}^{c}\mathcal{D}_{q}^{\frac{4}{3}}[k_{3}](1) = {}^{c}\mathcal{D}_{q}^{\frac{5}{2}}[k_{4}](1) = {}^{c}\mathcal{D}_{q}^{\frac{11}{3}}[k_{5}](1) = 0$, where $t \in (0, 1]$. Put

$$w_1(t,k_1) = \frac{3\cos^2 k_1(t)}{20\sqrt{t}},$$

.

$$\begin{split} w_2(t,k_1,k_2) &= \frac{2(|k_1(t)| + |k_2(t)|)}{25\pi\sqrt[3]{t}(1+|k_1(t)| + |k_2(t)|)},\\ w_3(t,k_1,k_2,k_3) &= \frac{\sin k_1(t) - \cos k_2(t) + \sin k_3(t)}{20\pi\sqrt[5]{t}^3},\\ w_4(t,k_1,k_2,k_3,k_4) &= \frac{\cos^2 k_1(t) + \sin^2 k_2(t) + \cos^2 k_3(t) + \sin^2 k_4(t)}{25\pi\sqrt[7]{t}(1+\cos^2 k_1(t) + \sin^2 k_2(t) + \cos^2 k_3(t) + \sin^2 k_4(t))},\\ w_5(t,k_1,k_2,k_3,k_4,k_5) &= \frac{|k_1(t)| + |k_2(t)| + |k_3(t)| + |k_4(t)| - |k_5(t)|}{20\pi\sqrt[6]{t}(1+\exp(|k_1(t)| + |k_2(t)| + |k_3(t)| + |k_4(t)| - |k_5(t)|)}, \end{split}$$

 $m = 5, \sigma_1 = \frac{7}{9} \in (0, 1), \sigma_2 = \frac{8}{7} \in (1, 2), \sigma_3 = \frac{11}{4} \in (2, 3), \sigma_4 = \frac{16}{5} \in (3, 4), \sigma_5 = \frac{31}{7} \in (4, 5), \zeta_1 = \frac{1}{2} \in [0, 1], \zeta_2 = \frac{4}{3} \in [1, 2], \zeta_3 = \frac{5}{2} \in [2, 3], \zeta_4 = \frac{11}{3} \in [3, 4], \ _1b_0 = \frac{7}{9}, \ _2b_0 = \frac{3}{5}, \ _3b_0 = \frac{1}{2}, \ _4b_0 = \sqrt{5}, \ _5b_0 = \frac{\sqrt{3}}{3}, \ _3b_1 = 2\sqrt{3}, \ _4b_1 = \frac{\sqrt{5}}{3}, \ _5b_1 = 1, \ _4b_2 = \frac{15}{7}, \ _5b_2 = 0, \ \text{and} \ _5b_3 = \frac{13}{4}. \ \text{Now, we check}$ inequalities (19) and (20). For each $t \in \overline{J}, \ (k_1, k_2, \dots, k_5), \ \text{and} \ (l_1, l_2, \dots, l_5) \in \mathbb{R}^5$, we have

$$\begin{split} t^{\alpha_1} |w_1(t,k_1(t)) - w_1(t,l_1(t))| &\leq t^{\frac{4}{7}} \left| \frac{3\cos^2 k_1(t)}{20\pi\sqrt{t}} - \frac{3\cos^2 l_1(t)}{20\pi\sqrt{t}} \right| \\ &\leq \frac{3t^{\frac{1}{14}}}{20} \left| \cos^2 k_1(t) - \cos^2 l_1(t) \right| \\ &\leq \frac{3t^{\frac{1}{14}}}{10\pi} \left| \sin k_1(t) - \sin l_1(t) \right| &\leq \frac{3t^{\frac{1}{14}}}{10\pi} \left| k_1(t) - l_1(t) \right|, \end{split}$$

 $\alpha_1 = \frac{4}{7}, \, _1\eta_1 = \frac{3}{10\pi},$

$$\begin{split} t^{\alpha_2} |w_2(t,k_1(t),k_2(t)) - w_2(t,l_1(t),l_2(t))| \\ &\leq t^{\frac{2}{5}} \left| \frac{2(|k_1(t)| + |k_2(t)|)}{25\pi\sqrt[3]{t}(1 + |k_1(t)| + |k_2(t)|)} - \frac{2(|l_1(t)| + |l_2(t)|)}{25\pi\sqrt[3]{t}(1 + |l_1(t)| + |l_2(t)|)} \right| \\ &\leq \frac{2t^{\frac{1}{15}}}{25\pi} |k_1(t)| + |k_2(t)| - (|l_1(t)| + |l_2(t)|)| \\ &\leq \frac{2t^{\frac{1}{15}}}{25\pi} [|k_1(t) - l_1(t)| + |k_2(t) - l_2(t)|], \end{split}$$

 $\alpha_2 = \frac{2}{5}$, $_2\eta_1 = _2\eta_2 = \frac{2}{25\pi}$,

$$\begin{split} t^{\alpha_3} \left| w_3(t, k_1(t), k_2(t), k_3(t)) - w_3(t, l_1(t), l_2(t), l_3(t)) \right| \\ &\leq t^{\frac{5}{8}} \left| \frac{\sin k_1(t) - \cos k_2(t) + \sin k_3(t)}{20\pi \sqrt[5]{t^3}} - \frac{\sin l_1(t) - \cos l_2(t) + \sin l_3(t)}{20\pi \sqrt[5]{t^3}} \right| \\ &\leq \frac{t^{\frac{1}{40}}}{20\pi} \left| \left(\sin k_1(t) - \cos k_2(t) + \sin k_3(t) \right) - \left(\sin l_1(t) - \cos l_2(t) + \sin l_3(t) \right) \right| \\ &\leq \frac{t^{\frac{1}{40}}}{20\pi} \left[\left| k_1(t) - l_1(t) \right| + \left| k_2(t) - l_2(t) \right| + \left| k_3(t) - l_3(t) \right| \right], \end{split}$$

$$\alpha_3 = \frac{5}{8}$$
, $_3\eta_1 = _3\eta_2 = _3\eta_3 = \frac{1}{20\pi}$,

$$\begin{split} t^{\alpha_4} \Big| w_4 \big(t, k_1(t), k_2(t), k_3(t) k_4(t) \big) - w_4 \big(t, l_1(t), l_2(t), l_3(t), l_4(t) \big) \Big| \\ &\leq t^{\frac{7}{9}} \Big| \frac{\cos^2 k_1(t) + \sin^2 k_2(t) + \cos^2 k_3(t) + \sin^2 k_4(t)}{25\pi \sqrt[7]{t^5}(1 + \cos^2 l_1(t) + \sin^2 l_2(t) + \cos^2 l_3(t) + \sin^2 l_4(t))} \\ &- \frac{\cos^2 l_1(t) + \sin^2 l_2(t) + \cos^2 l_3(t) + \sin^2 l_4(t)}{25\pi \sqrt[7]{t^5}(1 + \cos^2 l_1(t) + \sin^2 l_2(t) + \cos^2 l_3(t) + \sin^2 l_4(t))} \Big| \\ &\leq \frac{t^{\frac{4}{63}}}{25\pi} \Big| \Big(\cos^2 k_1(t) + \sin^2 k_2(t) + \cos^2 k_3(t) + \sin^2 k_4(t) \Big) \\ &- \Big(\cos^2 l_1(t) + \sin^2 l_2(t) + \cos^2 l_3(t) + \sin^2 l_4(t) \Big) \Big| \\ &\leq \frac{t^{\frac{4}{63}}}{25\pi} \Big[\Big| \cos^2 k_1(t) - \cos^2 l_1(t) \Big| + \Big| \sin^2 k_2(t) - \sin^2 l_2(t) \Big| \\ &+ \Big| \cos^2 k_3(t) - \cos^2 l_3(t) \Big| + \Big| \sin^2 k_4(t) - \sin^2 l_4(t) \Big| \Big] \\ &\leq \frac{2t^{\frac{4}{63}}}{25\pi} \Big[\Big| \sin k_1(t) - \sin l_1(t) \Big| + \Big| \sin k_2(t) - \sin l_2(t) \Big| \\ &+ \Big| \sin k_3(t) - \sin l_3(t) \Big| + \Big| \sin k_4(t) - \sin l_4(t) \Big| \Big], \\ &\leq \frac{2t^{\frac{4}{63}}}{25\pi} \Big[\Big| k_1(t) - l_1(t) \Big| + \Big| k_2(t) - l_2(t) \Big| + \Big| k_3(t) - l_3(t) \Big| + \Big| k_4(t) - l_4(t) \Big| \Big], \end{split}$$

$$\alpha_4 = \frac{7}{9}, \,_4\eta_1 = _4\eta_2 = _4\eta_3 = _4\eta_4 = \frac{2}{25\pi},$$

$$\begin{split} t^{\alpha_5} \Big| w_5 \Big(t, k_1(t), k_2(t), k_3(t) k_4(t), k_5(t) \Big) - w_5 \Big(t, l_1(t), l_2(t), l_3(t), l_4(t), l_5(t) \Big) \Big| \\ &\leq t^{\frac{10}{11}} \left| \frac{|k_1(t)| + |k_2(t)| + |k_3(t)| + |k_4(t)| - |k_5(t)|}{20\sqrt[6]{t^5}(1 + \exp(|k_1(t)| + |k_2(t)| + |k_3(t)| + |k_4(t)| - |k_5(t)|))} \right. \\ &- \frac{|l_1(t)| + |l_2(t)| + |l_3(t)| + |l_4(t)| - |l_5(t)|}{20\pi\sqrt[6]{t^5}(1 + \exp(|l_1(t)| + |l_2(t)| + |l_3(t)| + |l_4(t)| - |l_5(t)|))} \Big| \\ &\leq \frac{t^{\frac{5}{66}}}{20\pi} ||k_1(t)| + |k_2(t)| + |k_3(t)| + |k_4(t)| - |k_5(t)| \\ &- (|l_1(t)| + |l_2(t)| + |l_3(t)| + |l_4(t)| - |l_5(t)|)| \\ &\leq \frac{t^{\frac{5}{66}}}{20\pi} \big[|k_1(t) - l_1(t)| + |k_2(t) - l_2(t)| + |k_3(t) - l_3(t)| \\ &+ |k_4(t) - l_4(t)| + |k_5(t) - l_5(t)| \big], \end{split}$$

and $\alpha_5 = \frac{10}{11}$, $_5\eta_1 = _5\eta_2 = _5\eta_3 = _5\eta_4 = _5\eta_5 = \frac{1}{20\pi}$. On the other hand, by using (11), we obtain

$$\Lambda_1 = \frac{\Gamma_q(1-\alpha_1)}{\Gamma_q(\sigma_1+1-\alpha_1)} = \frac{\Gamma_q(1-\frac{4}{7})}{\Gamma_q(\frac{7}{9}+1-\frac{4}{7})} = \frac{\Gamma_q(\frac{3}{7})}{\Gamma_q(\frac{76}{63})},$$

$$\begin{split} &\Lambda_{2} = \frac{\Gamma_{q}(1-\alpha_{2})}{\Gamma_{q}(\sigma_{2}+1-\alpha_{2})} + \frac{\Gamma_{q}(2-\zeta_{1})\Gamma_{q}(1-\alpha_{2})}{\Gamma_{q}(\sigma_{2}-\zeta_{1}+1-\alpha_{2})} \\ &= \frac{\Gamma_{q}(1-\frac{6}{7})}{\Gamma_{q}(\frac{8}{7}+1-\frac{6}{7})} + \frac{\Gamma_{q}(2-\frac{1}{2})\Gamma_{q}(1-\frac{6}{7})}{\Gamma_{q}(\frac{8}{7}-\frac{1}{2}+1-\frac{6}{7})} \\ &= \frac{\Gamma_{q}(\frac{1}{7})}{\Gamma_{q}(\frac{9}{7})} + \frac{\Gamma_{q}(\frac{3}{2})\Gamma_{q}(\frac{1}{7})}{\Gamma_{q}(\frac{11}{14})}, \\ &\Lambda_{3} = \frac{\Gamma_{q}(1-\alpha_{3})}{\Gamma_{q}(\sigma_{3}+1-\alpha_{3})} + \frac{\Gamma_{q}(3-\zeta_{2})\Gamma_{q}(1-\alpha_{3})}{2!\Gamma_{q}(\sigma_{3}-\zeta_{2}+1-\alpha_{3})} \\ &= \frac{\Gamma_{q}(1-\frac{5}{8})}{\Gamma_{q}(\frac{11}{4}+1-\frac{5}{8})} + \frac{\Gamma_{q}(3-\frac{4}{3})\Gamma_{q}(1-\frac{5}{8})}{2!\Gamma_{q}(\frac{11}{4}-\frac{4}{3}+1-\frac{5}{8})} \\ &= \frac{\Gamma_{q}(\frac{3}{8})}{\Gamma_{q}(\frac{25}{8})} + \frac{\Gamma_{q}(\frac{5}{3})\Gamma_{q}(\frac{3}{8})}{2!\Gamma_{q}(\frac{43}{24})}, \\ &\Lambda_{4} = \frac{\Gamma_{q}(1-\alpha_{4})}{\Gamma_{q}(\sigma_{4}+1-\alpha_{4})} + \frac{\Gamma_{q}(4-\zeta_{3})\Gamma_{q}(1-\alpha_{4})}{3!\Gamma_{q}(\sigma_{4}-\zeta_{3}+1-\alpha_{4})} \\ &= \frac{\Gamma_{q}(1-\frac{7}{9})}{\Gamma_{q}(\frac{15}{5}+1-\frac{7}{9})} + \frac{\Gamma_{q}(4-\frac{5}{2})\Gamma_{q}(1-\frac{7}{9})}{3!\Gamma_{q}(\frac{16}{5}-\frac{5}{2}+1-\frac{7}{9})} \\ &= \frac{\Gamma_{q}(\frac{2}{9})}{\Gamma_{q}(\frac{154}{45})} + \frac{\Gamma_{q}(\frac{3}{2})\Gamma_{q}(\frac{2}{9})}{3!\Gamma_{q}(\frac{83}{90})}, \\ &\Lambda_{5} = \frac{\Gamma_{q}(1-\alpha_{5})}{\Gamma_{q}(\sigma_{5}+1-\alpha_{5})} + \frac{\Gamma_{q}(5-\zeta_{4})\Gamma_{q}(1-\alpha_{5})}{4!\Gamma_{q}(\sigma_{5}-\zeta_{4}+1-\alpha_{5})} \\ &= \frac{\Gamma_{q}(\frac{1}{11})}{\Gamma_{q}(\frac{31}{7}+1-\frac{10}{11})} + \frac{\Gamma_{q}(\frac{4}{3})\Gamma_{q}(\frac{11}{1})}{4!\Gamma_{q}(\frac{31}{7}-\frac{11}{3}+1-\frac{10}{11})} \end{split}$$

Tables 1, 2, and 3 show $\Lambda_i \approx 1.4269$, 6.1292, 2.1068, 2.2574, 3.8301, $\Lambda_i \approx 1.9041$, 9.5549, 2.2455, 2.2349, 2.4713, $\Lambda_i \approx 2.1668$, 11.5144, 2.2172, 2.0036, 1.4726 for $1 \le i \le 5$ and for $q = \frac{1}{10}$, $\frac{1}{2}$, $\frac{6}{7}$, respectively. It is clear that $\sum_{j=1}^{2} 2\eta_j = \frac{4}{25\pi}$, $\sum_{j=1}^{3} 3\eta_j = \frac{3}{20\pi}$, $\sum_{j=1}^{4} 2\eta_j = \frac{8}{25\pi}$, and $\sum_{j=1}^{5} 2\eta_j = \frac{1}{4\pi}$. In Tables 4, 5, and 6, we can see that $\Sigma = 0.3122$, 0.4866, and 0.5864, indeed

$$\Sigma = \max_{2 \le i \le m} \left\{ {}_1\eta_1 \Lambda_1, \sum_{j=1}^i {}_i\eta_j \Lambda_i \right\} < 1,$$

for $q = \frac{1}{10}$, $\frac{1}{2}$, and $\frac{6}{7}$, respectively (Fig. 1). Thus, the assumptions and conditions of Theorem 6 hold. Hence the singular 5-dimensional system of fractional *q*-differential equations (28) has a unique solution on (0, 1]. Note that Algorithm 6 shows us how we can obtain the parameters of Example 1.

n	$q = \frac{1}{10}$				
	Λ_1	Λ_2	Λ_3	$arLambda_4$	Λ_5
1	1.4220	6.0895	2.0978	2.2431	3.7960
2	1.4264	6.1253	2.1059	2.2559	3.8267
3	1.4268	6.1288	2.1067	2.2572	3.8298
4	1.4269	6.1292	2.1068	2.2573	3.8301
5	1.4269	6.1292	2.1068	2.2574	3.8301
6	1.4269	6.1292	2.1068	2.2574	3.8301
7	1.4269	6.1292	2.1068	2.2574	3.8301

Table 1 Some numerical results of Λ_i in Example 1 for $q = \frac{1}{10}$

Table 2 Some numerical results of Λ_i in Example 1 for $q = \frac{1}{2}$

n	$q = \frac{1}{2}$	$q = \frac{1}{2}$							
	Λ_1	Λ_2	Λ_3	$arLambda_4$	Λ_5				
1	1.6027	7.8053	1.7179	1.589	1.5801				
2	1.7551	8.689	1.9738	1.8957	1.9947				
3	1.8300	9.1239	2.1076	2.0611	2.225				
		:	:	:	•				
10	1.9035	9.5516	2.2445	2.2336	2.4696				
11	1.9038	9.5533	2.245	2.2343	2.4706				
12	1.9039	9.5541	2.2453	2.2346	2.4711				
13	1.9040	9.5545	2.2454	2.2348	2.4713				
14	1.9040	9.5547	2.2455	2.2349	2.4714				
15	1.9041	9.5548	2.2455	2.2349	2.4715				
16	1.9041	9.5549	2.2455	2.2349	2.4715				
17	1.9041	9.5549	2.2455	2.2349	2.4715				
18	1.9041	9.5549	2.2455	2.2349	2.4715				
19	1.9041	9.5549	2.2455	2.235	2.4716				
20	1.9041	9.5549	2.2455	2.235	2.4716				
21	1.9041	9.5549	2.2455	2.235	2.4716				

Table 3 Some numerical results of Λ_i in Example 1 for $q = \frac{6}{7}$

n	$q = \frac{6}{7}$	$q = \frac{6}{7}$							
	Λ_1	Λ_2	Λ_3	$arLambda_4$	Λ_5				
1	0.8523	5.0338	0.5331	0.4502	0.1978				
2	1.0644	6.0573	0.7033	0.5582	0.2622				
3	1.2371	6.8796	0.8621	0.6681	0.3312				
:	:	:	:	÷	•				
57	2.1668	11.5134	2.2168	2.0031	1.4721				
58	2.1668	11.5136	2.2168	2.0032	1.4722				
59	2.1668	11.5137	2.2169	2.0033	1.4722				
60	2.1668	11.5138	2.2169	2.0033	1.4723				
61	2.1668	11.5139	2.217	2.0034	1.4723				
:	:	:	:	:	:				
68	2.1668	11.5143	2.2171	2.0035	1.4725				
69	2.1668	11.5144	2.2171	2.0036	1.4725				
70	2.1668	11.5144	2.2172	2.0036	1.4725				
71	2.1668	11.5144	2.2172	2.0036	1.4726				
72	2.1668	11.5144	2.2172	2.0036	1.4726				
73	2.1668	11.5144	2.2172	2.0036	1.4726				

n	$q = \frac{1}{10}$					Σ
	$_{1}\eta_{1}\Lambda_{1}$	$\sum_{j=1}^{2} {}_{2}\eta_{j}\Lambda_{2}$	$\sum_{j=1}^{3} {}_{3}\eta_{j}\Lambda_{3}$	$\sum_{j=1}^{4} {}_{4}\eta_{j}\Lambda_{4}$	$\sum_{j=1}^{5} {}_{5}\eta_{j}\Lambda_{5}$	
1	0.1358	0.3101	0.1002	0.2285	0.3021	0.3101
2	0.1362	0.312	0.1006	0.2298	0.3045	0.312
3	0.1363	0.3121	0.1006	0.2299	0.3048	0.3121
4	0.1363	0.3122	0.1006	0.2299	0.3048	0.3122
5	0.1363	0.3122	0.1006	0.2299	0.3048	0.3122
6	0.1363	0.3122	0.1006	0.2299	0.3048	0.3122
7	0.1363	0.3122	0.1006	0.2299	0.3048	0.3122
8	0.1363	0.3122	0.1006	0.2299	0.3048	0.3122

Table 4 Some numerical results of Σ in Example 1 for $q = \frac{1}{10}$

Table 5 Some numerical results of Σ in Example 1 for $q = \frac{1}{2}$

n	$q = \frac{1}{2}$					Σ
	$_1\eta_1\Lambda_1$	$\sum_{j=1}^{2} {}_{2}\eta_{j}\Lambda_{2}$	$\sum_{j=1}^{3} {}_{3}\eta_{j}\Lambda_{3}$	$\sum_{j=1}^{4} {}_{4}\eta_{j}\Lambda_{4}$	$\sum_{j=1}^{5} {}_{5}\eta_{j}\Lambda_{5}$	
1	0.1531	0.3975	0.082	0.1619	0.1257	0.3975
2	0.1676	0.4425	0.0942	0.1931	0.1587	0.4425
3	0.1748	0.4647	0.1006	0.2099	0.1771	0.4647
:		:				:
8	0.1816	0.4859	0.107	0.2271	0.196	0.4859
9	0.1817	0.4863	0.1071	0.2274	0.1964	0.4863
10	<u>0.1818</u>	0.4865	0.1072	0.2275	0.1965	0.4865
11	0.1818	0.4865	0.1072	0.2276	0.1966	0.4865
12	0.1818	0.4866	0.1072	0.2276	0.1966	0.4866
13	0.1818	0.4866	0.1072	0.2276	0.1967	0.4866
14	0.1818	0.4866	0.1072	0.2276	0.1967	0.4866
15	0.1818	0.4866	0.1072	0.2276	0.1967	0.4866

Table 6 Some numerical results of Σ in Example 1 for $q = \frac{6}{7}$

n	$q = \frac{6}{7}$					Σ
	$_{1}\eta_{1}\Lambda_{1}$	$\sum_{j=1}^{2} {}_{2}\eta_{j}\Lambda_{2}$	$\sum_{j=1}^{3} {}_{3}\eta_{j}\Lambda_{3}$	$\sum_{j=1}^{4} {}_{4}\eta_{j}\Lambda_{4}$	$\sum_{j=1}^{5} {}_{5}\eta_{j}\Lambda_{5}$	
1	0.0814	0.2564	0.0255	0.0459	0.0157	0.2564
2	0.1016	0.3085	0.0336	0.0569	0.0209	0.3085
3	0.1181	0.3504	0.0412	0.068	0.0264	0.3504
÷			÷	÷	÷	:
43	0.2068	0.5859	0.1057	0.2036	0.1168	0.586
44	0.2068	0.586	0.1057	0.2037	0.1169	0.5861
45	0.2068	0.5861	0.1057	0.2038	0.1169	0.5861
46	0.2068	0.5861	0.1058	0.2038	0.117	0.5862
47	0.2068	0.5862	0.1058	0.2038	0.117	0.5862
48	0.2068	0.5862	0.1058	0.2039	0.117	0.5862
49	0.2068	0.5862	0.1058	0.2039	0.117	0.5863
50	0.2068	0.5863	0.1058	0.2039	0.1171	0.5863
51	0.1696	0.5863	0.1058	0.204	0.1171	0.5863
52	0.1696	0.5863	0.1058	0.204	0.1171	0.5863
53	0.1696	0.5863	0.1058	0.204	0.1171	0.5863
54	0.1696	0.5863	0.1058	0.204	0.1171	0.5863
55	0.1696	0.5864	0.1058	0.204	0.1171	0.5864
56	0.1696	0.5864	0.1058	0.204	0.1171	0.5864
57	0.1696	0.5864	0.1058	0.204	0.1171	0.5864

Algorithm 6 The proposed method for solving problem (28) in Example 1 for which we use the conditions of Theorem 6

1	<pre>function [Lambdai, sumeta_iLambda_i, Sigma]=</pre>
	systemproblem1(q, sigma, zeta, alpha, m, k, eta)
2	[xq yq]=size(q);
3	<pre>[xsigma ysigma]=size(sigma);</pre>
4	for n=1:k
5	Lambdai $(n, 1) = n;$
6	D(n, 1) = n;
7	Sigma(n, 1) = n;
8	end:
9	column=2:
10	for s=1.vg
11	for $n=1:k$
12	Lambdai(n, column)=qGamma(q(s), 1-alpha(1), n)/qGamma(q(s),
	sigma(1)+1-alpha(1), n);
13	end;
14	column=column+1;
15	end;
16	column=2+yq;
17	for i=2:m
18	for s=1:yq
19	for n=1:k
20	Lambdai(n, column)=qGamma(q(s), 1-alpha(i), n)/qGamma(q(s), sigma(i)+1-alpha(i), n)+ qGamma(q(s), i-zeta(i-1), n)*qGamma(q(s), 1-alpha(i),
	n)/(factorial(i-1)*qGamma(q(s), sigma(i) - zeta(i-1) + 1 - alpha(i), n)):
21	end:
22	column=column+1.
22	end:
25	end;
25	column=2:
25	for $s=1:v\alpha$
20	for $n=1\cdot k$
27	D(n = column) = Lambdai(n = column) + ota(1)
28	ord,
29	column=column+1.
30	ord.
31	column=2+ucc
32	for $a=1$ we
33	
34	$\int dr = r = r = r$
35	Dor n=1:K
36	D(n, Column) = Lambdal(n, Column) *eta(1);
37	ena;
38	column=column+yq;
39	ena;
40	column=2+yq+s;
41	end;
42	for s=1:yq
43	for n=1:k
44	maxrow=D(n, S+1);
45	column=s+l+yq;
46	IOT 1=2:m
47	it D(n, column) > maxrow
48	<pre>maxrow=D(n, column);</pre>
49	end;
50	column=column+yq;
51	end;
52	Sigma(n, s+1)=maxrow;
53	end;
54	end;
55	<pre>sumeta_iLambda_i=D;</pre>
56	end

Example 2 Consider the singular system of fractional q-differential equations

$$\begin{cases} {}^{c}\mathcal{D}_{q}^{\frac{9}{10}}[k_{1}](t) = w_{1}(t,k_{1}), \\ {}^{c}\mathcal{D}_{q}^{\frac{9}{5}}[k_{2}](t) = w_{2}(t,k_{1},k_{2}), \\ {}^{c}\mathcal{D}_{q}^{\frac{17}{6}}[k_{3}](t) = w_{3}(t,k_{1},k_{2},k_{3}), \\ {}^{c}\mathcal{D}_{q}^{\frac{24}{7}}[k_{4}](t) = w_{4}(t,k_{1},k_{2},k_{3},k_{4}), \\ {}^{c}\mathcal{D}_{q}^{\frac{13}{3}}[k_{5}](t) = w_{5}(t,k_{1},k_{2},k_{3},k_{4},k_{5}), \end{cases}$$
(29)

with boundary value conditions $k_1(0) = \frac{2}{3}$,

$$\begin{cases} k_2(0) = -1, \\ k_3(0) = 1, \\ k_4(0) = \sqrt{7}, \\ k_5(0) = \frac{2}{3}, \\ k_5(0) = \frac{2}{3}, \\ k_5(0) = \frac{2}{3}, \\ k_5(0) = \frac{2}{3}, \\ k_5(0) = \frac{6}{5}, \\ k_5'(0) = \frac{3}{8}, \\ k_5''(0) = \frac{2\sqrt{2}}{5}, \end{cases}$$

 ${}^{c}\mathcal{D}_{q}^{\frac{1}{7}}[k_{2}](1) = {}^{c}\mathcal{D}_{q}^{\frac{8}{5}}[k_{3}](1) = {}^{c}\mathcal{D}_{q}^{\frac{11}{4}}[k_{4}](1) = {}^{c}\mathcal{D}_{q}^{\frac{7}{2}}[k_{5}](1) = 0$, where $t \in (0, 1]$. Put

$$\begin{split} w_1(t,k_1) &= \frac{\cos k_1(t)}{8\pi \sqrt{t} \exp(t)}, \\ w_2(t,k_1,k_2) &= \frac{2\cos(k_1(t)+k_2(t))}{15\pi \sqrt[3]{t}(1+\sin(k_1(t)+k_2(t)))}, \\ w_3(t,k_1,k_2,k_3) &= \frac{5(1+\sin k_1(t)+\sin k_2(t)+\sin k_3(t))}{21\pi \sqrt[4]{t}}, \\ w_4(t,k_1,k_2,k_3,k_4) &= \frac{3\exp(2t)\cos^2(k_1(t)+k_3(t))}{8\pi \sqrt[5]{t}(1+\cos^2(k_2(t)+k_4(t)))}, \\ w_5(t,k_1,k_2,k_3,k_4,k_5) &= \frac{\exp(-t)\sin(k_1(t)+k_2(t)+k_3(t)+k_4(t))}{9\pi \sqrt[4]{t^3}(1+\sin(k_5(t)))}, \end{split}$$

n	$q = \frac{1}{10}$				
	Λ_1	Λ_2	Λ_3	$arLambda_4$	Λ_5
1	2.0316	3.2152	3.3277	1.2641	3.1978
2	2.0417	3.2286	3.3477	1.2679	3.2225
3	2.0427	3.2299	3.3497	1.2682	3.2249
4	2.0428	3.2300	3.3499	1.2683	3.2252
5	2.0428	3.2300	3.3499	1.2683	3.2252
6	2.0428	3.2300	3.3499	1.2683	3.2252
7	2.0428	3.2300	3.3499	1.2683	3.2252

Table 7 Some numerical results of Λ_i in Example 2 for $q = \frac{1}{10}$

Table 8 Some numerical results of Λ_i in Example 2 for $q = \frac{1}{2}$

n	$q = \frac{1}{2}$		$q = \frac{1}{2}$							
	Λ_1	Λ_2	Λ_3	Λ_4	Λ_5					
1	2.4734	3.3933	3.0493	0.6763	1.3697					
2	2.7790	3.8511	3.6053	0.7758	1.7202					
3	2.9305	4.0847	3.8985	0.8287	1.9145					
•		:	:	:	•					
13	3.0810	4.3213	4.202	0.8836	2.1219					
14	3.0811	4.3214	4.2022	0.8837	2.122					
15	3.0811	4.3215	4.2023	0.8837	2.1221					
16	3.0811	4.3215	4.2023	0.8837	2.1221					
17	3.0811	4.3215	4.2023	0.8837	2.1221					
18	3.0812	4.3215	4.2023	0.8837	2.1221					
19	3.0812	4.3215	4.2023	0.8837	2.1221					
20	3.0812	4.3215	4.2023	0.8837	<u>2.1222</u>					
21	3.0812	4.3215	4.2023	0.8837	2.1222					
22	3.0812	4.3215	4.2023	0.8837	2.1222					

Table 9 Some numerical results of Λ_i in Example 2 for $q = \frac{6}{7}$

n	$q = \frac{6}{7}$							
	Λ_1	Λ_2	Λ_3	$arLambda_4$	Λ_5			
1	1.2003	1.2924	0.8904	0.1853	0.1871			
2	1.5754	1.7291	1.2336	0.2256	0.2434			
3	1.8892	2.122	1.5593	0.2641	0.3038			
	:	:	:	:	: : :			
62	3.6790	4.8818	4.4531	0.6682	1.2983			
63	<u>3.6791</u>	4.8819	4.4532	0.6683	1.2983			
64	3.6791	4.8819	4.4532	0.6683	1.2984			
65	3.6791	4.8819	4.4533	0.6683	3.6791			
66	3.6791	4.882	4.4533	0.6683	1.2984			
67	3.6791	4.882	4.4533	0.6683	1.2984			
68	3.6791	4.882	4.4534	0.6683	1.2984			
69	3.6791	4.882	4.4534	0.6683	1.2984			
70	3.6791	4.8821	4.4534	0.6683	1.2985			

 $m = 5, \ \sigma_1 = \frac{9}{10} \in (0, 1), \ \sigma_2 = \frac{9}{5} \in (1, 2), \ \sigma_3 = \frac{17}{6} \in (2, 3), \ \sigma_4 = \frac{24}{7} \in (3, 4), \ \sigma_5 = \frac{13}{3} \in (4, 5), \ \zeta_1 = \frac{2}{11} \in [0, 1], \ \zeta_2 = \frac{5}{3} \in [1, 2], \ \zeta_3 = \frac{7}{3} \in [2, 3], \ \zeta_4 = \frac{13}{4} \in [3, 4], \ _1b_0 = \frac{2}{3}, \ _2b_0 = -1, \ _3b_0 = 1, \ _4b_0 = \sqrt{7}, \ _5b_0 = \frac{2}{3}, \ _3b_1 = \frac{2}{3}, \ _4b_1 = \frac{\sqrt{7}}{3}, \ _5b_1 = 1, \ _4b_2 = \frac{\sqrt{5}}{3}, \ _5b_2 = \frac{3}{8}, \ \text{and} \ _5b_3 = \frac{2\sqrt{2}}{5}. \ \text{Now, we check (23) and (24). For each } t \in \overline{J} \ \text{and} \ (k_1, k_2, \dots, k_5) \in \mathbb{R}^5, \ \text{we have}$

$$L_{1} = \max_{t \in [0,1]} t^{\alpha_{1}} |w_{1}(t,k_{1}(t))| \leq \max_{t \in [0,1]} t^{\frac{3}{4}} \left| \frac{\cos k_{1}(t)}{8\pi \sqrt{t} \exp(t)} \right| \leq \frac{1}{8\pi}$$

n	$q = \frac{1}{10}$						
	(1)	(2)	(3)	(4)	(5)		
1	0.0808	1.1365	2.6755	5.0153	2.0615	5.0153	
2	0.0812	1.137	2.6815	5.0186	2.0624	5.0186	
3	0.0813	<u>1.1371</u>	2.6821	5.0189	2.0625	5.0189	
4	0.0813	1.1371	2.6822	5.0190	2.0625	<u>5.0190</u>	
5	0.0813	1.1371	2.6822	5.0190	2.0625	5.0190	
6	0.0813	1.1371	2.6822	5.0190	2.0625	5.0190	
7	0.0813	1.1371	2.6822	5.0190	2.0625	5.0190	

Table 10 Numerical results of (1) = $L_1 \Lambda_1 + |_1 b_0|$ and (*i*) = $L_i \Lambda_i + \sum_{j=0}^{i-2} \frac{|_i b_j|}{j!}$ with $2 \le i \le 5$ in Example 2 for $q = \frac{1}{10}$

Table 11 Numerical results of (1) = $L_1 \Lambda_1 + |_1 b_0|$ and (*i*) = $L_i \Lambda_i + \sum_{j=0}^{i-2} \frac{|_i b_j|}{j!}$ with $2 \le i \le 5$ in Example 2 for $q = \frac{1}{10}$

n	$q = \frac{1}{2}$					r
	(1)	(2)	(3)	(4)	(5)	
1	0.0984	1.144	2.5911	4.4968	1.9969	4.4968
2	0.1106	1.1634	2.7596	4.5846	2.0093	4.5846
3	0.1166	1.1734	2.8485	4.6312	2.0162	4.6312
:	:	•	:	:	÷	:
7	0.1222	1.1828	2.9348	4.6767	2.023	4.6767
8	0.1224	1.1831	2.9377	4.6782	2.0233	4.6782
9	0.1225	1.1833	2.9392	4.679	2.0234	4.679
10	0.1225	1.1833	2.9399	4.6794	2.0234	4.6794
11	0.1226	<u>1.1834</u>	2.9403	4.6796	2.0235	4.6796
12	0.1226	1.1834	2.9404	4.6797	2.0235	4.6797
13	0.1226	1.1834	2.9405	4.6797	2.0235	4.6797
14	0.1226	1.1834	2.9406	4.6797	2.0235	4.6797
15	0.1226	1.1834	2.9406	4.6798	2.0235	4.6798
16	0.1226	1.1834	2.9406	4.6798	2.0235	4.6798
17	0.1226	1.1834	2.9406	4.6798	2.0235	4.6798

Table 12 Numerical results of (1) = $L_1 \Lambda_1 + |_1 b_0|$ and (*i*) = $L_i \Lambda_i + \sum_{j=0}^{i-2} \frac{|_i b_j|}{j!}$ with $2 \le i \le 5$ in Example 2 for $q = \frac{7}{6}$

n	$q = \frac{6}{7}$					
	(1)	(2)	(3)	(4)	(5)	
1	0.0498	1.0549	1.9366	4.0638	1.9551	4.0638
2	0.0627	1.0734	2.0406	4.0993	1.9571	4.0993
3	0.0752	1.0901	2.1394	4.1333	1.9592	4.1333
•				•	:	:
37	0.1460	1.2065	3.0105	4.4869	1.994	4.4869
38	0.1461	1.2066	3.0114	4.4873	1.9941	4.4873
39	0.1461	1.2067	3.0122	4.4877	1.1461	4.4877
40	0.1462	1.2068	3.0128	4.488	1.9942	4.488
41	0.1462	1.2068	3.0134	4.4882	1.9942	4.4882
•				:	:	:
50	0.1463	1.2071	3.0159	4.4894	1.9943	4.4894
51	0.1463	1.2071	3.016	4.4895	1.9943	4.4895
52	0.1463	1.2071	3.0161	4.4895	1.9943	4.4895
53	0.1463	1.2071	3.0162	4.4896	1.9943	4.4896
54	0.1463	<u>1.2072</u>	3.0163	4.4896	1.9943	4.4896
55	0.1463	1.2072	3.0164	4.4896	1.9944	4.4896
56	0.1463	1.2072	3.0164	4.4896	1.9944	4.4896

Table 13 Numerical results of *r* in Example 2 for $q = \frac{1}{10}, \frac{1}{2}, \frac{7}{6}$

n	r	r			
	$q = \frac{1}{10}$	$q = \frac{1}{2}$	$q = \frac{6}{7}$		
1	5.0153	4.4968	4.0638		
2	5.0186	4.5846	4.0993		
3	5.0189	4.6312	4.1333		
4	<u>5.019</u>	4.6553	4.1663		
5	5.019	4.6675	4.1981		
6	5.019	4.6736	4.2285		
:					
13	5.019	4.6797	4.3835		
14	5.019	4.6797	4.3975		
15	5.019	4.6798	4.4098		
16	5.019	4.6798	4.4205		
17	5.019	4.6798	4.4299		
:	:	:	:		
61	5.019	4.6798	4.4897		
62	5.019	4.6798	4,4897		
63	5.019	4.6798	4,4897		
64	5.019	4.6798	4.4898		
65	5.019	4.6798	4.4898		
66	5.019	4.6798	4.4898		
67	5.019	4.6798	4.4898		

for $\alpha_1 = \frac{3}{4}$,

$$L_{2} = \max_{t \in [0,1]} t^{\alpha_{2}} \left| w_{2}(t,k_{1}(t),k_{2}(t)) \right|$$
$$\leq \max_{t \in [0,1]} t^{\frac{2}{3}} \left| \frac{2\cos(k_{1}(t)+k_{2}(t))}{15\pi\sqrt[3]{t}(1+\sin(k_{1}(t)+k_{2}(t)))} \right| \leq \frac{2}{15\pi}$$

for $\alpha_2 = \frac{2}{3}$,

$$L_{3} = \max_{t \in [0,1]} t^{\alpha_{3}} \left| w_{3}(t,k_{1}(t),k_{2}(t),k_{3}(t)) \right|$$
$$\leq \max_{t \in [0,1]} t^{\frac{4}{5}} \left| \frac{5(1+\sin k_{1}(t)+\sin k_{2}(t)+\sin k_{3}(t))}{21\pi \sqrt[4]{t}} \right| \leq \frac{20}{21\pi}$$

for $\alpha_3 = \frac{4}{5}$,

$$\begin{split} L_4 &= \max_{t \in [0,1]} t^{\alpha_4} \left| w_4 \left(t, k_1(t), k_2(t), k_3(t), k_4(t) \right) \right| \\ &\leq \max_{t \in [0,1]} t^{\frac{1}{2}} \left| \frac{3 \exp(2t) \cos^2(k_1(t) + k_3(t))}{8\pi \sqrt[5]{t} (1 + \cos^2(k_2(t) + k_4(t)))} \right| \leq \frac{3e^2}{8\pi} \end{split}$$

for $\alpha_4 = \frac{1}{2}$,

$$L_{5} = \max_{t \in [0,1]} t^{\alpha_{5}} \left| w_{5}(t, k_{1}(t), k_{2}(t), k_{3}(t), k_{4}(t), k_{5}(t)) \right|$$
$$\leq \max_{t \in [0,1]} t^{\frac{8}{9}} \left| \frac{\exp(-t)\sin(k_{1}(t) + k_{2}(t) + k_{3}(t) + k_{4}(t))}{9\pi \sqrt[4]{t^{3}}(1 + \sin(k_{5}(t)))} \right| \leq \frac{1}{9\pi}$$

for $\alpha_5 = \frac{8}{9}$. Now, by using (11), we get

$$\begin{split} \Lambda_1 &= \frac{\Gamma_q(1-\alpha_1)}{\Gamma_q(\sigma_1+1-\alpha_1)} = \frac{\Gamma_q(1-\frac{3}{4})}{\Gamma_q(\frac{9}{10}+1-\frac{3}{4})} = \frac{\Gamma_q(\frac{1}{4})}{\Gamma_q(\frac{23}{20})}, \\ \Lambda_2 &= \frac{\Gamma_q(1-\alpha_2)}{\Gamma_q(\sigma_2+1-\alpha_2)} + \frac{\Gamma_q(2-\zeta_1)\Gamma_q(1-\alpha_2)}{\Gamma_q(\sigma_2-\zeta_1+1-\alpha_2)} \\ &= \frac{\Gamma_q(1-\frac{2}{3})}{\Gamma_q(\frac{5}{5}+1-\frac{2}{3})} + \frac{\Gamma_q(2-\frac{1}{7})\Gamma_q(1-\frac{2}{3})}{\Gamma_q(\frac{9}{5}-\frac{1}{7}+1-\frac{2}{3})} \\ &= \frac{\Gamma_q(\frac{1}{3})}{\Gamma_q(\sigma_3+1-\alpha_3)} + \frac{\Gamma_q(3-\zeta_2)\Gamma_q(1-\alpha_3)}{2!\Gamma_q(\sigma_3-\zeta_2+1-\alpha_3)} \\ \Lambda_3 &= \frac{\Gamma_q(1-\alpha_3)}{\Gamma_q(\sigma_3+1-\alpha_3)} + \frac{\Gamma_q(3-\frac{8}{5})\Gamma_q(1-\frac{4}{5})}{2!\Gamma_q(\frac{17}{6}-\frac{8}{5}+1-\frac{4}{5})} \\ &= \frac{\Gamma_q(\frac{1}{5})}{\Gamma_q(\frac{79}{30})} + \frac{\Gamma_q(\frac{7}{5})\Gamma_q(\frac{1}{5})}{2!\Gamma_q(\frac{43}{30})}, \\ \Lambda_4 &= \frac{\Gamma_q(1-\alpha_4)}{\Gamma_q(\sigma_4+1-\alpha_4)} + \frac{\Gamma_q(4-\zeta_3)\Gamma_q(1-\alpha_4)}{3!\Gamma_q(\sigma_4-\zeta_3+1-\alpha_4)} \\ &= \frac{\Gamma_q(1-\frac{1}{2})}{\Gamma_q(\frac{24}{7}+1-\frac{1}{2})} + \frac{\Gamma_q(4-\frac{11}{4})\Gamma_q(1-\frac{1}{2})}{3!\Gamma_q(\frac{5}{4})}, \\ \Lambda_5 &= \frac{\Gamma_q(1-\alpha_5)}{\Gamma_q(\sigma_5+1-\alpha_5)} + \frac{\Gamma_q(5-\zeta_4)\Gamma_q(1-\alpha_5)}{4!\Gamma_q(\sigma_5-\zeta_4+1-\alpha_5)} \\ &= \frac{\Gamma_q(\frac{1}{9})}{\Gamma_q(\frac{13}{3}+1-\frac{8}{9})} + \frac{\Gamma_q(5-\frac{7}{2})\Gamma_q(1-\frac{8}{9})}{4!\Gamma_q(\frac{13}{3}-\frac{7}{2}+1-\frac{8}{9})} \\ &= \frac{\Gamma_q(\frac{1}{9})}{\Gamma_q(\frac{40}{9})} + \frac{\Gamma_q(\frac{2}{2})\Gamma_q(\frac{1}{9})}{4!\Gamma_q(\frac{17}{18})}. \end{split}$$

· · · · · · · · · · · · · · · · · · ·	
1	<pre>function [Lambdai, LLambda, rmax, Maxr] =</pre>
	systemproblem2(q, sigma, zeta, alpha, m, k, ibj, Lmax)
2	[xq yq]=S120(q); [xsioma vsioma]=size(sioma):
4	for n=1:k
5	Lambdai $(n, 1) = n;$
6	LLambda(n,1)=n;
7	temp(n, 1) = n;
8	$\operatorname{rmax}(n, 1) = n;$
9	Maxr(n, 1) = n;
10	column=2:
12	for i=1:m
13	for s=1:yq
14	for n=1:k
15	
16	Lambdai(n, column)=qGamma(q(s), l-alpha(l),
17	$\frac{11}{qGallula(q(s), Siglia(1) + 1 - aiplia(1), 11);}$
18	Lambdai(n, column)=gGamma(g(s), 1-alpha(i),
	n)/ α Gamma(α (s), sigma(i) +1-alpha(i), n)+
	qGamma(q(s), i-zeta(i-1), n) * qGamma(q(s), 1-alpha(i),
	n)/(factorial(i-1) * qGamma(q(s), sigma(i)-zeta(i-1)
	+1 - alpha(i), n));
19	end;
20	end;
21	end.
22	end;
24	% reset column
25	column=2;
26	for i=1:m
27	for s=1:yq
28	IOT N=1:K
30	end.
31	column=column+1;
32	end;
33	end;
34	% reset column
35	column=2;
36	for $s=1:v\alpha$
38	for n=1:k
39	if i==1
40	<pre>rmax(n, column)=LLambda(n, column) + ibj(i,i);</pre>
41	else
42	t=0;
43	t=t+abs(ibi(i i+1))/factorial(i)
45	end;
46	<pre>rmax(n, column)=LLambda(n, column)+t;</pre>
47	end;
48	end;
49	column=column+1;
50	end;
52	for s=1:va
53	for n=1:k
54	<pre>maxrow=rmax(n, s+1);</pre>
55	column=s+1+yq;
56	tor 1=2:m
57	<pre>LL rimax(n, COlumn)>maxrow maxrow=rmax(n, column);</pre>
59 59	end:
60	column=column+yq;
61	end;
62	<pre>Maxr(n, s+1) = maxrow;</pre>
63	end;
64	ena;
65	ena

Algorithm 7 The proposed method for solving problem (29) in Example 2 for which we use the conditions of Theorem 7

Tables 7, 8, and 9 show $\Lambda_i \approx 2.0428$, 3.2300, 3.3499, 1.2683, 3.2252, $\Lambda_i \approx 3.812$, 4.3215, 4.2023, 0.8837, 2.1222, $\Lambda_i \approx 3.6791$, 4.8820, 4.4534, 0.6683, 1.2984 for $1 \le i \le 5$ and $q = \frac{1}{10}$, $\frac{1}{2}$, $\frac{6}{7}$, respectively. Now, by using (24) and Algorithm 7, we conclude next results. According to Tables 10, 11, and 12, consider the set $K_r \subset S$ as

$$K_r = \{ (k_1, k_2, \dots, k_m) \in S : ||(k_1, k_2, \dots, k_m)|| \le 5.0190 \},$$

$$K_r = \{ (k_1, k_2, \dots, k_m) \in S : ||(k_1, k_2, \dots, k_m)|| \le 4.6798 \},$$

$$K_r = \{ (k_1, k_2, \dots, k_m) \in S : ||(k_1, k_2, \dots, k_m)|| \le 4.4896 \},$$

for $q = \frac{1}{10}$, $\frac{1}{2}$, and $\frac{6}{7}$, respectively. Table 10 shows that $L_1 \Lambda_1 + |_1 b_0| \approx 0.0812$, $L_i \Lambda_i + \sum_{j=0}^{i-2} \frac{|_i b_j|}{j!} \approx 1.1371$, 2.6822, 5.0190, 2.0625, 5.0190. Table 11 shows $L_1 \Lambda_1 + |_1 b_0| \approx 0.1226$, $L_i \Lambda_i + \sum_{j=0}^{i-2} \frac{|_i b_j|}{j!} \approx 1.1834$, 2.9406, 4.6798, 2.0235, Table 12 shows that $L_1 \Lambda_1 + |_1 b_0| \approx 0.1463$, $L_i \Lambda_i + \sum_{j=0}^{i-2} \frac{|_i b_j|}{j!} \approx 1.2072$, 3.0164, 4.4898, 1.9944 for $2 \le i \le 5$ and $q = \frac{1}{10}$, $\frac{1}{2}$, $\frac{6}{7}$, respectively. Also, Table 13 shows us $r \approx 5.0190$, 4.6798, 4.4898 for $q = \frac{1}{10}$, $\frac{1}{2}$, $\frac{6}{7}$, respectively. (Figs. 3 and 2). Now, by using Theorem 7, the singular system of fractional q-differential equations (29) has a solution.

Acknowledgements

The first author was supported by Bu Ali Sina Uinversity. The third author was supported by Azarbaijan Shahid Madani University.

Funding

Not applicable.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Authors' contributions

The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, Bu Ali Sina University, 65178 Hamedan, Iran. ²Department of Mathematics, Cankaya University, Ogretmenler Cad. 14 06530, Balgat, Ankara, Turkey. ³Institute of Space Sciences, Magurele, Bucharest, Romania. ⁴Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam. ⁵Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam. ⁶Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 April 2020 Accepted: 18 August 2020 Published online: 31 August 2020

References

- 1. Jackson, F.H.: q-Difference equations. Am. J. Math. 32, 305–314 (1910). https://doi.org/10.2307/2370183
- Adams, C.R.: The general theory of a class of linear partial q-difference equations. Trans. Am. Math. Soc. 26, 283–312 (1924)
- 3. Adams, C.R.: Note on the integro-q-difference equations. Trans. Am. Math. Soc. 31(4), 861–867 (1929)
- Agarwal, R.P.: Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 66, 365–370 (1969). https://doi.org/10.1017/S0305004100045060

- 5. Al-Salam, W.A.: q-Analogues of Cauchy's formula. Proc. Am. Math. Soc. 17, 182–184 (1952)
- Atici, F., Eloe, P.W.: Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 14(3), 341–352 (2007). https://doi.org/10.2991/jnmp.2007.14.3.4
- Rezapour, S., Samei, M.E.: On the existence of solutions for a multi-singular pointwise defined fractional g-integro-differential equation. Bound. Value Probl. 2020, 38 (2020). https://doi.org/10.1186/s13661-020-01342-3
- Samei, M.E., Yang, W.: Existence of solutions for k-dimensional system of multi-term fractional q-integro-differential equations under anti-periodic boundary conditions via quantum calculus. Math. Methods Appl. Sci. 43(7), 4360–4382 (2020). https://doi.org/10.1002/mma.6198
- Ahmadian, A., Rezapour, S., Salahshour, S., Samei, M.E.: Solutions of sum-type singular fractional q-integro-differential equation with m-point boundary value problem using quantum calculus. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6591
- 10. Ahmadi, A., Samei, M.E.: On existence and uniqueness of solutions for a class of coupled system of three term fractional q-differential equations. J. Adv. Math. Stud. **13**(1), 69–80 (2020)
- 11. Aydogan, S.M., Baleanu, D., Aguilar, J.F.G., Rezapour, S.: Approximate endpoint solutions for a class of fractional q-differential inclusions. Fractals 26(8), 1–18 (2020). https://doi.org/10.1142/S0218348X20400290
- Samei, M.E., Ranjbar, G.K., Hedayati, V.: Existence of solutions for a class of Caputo fractional q-difference inclusion on multifunctions by computational results. Kragujev. J. Math. 45(4), 543–570 (2021)
- Kalvandi, V., Samei, M.E.: New stability results for a sum-type fractional q-integro-differential equation. J. Adv. Math. Stud. 12(2), 201–209 (2019)
- Baleanu, D., Mousalou, A., Rezapour, S.: On the existence of solutions for some infinite coefficient-symmetric Caputo–Fabrizio fractional integro-differential equations. Bound. Value Probl. 2017(1), 145 (2017). https://doi.org/10.1186/s13661-017-0867-9
- Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 64 (2020). https://doi.org/10.1186/s13661-020-01361-0
- Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. Bound. Value Probl. 2019, 79 (2019). https://doi.org/10.1186/s13661-019-1194-0
- Baleanu, D., Rezapour, S., Mohammadi, H.: Some existence results on nonlinear fractional differential equations. Philos. Trans. R. Soc. Lond. Ser. A 2013, 371 (2013). https://doi.org/10.1098/rsta.2012.0144
- Agarwal, R.P., Baleanu, D., Hedayati, V., Rezapour, S.: Two fractional derivative inclusion problems via integral boundary conditions. Appl. Math. Comput. 257, 205–212 (2015). https://doi.org/10.1016/j.amc.2014.10.082
- Baleanu, D., Hedayati, V., Rezapour, S.: On two fractional differential inclusions. SpringerPlus 5, 882 (2016). https://doi.org/10.1186/s40064-016-2564-z
- Etemad, S., Rezapour, S., Samei, M.E.: On a fractional Caputo–Hadamard inclusion problem with sum boundary value conditions by using approximate endpoint property. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6644
- Samei, M.E., Rezapour, S.: On a system of fractional q-differential inclusions via sum of two multi-term functions on a time scale. Bound. Value Probl. 2020, 135 (2020). https://doi.org/10.1186/s13661-020-01433-1
- 22. Tuan, N.H., Mohammadi, H., Rezapour, S.: A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos Solitons Fractals **140**, 110107 (2020). https://doi.org/10.1016/j.chaos.2020.110107
- Baleanu, D., Mohammadi, H., Rezapour, S.: A fractional differential equation model for the COVID-19 transmission by using the Caputo–Fabrizio derivative. Adv. Differ. Equ. 2020, 299 (2020). https://doi.org/10.1186/s13662-020-02762-2
- Baleanu, D., Mohammadi, H., Rezapour, S.: Mathematical theoretical study of a particular system of Caputo–Fabrizio fractional differential equations for the rubella disease model. Adv. Differ. Equ. 2020, 184 (2020). https://doi.org/10.1186/s13662-020-02614-z
- Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: Analysis of the human liver model with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 7 (2020)
- Ragusa, M.A.: Cauchy–Dirichlet problem associated to divergence form parabolic equations. Commun. Contemp. Math. 6(3), 377–393 (2004). https://doi.org/10.1142/S0219199704001392
- Chidouh, A., Torres, D.: Existence of positive solutions to a discrete fractional boundary value problem and corresponding Lyapunov-type inequalities. Opusc. Math. 38(1), 31–40 (2018). https://doi.org/10.7494/OpMath.2018.38.1.31
- Denton, Z., Ramírez, J.D.: Existence of minimal and maximal solutions to RL fractional integro-differential initial value problems. Opusc. Math. 37(5), 705–724 (2017). https://doi.org/10.7494/OpMath.2017.37.5.705
- Liu, Y.: A new method for converting boundary value problems for impulsive fractional differential equations to integral equations and its applications. Adv. Nonlinear Anal. 8(1), 386–454 (2019). https://doi.org/10.1515/anona-2016-0064
- Wang, Y.: Necessary conditions for the existence of positive solutions to fractional boundary value problems at resonance. Appl. Math. Lett. 97, 34–40 (2019). https://doi.org/10.1016/i.aml.2019.05.007
- Bungardi, S., Cardinali, T., Rubbioni, P.: Nonlocal semi-linear integro-differential inclusions via vectorial measures of non-compactness. Appl. Anal. 96(15), 2526–2544 (2015)
- Ndaírou, F., Area, I., Nieto, J.J., Torres, D.F.M.: Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos Solitons Fractals 135, 109846 (2020)
- Kucche, K.D., Nieto, J.J., Venktesh, V.: Theory of nonlinear implicit fractional differential equations. Differ. Equ. Dyn. Syst. 28(1), 1–17 (2020)
- Ahmad, B., Alruwaily, Y., Alsaedi, A., Nieto, J.J.: Fractional integro-differential equations with dual anti-periodic boundary conditions. Differ. Integral Equ. 33(3–4), 181–206 (2020)
- Agarwal, R., Golev, A., Hristova, S., O'Regan, D., Stefanova, K.: Iterative techniques with computer realization for the initial value problem for Caputo fractional differential equations. J. Appl. Math. Comput. 58(1–2), 433–467 (2018)
- Wang, X., Li, X., Huang, N., O'Regan, D.: Asymptotical consensus of fractional-order multi-agent systems with current and delay states. Appl. Math. Mech. 40(11), 1677–1694 (2019)
- Baleanu, D., Nazemi, S.Z., Rezapour, S.: The existence of positive solutions for a new coupled system of multi-term singular fractional integro-differential boundary value problems. Abstr. Appl. Anal. 2013, 15 (2013)

- Taieb, A., Dahmani, Z.: A coupled system of nonlinear differential equations involving *m* nonlinear terms. Georgian Math. J. 23(3), 447–458 (2016)
- Abidine, Z.Z.E.: Multiple positive solutions for a coupled system of nonlinear fractional differential equations on the half-line. Mediterr. J. Math. 14, 142 (2017)
- 40. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001)
- 41. Ernst, T.: A method for *q*-calculus. J. Nonlinear Math. Phys. **10**(4), 487–525 (2003)
- 42. Ferreira, R.A.C.: Nontrivial solutions for fractional *q*-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. **2010**, 70, 1–10 (2010)
- 43. Berinde, V., Pacurar, M.: The role of the Pompeiu–Hausdorff metric in fixed point theory. Creative Math. Inform. 22(2), 143–150 (2013)
- Nieto, J.J., Ouahab, A., Prakash, P.: Extremal solutions and relaxation problems for fractional differential inclusions. Abstr. Appl. Anal. 2013, 9 (2013). https://doi.org/10.1155/2013/292643
- Ntouyas, S.K., Etemad, S.: On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions. Appl. Math. Comput. 266, 235–243 (2015)
- Lasota, A., Opial, Z.: An application of the Kakutani–Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13, 781–786 (1965)
- 47. Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values. Stud. Math. 90, 69–86 (1988)
- 48. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at > springeropen.com