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Abstract
In this paper, we investigate the existence and stability of solutions for a class of
optimal control problems with 1-mean equicontinuous controls, and the
corresponding state equation is described by non-instantaneous impulsive
differential equations. The existence theorem is obtained by the method of
minimizing sequence, and the stability results are established by using the related
conclusions of set-valued mappings in a suitable metric space. An example with the
measurable admissible control set, in which the controls are not continuous, is given
in the end.
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1 Introduction
Impulsive phenomena are results of a sudden change in the state of system due to external
interference; they often occur in nature and human activities. According to the duration
of the change, the phenomena of this kind are divided into two categories. One is that the
duration of this change is relatively short compared with the total duration of the whole
process, which is called instantaneous impulse. The other is that they start from any fixed
point and remain active for a limited time interval, namely the effects are continuous. We
call it non-instantaneous impulse (see [1–8]).

Most of the mathematical models extracted from impulsive phenomena are character-
ized by impulsive differential equations, which can be classified into two categories in
accordance with the type of impulse: instantaneous impulsive differential equations and
non-instantaneous ones. Now, a large number of references deal with the impulsive differ-
ential equations. By the type of impulse, they include the non-instantaneous case [1–12]
and the instantaneous case [13–22].

This paper is devoted to the study of the differential equation with impulse of non-
instantaneous type on account of its reality and significance. For instance, the state change
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process of some elements during intravenous drug injection, periodic fishing, and crite-
rion for pest management is depicted by non-instantaneous impulsive differential equa-
tions (see [20]). It is shown that the investigation of non-instantaneous impulsive differ-
ential equations is of great importance to nature and human beings themselves.

In the following, we will briefly sketch some existing results about the differential equa-
tions with non-instantaneous impulse.

In 2013, Hernández and O’Regan, depending on the background of pharmacokinetics,
considered a Cauchy problem for a class of new semi-linear evolution equations with non-
instantaneous impulse moments (see [1]), which is

⎧
⎪⎨

⎪⎩

x′(t) = Ax(t) + f (t, x(t)), t ∈ (si, ti+1], i = 0, 1, . . . , m,
x(t) = gi(t, x(t)), t ∈ (ti, si], i = 1, . . . , m,
x(0) = x0 ∈ X,

where ti < si, i = 0, 1, . . . , m, m ∈ N, s0 = 0, tm+1 = T , A : D(A) ⊆ X → X is an infinitesimal
generator of C0 semigroup {T(t), t ≥ 0} in Banach space X, f : [0, T] × X → X, and gi :
(ti, si] × X → X, i = 1, . . . , m.

This paper has initiated the study for differential equations with non-instantaneous im-
pulse. Since then, relevant research work has just been getting started.

Pierri and O’Regan dealt with the existence of solutions for a kind of semi-linear abstract
differential equations with non-instantaneous impulse in 2013 (see [9]). Then, Fečkan,
Wang, and Zhou paid attention to the existence of periodic solutions for the following
non-instantaneous impulsive periodic systems [10, 12]:

⎧
⎪⎨

⎪⎩

x′(t) = Ax(t) + f (t, x(t)), t ∈ (si, ti+1], i = 0, 1, . . . ,∞,
x(t+

i ) = gi(ti, x(t–
i )), i = 1, . . . ,∞,

x(t) = gi(t, x(t–
i )), t ∈ (ti, si], i = 1, . . . ,∞,

and
⎧
⎪⎨

⎪⎩

x′(t) + A(t)x(t) = f (t, x(t)), t ∈ (si, ti+1], i = 0, 1, . . . ,∞,
x(t+

i ) = gi(ti, x(t–
i )), i = 1, . . . ,∞,

x(t) = gi(t, x(t–
i )), t ∈ (ti, si]i = 1, . . . ,∞.

In 2015, Hernandez et al. introduced and studied a new model of abstract impulsive
differential equations [4]

⎧
⎪⎨

⎪⎩

u′(t) = f (t, u(t)) + Au(t), t ∈ (si, ti+1], i = 0, 1, . . . , N ,
u(t) = hi(t, u|Ii(t)), t ∈ (ti, si], i = 1, . . . , N ,
u(0) = x0,

where A is the generator of a C0-semigroup of bounded linear operators (T(t))t≥0 defined
on a Banach space (X,‖ · ‖), x0 ∈ X, Ii(t) is a 2[0,t]-set valued function.

Hernandez et al. improved substantially the theory on differential equations with non-
instantaneous impulses. And since then, based on their work, many scholars have been
devoted to the study of abstract differential equations with non-instantaneous impulses,
such as [5–7].
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In 2017, Ravi Agarwal et al. considered the initial value problem with non-instantaneous
impulses (see [3])

⎧
⎪⎨

⎪⎩

x′ = fk(t, x), t ∈ (sk , tk+1] ∩ [t0, T], k = 0, 1, . . . , p,
x(t) = φk(t, x(t), x(tk – 0)), t ∈ (tk , sk] ∩ [t0, T], k = 1, . . . , p,
x(t0) = x0,

(1.1)

and demonstrated that equation (1.1) was equivalent to the integral one as follows:

x(t; t0, x0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0 +
∫ t

t0
f0(s, x(s; t0, x0)) ds, t ∈ [t0, t1] ∩ [t0, T],

φk(t, x(t; t0, x0), x(tk – 0; t0, x0)), t ∈ (tk , sk] ∩ [t0, T], k = 1, . . . , p,
φk(sk , x(sk ; t0, x0), x(tk – 0; t0, x0))

+
∫ t

sk
fk(s, x(s; t0, x0)) ds, t ∈ (sk , tk+1] ∩ [t0, T], k = 1, . . . , p.

(1.2)

In 2018, Yao et al. obtained the sufficient conditions for the existence and uniqueness of
extremum solutions for a class of non-instantaneous impulsive boundary value problems
(see (1.3)) by means of the method of upper and lower solutions along with monotone
iteration technique (see [11]):

⎧
⎪⎨

⎪⎩

x′ = fk(t, x(t)), t ∈ (sk , tk+1] ∩ [t0, T], k = 0, 1, . . . , p,
x(t) = ϕk(t, x(t), x(tk – 0)), t ∈ (tk , sk] ∩ [t0, T], k = 1, . . . , p,
x(0) = lx(T).

(1.3)

Optimal control theory originated in the late 1950s, and the maximum principle
founded by the former Soviet mathematician L.C. Pontryagin marked the beginning of
a new stage in its process. Kalman put forward the concept of controllability in 1963 (see
[23]), which played an important role in the field of mathematical control theory. Today,
many researchers are devoted to the controllability of problems, such as those defined on
abstract Banach spaces [24–26] (for more details about the study on abstract differential
equations, we refer the readers to a series of Hernandez’s articles, such as [27, 28]).

In recent years, with the further development of computer science and mathematics,
the optimal control problems have achieved great progress, and the applications in real
life are becoming more and more extensive. A number of scholars have been committed
to the study on the optimal control problems (see [8, 29–36]).

In [30], Yu investigated the existence and stability of solutions for the problem

Jf
(
u∗) = min

u∈U
Jf (u),

where

Jf (u) � h
(
x(T)

)
+

∫ T

t0

g
(
t, x(t), u(t)

)
dt,

h, g are continuous and x(t) satisfies the following differential equation:

{
ẋ = f (t, x(t), u(t)), t ∈ [t0, T],
x(t0) = x0.
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In [37], Deng and Wei considered the existence and stability analysis for the above non-
linear optimal control problems with 1-mean equicontinuous controls. Different from
[30], Deng and Wei got the existence and stability results by weakening the condition of
the control. And the control may be not continuous in their results, this is more in line
with the general situation.

In [31], Liu et al. studied the optimal control problem for a new class of non-
instantaneous impulsive differential equations, and the controllability was proved by con-
structing a suitable control function, namely finding u ∈ Uad such that J(x, u) ≤ J(x, u) for
all u ∈ Uad , x ∈ PC([0, T],Rn1 ), where

J(x, u) =
∫ T

0

∥
∥y(t) – yd(t)

∥
∥2 dt =

∫ T

0

∥
∥C(t)x(t) + D(t)u(t) – yd(t)

∥
∥2 dt.

yd ∈ PC([0, T],Rn1 ) is a given piecewise continuous function and x(t) satisfies the follow-
ing differential equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = A(t)x(t) + f (t, x(t)) + B(t)u(t), t ∈ ⋃N
j=0[si, ti+1],

x(t) = Bi(t)x(t–
i ), t ∈ (ti, si], i = 1, 2, . . . , N ,

x(t+
i ) = x(t–

i ), i = 1, 2, . . . , N ,
x(0) = x0.

In [32], Achim Ilchmann et al. were concerned with the optimal control problem for
regular linear differential-algebraic systems. In their paper, they derived an augmented
system as the key to analyzing the optimal control problem with tools well known for the
optimal control of ordinary differential equations.

So far, we have found that the research findings on non-instantaneous impulsive dif-
ferential equations are still few, and the studies on optimal control problems with non-
instantaneous impulse are also scarce. In view of the widespread use of optimal control
problem in industrial and mining enterprizes, transportation, power industry, and na-
tional economic management (see [38, 39]), inspired by [3, 9, 11, 31], we mainly con-
centrate on the existence and stability of optimal control problem with nonlinear non-
instantaneous impulsive differential equations. The problem is as follows.

Problem (P) Looking for u∗ ∈ U [t0, T] satisfying the equation

Jf0,f1,...,fp
(
u∗) = min

u∈U [t0,T]
Jf0,f1,...,fp (u), (1.4)

where

Jf0,f1,...,fp (u) = g
(
x(T)

)
+

∫ T

t0

h
(
t, x(t), u(t)

)
dt, (1.5)

p > 0 is a natural number, U [t0, T] = {u|u ∈ L1([t0, T];Rn), u(t) ∈ U}, U ⊂ R
n, g : Rm → R,

h : [t0, T] ×R
m ×R

n →R, and x satisfies the equation
⎧
⎪⎨

⎪⎩

ẋ = fk(t, x, u), t ∈ (sk , tk+1] ∩ [t0, T], k = 0, 1, . . . , p,
x(t) = φk(t, x(t), x(tk – 0)), t ∈ (tk , sk] ∩ [t0, T], k = 1, . . . , p,
x(t0) = x0,

(1.6)

where fk : (sk , tk+1] ∩ [t0, T] ×R
m ×R

n →R
m, φk : (tk , sk] ∩ [t0, T] ×R

m ×R
m →R

m.
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In the paper, the existence result is established by the method of minimizing sequence,
and the stability analysis is carried out in a suitable metric space by the related conclusions
of set-valued mappings.

The layout of the rest is listed as follows. In Sect. 2, we review some standard facts that
are necessary for the paper, such as some important definitions and lemmas. In Sect. 3, it
is shown that there exists a unique solution for non-instantaneous impulsive differential
equation (1.6). Then, in Sect. 4, it is shown that the optimal control problem (P) is solvable
in the defined space with the help of minimizing sequence method. Finally, in Sect. 5, we
get the results of stability for the optimal control problem by applying related conclusions
on set-valued mappings, and in the end, an example is given to illustrate these results.

2 Preliminaries
In order to proceed smoothly, we do some necessary preparations in this section, and the
first one is to construct topological spaces.

Let {ti}p+1
i=1 and {si}p

i=0 be numbers such that 0 = s0 < ti < si < ti+1, i = 1, 2, . . . p, 0 = s0 < t0 <
t1, tp < T ≤ tp+1 and p is a natural number.

For the sake of convenience, the norms of all function spaces in the following are uni-
formly written as the symbol ‖ · ‖ without confusion, and the readers can identify the
meaning of the norms from the context easily.

Set

PC[t0, T] =
{

x|x : [t0, T] → R, x ∈ C
(
(tk , sk] ∩ [t0, T]

)
, x(tk + 0) < ∞, k = 1, 2, . . . , p,

x ∈ C
(
(sk , tk+1] ∩ [t0, T]

)
, x(sk + 0) < ∞, k = 0, 1, . . . , p,

}

,

in which the norm is defined by ‖x‖ = maxt0≤t≤T ‖x(t)‖, and

PCm[t0, T] =
{

x = (x1, . . . , xm)T|xi ∈ PC[t0, T], i = 1, 2, . . . m
}

in which the norm is defined as ‖x‖ = maxt0≤t≤T ‖x(t)‖, where x(t) = (x1(t), x2(t), . . . ,
xm(t))T ∈ PCm[t0, T] and

∥
∥x(t)

∥
∥ =

√
(
x1(t)

)2 +
(
x2(t)

)2 + · · · +
(
xm(t)

)2.

It is easy to prove that (PCm[t0, T],‖ · ‖) is a Banach space.
Suppose that U [t0, T] meets the following condition (which is set forth in [37]):
(Hu): U is compact in R

n, and U [t0, T] is 1-mean equicontinuous, that is, ∀ε > 0, there
exists a constant δ(ε) > 0 such that for |h| < δ(ε) one has

sup
u∈U [t0,T]

∫ T

t0

∥
∥u(t + h) – u(t)

∥
∥dt < ε,

where u(t) = 0 for t /∈ [t0, T].
For U is compact in R

n, U is a nonempty and closed subset of Rn. Then there exists a
constant M > 0 such that ‖z‖ ≤ M, ∀z ∈ U . According to Proposition 2.1 of [37], U [t0, T]
is bounded and closed in L1([t0, T];Rn). Besides, in view of Lemma 3.2 of [37], U [t0, T] is
compact in L1([t0, T];Rn).
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Let

B =
{

u ∈R
n : ‖u‖ ≤ M

}

and

Bk =
(
[sk , tk+1] ∩ [t0, T]

) ×R
m × B, k = 0, 1, . . . , p.

Consider the following conditions (k = 0, 1, . . . , p).
(Hw,k): ∀x1, x2 ∈R

m, ∀u ∈ B, ∀t ∈ [sk , tk+1] ∩ [t0, T], fk : Bk →R
m, then

∥
∥fk

(
t, x1, u

)
– fk

(
t, x2, u

)∥
∥ ≤ Lk

∥
∥x1 – x2∥∥,

and sup(t,x,u)∈Bk
‖fk(t, x, u)‖ ≤ Ck , where Lk , Ck > 0 are constants.

Under the above condition, we define the metric space as follows:

Fk =
{

fk|fk is continuous in Bk , fk satisfies condition (Hw,k)
}

, k = 1, 2, . . . , m,

with the metric ρk defined as

ρk
(
w1, w2) = sup

(t,x,u)∈Bk

∥
∥w1(t, x, u) – w2(t, x, u)

∥
∥, w1, w2 ∈ Fk .

One can demonstrate easily that (Fk ,ρk) is a complete metric space for each k = 0, 1, . . . , p.
Let φk : ([tk , sk] ∩ [t0, T]) × R

m × R
m → R

m, k = 1, 2, . . . , p, and φk satisfies condition
(Hφ,k), k = 1, 2, . . . , p.

(Hφ,k): φk is continuous, in addition, ∀x1, x2, y1, y2 ∈R
m,

∥
∥φk

(
t, x1, y1) – φk

(
t, x2, y2)∥∥ ≤ Qk

∥
∥x1 – x2∥∥ + Qk

∥
∥y1 – y2∥∥,

and sup(t,x,y)∈([tk ,sk ]∩[t0,T])×Rm×Rm ‖φk(t, x, y)‖ ≤ Dk , where Qk , Qk , Dk > 0 (k =
1, 2, . . . , p) are constants and Qk + Qk < 1 (k = 1, 2, . . . , p).

Next, one necessary lemma is given.

Lemma 2.1 Assuming that conditions (Hu), (Hφ,0), (Hφ,k) and (Hw,k) (k = 1, . . . , p) are satis-
fied, then, ∀u ∈ U [t0, T], ∀fk ∈ Fk (k = 0, 1, . . . , p), the differential equation (1.6) is equivalent
to the following integral-algebraic one:

x(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0 +
∫ t

t0
f0(s, x(s), u(s)) ds, t ∈ [t0, t1] ∩ [t0, T],

φk(t, x(t), x(tk – 0)), t ∈ (tk , sk] ∩ [t0, T], k = 1, . . . , p,
φk(sk , x(sk), x(tk – 0))

+
∫ t

sk
fk(s, x(s), u(s)) ds, t ∈ (sk , tk+1] ∩ [t0, T], k = 1, . . . , p.

Proof Similar to the proof in Sect. 2 of the reference [3], it is easy to obtain this result. �

What follows are the concepts and some important conclusions related to set-valued
mappings. For more details, readers can refer to [40, 41].
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Definition 2.1 ([40]) Let U and F be metric spaces, a set-valued mapping I : F ⇒ U is
called

(1) upper semi-continuous at f ∈ F if, for each open set G ⊂ U with G ⊃ I(f ) , there
exists δ > 0 such that G ⊃ I(f ′) for any f ′ ∈ F with ρ(f ′, f ) < δ;

(2) lower semi-continuous at f ∈ F if, for each open set G ⊂ U with G ∩ I(f ) �= ∅, there
exists δ > 0 such that G ∩ I(f ′) �= ∅ for any f ′ ∈ F with ρ(f ′, f ) < δ;

(3) continuous at f ∈ F if I is both upper semi-continuous and lower semi-continuous
at f .

Definition 2.2 ([40]) Let U and F be metric spaces, a set-valued mapping I : F ⇒ U is
called an usco mapping if I is upper semi-continuous and I(f ) is nonempty compact for
each f ∈ F .

Lemma 2.2 ([40]) Let U and F be metric spaces, a set-valued mapping I : F ⇒ U is closed
if Graph(I) is closed, where Graph(I) := {(f , u) ∈ F × U : u ∈ I(f )} is the graph of I .

Definition 2.3 ([40]) Let U and F be metric spaces, I : F ⇒ U is a set-valued mapping.
(1) For each f ∈ F , u ∈ I(f ) is called an essential solution if ∀ε > 0, there exists δ > 0 such

that, for any f ′ ∈ F with ρ(f ′, f ) < δ, it has ‖u – u′‖ < ε for some u′ ∈ I(f ′).
(2) The optimal control problem associated with f ∈ F is called essential if each u ∈ I(f )

is essential.

Lemma 2.3 ([41]) Let U and F be metric spaces and I : F ⇒ U be a set-valued mapping.
If I is closed and U is compact, then I is upper semi-continuous.

Lemma 2.4 ([42, 43]) Let U be a metric space, F be a complete metric space, and I : F ⇒ U
be an usco mapping. There exists a dense residual subset E of F such that I is lower semi-
continuous at each f ∈ E.

Definition 2.4 ([40]) Let (X, d) be a metric space, A, B are any two nonempty bounded
sets in X. We call

H(A,B) = inf
{
ε > 0 : A⊂ U(ε,B),B ⊂ U(ε,A)

}

the Hausdorff metric between A and B, where

U(ε,A) =
{

x ∈ X : ∃a ∈A, such that d(a, x) < ε
}

,

U(ε,B) =
{

x ∈ X : ∃b ∈ B, such that d(b, x) < ε
}

.

3 Existence and uniqueness of solutions for the differential equation with
non-instantaneous impulse

In this section, it is demonstrated that there exists a unique solution for the non-
instantaneous impulsive differential equation (1.6).

Theorem 3.1 Supposing that conditions (Hu), (Hw,0), (Hw,k), and (Hφ,k) (k = 1, . . . , p) are
all satisfied, then for each u ∈ U [t0, T], the differential equation (1.6) has a unique solution
x ∈ PCm[t0, T]. Since the unique solution x depends on u, we denote it as xu. Furthermore,
the map u → xu is continuous from L1([t0, T];Rn) into PCm[t0, T].
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Proof Similar to the proof of Theorem 3.2.1 in [44], by constructing an equivalent norm
in PCm[t0, T]

‖x‖∗ = max
t0≤t≤T

e–χ t‖x‖,

where χ > 0 is a constant and satisfies that

L0

χ

(
1 – eχ (t0–t1)) < 1

and

Lk

χ

(
1 – eχ (sk –tk+1)) < 1 – Qk – Qk (k = 1, 2, . . . , p),

we can come to the conclusion according to the contraction mapping principle in a Banach
space. By the same discussion of the proof of Theorem 3.2.1 in [44], we can also get the
results that the map u → xu is continuous from L1([t0, T];Rn) into PCm[t0, T]. �

4 Solvability for the optimal control problem
In this section, we will deal with the existence of solutions for the optimal control problem
(P) by the method of minimization.

Lemma 4.1 Let f q
k ∈ Fk (k = 0, . . . , p), {uq} ⊂ U [t0, T], and φ

q
k be functions satisfying con-

dition (Hφ,k) (k = 1, . . . , p). Supposed that conditions (Hu), (Hw,0), and (Hw,k) all hold,
if f q

k → fk (q → +∞, k = 0, . . . , p), uq → u (q → +∞) in L1([t0, T];Rn) and φ
q
k → φk

(q → +∞, k = 1, . . . , p) in C(((tk , sk] ∩ [t0, T]) × R
m × R

m;Rm), then xq → x (q → +∞)
in PCm[t0, T], where

x(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0 +
∫ t

t0
f0(s, x(s), u(s)) ds, t ∈ [t0, t1] ∩ [t0, T],

φk(t, x(t), x(tk – 0)), t ∈ (tk , sk] ∩ [t0, T], k = 1, . . . , p,
φk(sk , x(sk), x(tk – 0))

+
∫ t

sk
fk(s, x(s), u(s)) ds, t ∈ (sk , tk+1] ∩ [t0, T], k = 1, . . . , p,

and

xq(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0 +
∫ t

t0
f q
0 (s, xq(s), uq(s)) ds, t ∈ [t0, t1] ∩ [t0, T],

φ
q
k (t, xq(t), xq(tk – 0)), t ∈ (tk , sk] ∩ [t0, T], k = 1, . . . , p,

φ
q
k (sk , xq(sk), xq(tk – 0))
+

∫ t
sk

f q
k (s, xq(s), uq(s)) ds, t ∈ (sk , tk+1] ∩ [t0, T], k = 1, . . . , p.

Proof By using the Gronwall inequality and Theorem 3.1, similar to the arguments of The-
orem 3.2 in [37], we can get this result easily. �

The following corollary is a direct consequence of the above lemma.

Corollary 4.1 Let fk ∈ Fk (k = 0, . . . , p), {uq} ⊂ U [t0, T], and φ
q
k be functions meeting hy-

pothesis (Hφ,k) (k = 1, . . . , p). Assume that conditions (Hu), (Hw,0), and (Hw,k) (k = 1, . . . , p)
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all hold, if uq → u (q → +∞) in L1([t0, T];Rn) and φ
q
k → φk (q → +∞, k = 1, . . . , p) in

C(((tk , sk] ∩ [t0, T]) ×R
m ×R

m;Rm), then

xq → x (q → +∞) in PCm[t0, T].

Now, in order to accomplish the objective of our study, we need to do some proper
restrictions on the functions g and h in equation (1.5), which are set forth below.

(Hgh): g : Rm →R and h : [t0, T] ×R
m ×R

n →R are both continuous functions.
For simplicity, in the latter part of this section, we suppose that conditions (Hu), (Hw,0),

(Hw,k), (Hφ,k) (k = 1, . . . , p), and (Hgh) are all satisfied.

Lemma 4.2 Let f q
k ∈ Fk and {uq} ⊂ U [t0, T]. If f q

k → fk (q → +∞, k = 0, 1, . . . , p) and
uq → u (q → +∞) in L1([t0, T];Rn), then Jf q

0 ,f q
1 ,...,f q

p
(uq) → Jf0,f1,...,fp (u)q → +∞.

Proof By the definition of J , we know that

Jf q
0 ,f q

1 ,...,f q
p

(
uq) = g

(
xq(T)

)
+

∫ T

t0

h
(
t, xq(t), uq(t)

)
dt,

Jf0,f1,...,fp (u) = g
(
x(T)

)
+

∫ T

t0

h
(
t, x(t), u(t)

)
dt,

where xq and x are the solutions of equation (1.6) corresponding to f q
k , uq and f , u, respec-

tively.
From the hypothesis of this lemma and Lemma 4.1, we immediately obtain that xq → x.
Since g and h are continuous, it follows that

g
(
xq(T)

) → g
(
x(T)

)
, q → +∞ (4.1)

and

h
(
t, xq(t), uq(t)

) → h
(
t, x(t), u(t)

)
, q → +∞. (4.2)

Next, we will show that the solution of equation (1.6) is bounded, which is independent
with regard to fk and u. The demonstration of the boundedness of x is presented in the
following three steps.

(1) For t ∈ [t0, t1] ∩ [t0, T],

∥
∥x(t)

∥
∥ =

∥
∥
∥
∥x0 +

∫ t

t0

f0
(
s, x(s), u(s)

)
ds

∥
∥
∥
∥

≤ ‖x0‖ + C0T ;

(2) For t ∈ (tk , sk] ∩ [t0, T], k = 1, . . . , p, ‖x(t)‖ = ‖φk(t, x(t), x(tk – 0))‖ ≤ Dk ;
(3) For t ∈ (sk , tk+1] ∩ [t0, T], k = 1, . . . , p,

∥
∥x(t)

∥
∥ ≤ ∥

∥φk
(
sk , x(sk), x(tk – 0)

)∥
∥ +

∫ t

sk

∥
∥fk

(
s, x(s), u(s)

)∥
∥ds

≤ Dk + CkT ,
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where C0, Ck , Dk (k = 1, . . . , p) are constants in conditions (Hw,0), (Hw,k), and (Hφ,k) (k =
1, . . . , p).

It is followed up by the step (1) to (3) that ‖x‖ ≤ A < +∞, where A = maxk=1,...,p{‖x0‖ +
C0T , Dk + CkT}.

It is noticeable that ‖u‖ ≤ M by virtue of condition (Hu), which implies that h(t, x(t), u(t))
is bounded for t ∈ [t0, T] in cooperation with the continuity of h. With the aid of the dom-
inated convergence theorem, equation (4.2) leads to the fact that

∫ T

t0

h
(
t, xq(t), uq(t)

)
dt →

∫ T

t0

h
(
t, x(t), u(t)

)
dt. (4.3)

Combining (4.1) with (4.3), it holds that

Jf q
0 ,f q

1 ,...,f q
p

(
uq) → Jf0,f1,...,fp (u), q → +∞.

Then the proof is finished. �

Then, two corollaries are given in the following as a result of Lemma 4.2.

Corollary 4.2 Let fk ∈ Fk (k = 0, 1, . . . , p) and {uq} ⊂ U [t0, T] with uq → u (q → +∞), then

Jf0,f1,...,fp
(
uq) → Jf0,f1,...,fp (u), q → +∞.

Corollary 4.3 Let f q
k ∈ Fk with f q

k → fk (q → +∞, k = 0, 1, . . . , p) and u ∈ U [t0, T], then

Jf q
0 ,f q

1 ,...,f q
p

(u) → Jf0,f1,...,fp (u), q → +∞.

Now, let us demonstrate one of the main results in the paper, that is, the existence of
solutions for the optimal control problem (P).

Theorem 4.1 Suppose that conditions (Hu), (Hw,0), (Hw,k), (Hφ,k) (k = 1, . . . , p), and (Hgh)
are all satisfied, problem (P) has at least one solution, that is, there exists u∗ ∈ U [t0, T]
satisfying the equation Jf0,f1,...,fp (u∗) = minu∈U [t0,T] Jf0,f1,...,fp (u).

Proof The proof of Lemma 4.2 shows that the solution of equation (1.6) is bounded. Given
the continuity of g and h, by condition (Hu), it implies that

Jf0,f1,...,fp (u) ≥ –
∣
∣Jf0,f1,...,fp (u)

∣
∣

= –
∣
∣
∣
∣g

(
x(T)

)
+

∫ T

t0

h
(
t, x(t), u(t)

)
dt

∣
∣
∣
∣

≥ –
∣
∣g

(
x(T)

)∣
∣ –

∫ T

t0

∣
∣h

(
t, x(t), u(t)

)∣
∣dt

> –∞,

namely Jf0,f1,...,fp (u) is bounded below.
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Take a minimizing sequence {uj}+∞
j=1 ⊂ U [t0, T] such that

Jf0,f1,...,fp
(
uj) → inf

u∈U [t0,T]
Jf0,f1,...,fp (u), j → +∞. (4.4)

In the light of the compactness of U [t0, T], it has a convergent subsequence {uj′ }+∞
j=1 ⊂

{uj}+∞
j=1 ⊂ U [t0, T] such that

uj′ → u∗ ∈ U [t0, T], j′ → +∞.

Therefore,

Jf0,f1,...,fp
(
uj′) → inf

u∈U [t0,T]
Jf0,f1,...,fp (u), j′ → +∞. (4.5)

In accordance with Corollary 4.2, we have that

Jf0,f1,...,fp
(
uj′) → Jf0,f1,...,fp

(
u∗), j′ → +∞. (4.6)

Combining (4.5) and (4.6), it leads to that

Jf0,f1,...,fp
(
u∗) = min

u∈U [t0,T]
Jf0,f1,...,fp (u).

This finishes the proof. �

5 Stability of optimal control problem
In this section, the main task is to discuss the stability of optimal solutions for the optimal
control problem (P). We will characterize them by the stability of the set of all solutions
for problem (P), which is denoted by I(f0, f1, . . . , fp)(see below). In other words, if for any
ε > 0 there exists δ > 0 such that H(I(f ′

0, f ′
1, . . . , f ′

p), I(f0, f1, . . . , fp)) < ε with ρ̃(f ′, f ) < δ, where
H is the Hausdorff metric induced by the metric defined on F (see below).

Set a metric space

F � F0 × F1 × · · · × Fp,

on which the metric is defined as

ρ̃
(
f 1, f 2) = max

0≤j≤p

∥
∥f 1

j – f 2
j
∥
∥,

where f 1 = (f 1
0 , . . . , f 1

p ) ∈F and f 2 = (f 2
0 , . . . , f 2

p ) ∈F .
Obviously, (F , ρ̃) is a complete metric space.
Consider the set-valued mapping I : F ⇒ U [t0, T],

I(f0, f1, . . . , fp) =
{

u ∈ U [t0, T]|u is the solution of problem (P) corresponding to

f = (f0, f1, . . . , fp) ∈F
}

.

Whereafter, some meaningful conclusions are approached by similar proofs in [30] in
the following.



Chen and Meng Advances in Difference Equations        (2020) 2020:524 Page 12 of 17

Theorem 5.1 I(f0, f1, . . . , fp) �= ∅ for each f = (f0, f1, . . . , fp) ∈F .

Proof The result can be obtained directly by Theorem 4.1. �

Theorem 5.2 I : F ⇒ U [t0, T] is a usco mapping.

Proof In view of Lemma 2.3 and the compactness of U [t0, T] , it is sufficient to show that
Graph(I) is closed, where

Graph(I) :=
{

(f , u) ∈F × U [t0, T] : u ∈ I(f0, f1, . . . , fp)
}

.

Let {f q} ⊂ F with f q → f = (f0, f1, . . . , fp) ∈ F and {uq} ⊂ I(f0, f1, . . . , fp) with uq → u∗ ∈
U [t0, T]. In order to prove the closeness of Graph(I), we shall just conclude that u∗ ∈
I(f0, f1, . . . , fp).

In fact, in consideration of uq ∈ I(f q) for each q ∈N, we have

Jf q
0 ,f q

1 ,...,f q
p

(
uq) ≤ Jf q

0 ,f q
1 ,...,f q

p
(u), ∀u ∈ U [t0, T],

where f q = (f q
0 , . . . , f q

p ) ∈F .
Since f q → f (q → +∞) and uq → u∗ (q → +∞), according to Lemma 4.2 and Corollary

4.3, one can get that

Jf q
0 ,f q

1 ,...,f q
p

(
uq) → Jf0,f1,...,fp

(
u∗), q → +∞,

and

Jf q
0 ,f q

1 ,...,f q
p

(u) → Jf0,f1,...,fp (u), q → +∞,∀u ∈ U [t0, T],

respectively. Thus, it has

Jf0,f1,...,fp
(
u∗) ≤ Jf0,f1,...,fp (u), ∀u ∈ U [t0, T],

which indicates that u∗ ∈ I(f0, f1, . . . , fp). Then the proof is completed. �

Theorem 5.3 I : F ⇒ U is lower semi-continuous at f = (f0, f1, . . . , fp) ∈ F if and only if
problem (P) associated with f is essential.

Proof First of all, we show that the lower semi-continuity of I : F ⇒ U [t0, T] at f =
(f0, f1, . . . , fp) ∈F results in the fact that problem (P) associated with f is essential.

Let u ∈ I(f0, f1, . . . , fp), ∀ε > 0, then V (u, ε) ∩ I(f0, f1, . . . , fp) �= ∅, where V (u, ε) is the open
neighborhood of u. For the set-valued mapping I is lower semi-continuous at f , there
exists δ > 0 such that V (u, ε) ∩ I(f ′

0, f ′
1, . . . , f ′

p) �= ∅ for any f ′ ∈F subject to ρ̃(f ′, f ) < δ. Take
u′ ∈ V (u, ε) ∩ I(f ′

0, f ′
1, . . . , f ′

p), then u′ ∈ I(f ′
0, f ′

1, . . . , f ′
p) and ‖u – u′‖ < ε. Hence, u is essential,

which implies that problem (P) associated with f is essential.
Conversely, if problem (P) associated with f is essential, any element of I(f0, f1, . . . , fp) is

essential in accordance with Definition 2.3. For any open set G with G ∩ I(f0, f1, . . . , fp) �= ∅,
there exists ε > 0 such that the open neighborhood V (u, ε) of u satisfies V (u, ε) ⊂ G for
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each u ∈ G ∩ I(f0, f1, . . . , fp). Because u is an essential solution, there exists δ > 0 such that,
for any f ′ ∈F satisfying ρ̃(f ′, f ) < δ , we have that ‖u – u′‖ < ε for some u′ ∈ I(f ′

0, f ′
1, . . . , f ′

p).
It shows that u′ ∈ (V (u, ε) ∩ I(f ′

0, f ′
1, . . . , f ′

p)). Consequently, G ∩ I(f ′
0, f ′

1, . . . , f ′
p) �= ∅ for any

f ′ ∈ F with ρ̃(f ′, f ) < δ, that is, I is lower semi-continuous at f . Then the proof is
ended. �

Remark 5.1 Theorem 5.2 and Theorem 5.3 indicate that if problem (P) associated with f =
(f0, f1, . . . , fp) ∈ F is essential, then the set-valued mapping I : F ⇒ U [t0, T] is continuous
at f . What is more, since I : F ⇒ U [t0, T] is compact-valued, then by Theorem 17.15 of
[41], the solution set I(f0, f1, . . . , fp) is stable.

Remark 5.2 Considering Lemma 2.4, there exists a dense residual subset E of F such that
problem (P) associated with f = (f0, f1, . . . , fp) ∈ E is essential, the solution set I(f0, f1, . . . , fp)
is stable for most f = (f0, f1, . . . , fp) ∈ F . Moreover, it suggests that each optimal control
problem associated with f = (f0, f1, . . . , fp) ∈ F can be closely approximated arbitrarily by
an essential optimal control problem.

In the end, an example is presented for illustrations.

Example 5.1 Let

U [1, 6] =

{

uα : uα(t) =

{
– t

α
+ 1

t , t ∈ [1, 2],
– t

2α
+ 1

t , t ∈ [2, 6],
α = 18, 19, . . .

}

.

Obviously, U [1, 6] satisfies condition (Hu). In fact, ∀u ∈ U [1, 6], ∀ε > 0, there exists δ =
min{1, ε

5 } such that when |h| < δ,

∫ 6

1

∣
∣u(t + h) – u(t)

∣
∣dt

=
∫ 2–h

1

∣
∣u(t + h) – u(t)

∣
∣dt +

∫ 2

2–h

∣
∣u(t + h) – u(t)

∣
∣dt

+
∫ 6–h

2

∣
∣u(t + h) – u(t)

∣
∣dt +

∫ 6

6–h

∣
∣u(t + h) – u(t)

∣
∣dt

=
∫ 2–h

1

∣
∣
∣
∣–

t + h
α

+
1

t + h
+

t
α

–
1
t

∣
∣
∣
∣dt +

∫ 2

2–h

∣
∣
∣
∣–

t + h
2α

+
1

t + h
+

t
α

–
1
t

∣
∣
∣
∣dt

+
∫ 6–h

2

∣
∣
∣
∣–

t + h
2α

+
1

t + h
+

t
2α

–
1
t

∣
∣
∣
∣dt +

∫ 6

6–h

∣
∣
∣
∣

t
2α

–
1
t

∣
∣
∣
∣dt

≤
∫ 2–h

1

h
α

dt +
∫ 2–h

1

(
1
t

–
1

t + h

)

dt +
∫ 2

2–h

t – h
2α

dt +
∫ 2

2–h

(
1
t

–
1

t + h

)

dt

+
∫ 6–h

2

h
2α

dt +
∫ 6–h

2

(
1
t

–
1

t + h

)

dt +
∫ 6

6–h

(
1
t

–
t

2α

)

dt

≤
∫ 2

1

h
α

dt +
∫ 6

1

(
1
t

–
1

t + h

)

dt +
∫ 2

2–h

2
2α

dt +
∫ 6

2

h
2α

dt +
∫ 6

6–h

(

1 –
1

2α

)

dt

=
h
α

+ ln

(

1 +
5h

6 + h

)

+
h
α

+
2h
α

+
(

1 –
1

2α

)

h
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≤ 2h
α

+
2h

3 + h
+ h

≤ 4h < ε.

So, it is a nonempty compact subset of L1([1, 6]).
Now, consider the following optimal control problems: Looking for u∗ ∈ U [1, 6] satisfy-

ing

Jf0,f1,f2
(
u∗) = min

u∈U
Jf0,f1,f2 (u),

where

Jf0,f1,f2 (u) = g
(
x(6)

)
+

∫ 6

1
h
(
t, x(t), u(t)

)
dt,

g(x) = x, h(t, x, u) = t2,

and

f0(t, x, u) = u, f1(t, x, u) = u + 1, f2(t, x, u) = u + 2.

In addition, x(t) is the solution of the non-instantaneous impulsive differential equation

⎧
⎪⎨

⎪⎩

ẋ = fk(t, x, u∗), t ∈ (sk , tk+1], k = 0, 1, 2,
x = sin t + x(tk – 0), t ∈ (tk , sk], k = 1, 2,
x(1) = 0,

where 1 = s0 < t1 = 2 < s1 = 3 < t2 = 4 < s2 = 5 < t3 = 6.
Through simple calculation, x(t) can be written as

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

– 1
2α

t2 + ln t + 1
2α

, t ∈ (1, 2],
sin t + c1, t ∈ (2, 3],
– 1

4α
t2 + ln t + t + c2, t ∈ (3, 4],

sin t + c3, t ∈ (4, 5],
– 1

4α
t2 + ln t + 2t + c4, t ∈ (5, 6],

where

c1 = –
3

2α
+ ln 2, c2 =

3
4α

+ ln
2
3

+ sin 3 – 3,

c3 = –
13
4α

+ ln
8
3

+ 1 + sin 3, c4 =
3
α

+ ln
8

15
+ sin 3 + sin 5 – 9.

Then

Jf0,f1,f2 (u) = –
6
α

+ ln
16
5

+ sin 3 + sin 5 + 3 +
215

3
.

It shows that Jf0,f1,f2 (u) reaches the minimum when α = 18, i.e., I(f0, f1, f2) = {u18}.



Chen and Meng Advances in Difference Equations        (2020) 2020:524 Page 15 of 17

Take

f m
0 (t, x, u) = u +

1
m

, f m
1 (t, x, u) = u + 1 +

1
m

,

f m
2 (t, x, u) = u + 2 +

1
m

, m = 1, 2, . . . ;

therefore, the solution xm(t) of the above differential equation with non-instantaneous
impulse corresponding to f m = (f m

0 , f m
1 , f m

2 ) can be represented as

xm(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

– 1
2α

t2 + ln t + 1
m t + 1

2α
– 1

m , t ∈ (1, 2],
sin t + c′

1, t ∈ (2, 3],
– 1

4α
t2 + ln t + 1

m t + t + c′
2, t ∈ (3, 4],

sin t + c′
3, t ∈ (4, 5],

– 1
4α

t2 + ln t + 1
m t + 2t + c′

4, t ∈ (5, 6],

where

c′
1 = –

3
2α

+ ln 2 +
1
m

, c′
2 =

3
4α

+ ln
2
3

+ sin 3 – 3 –
2
m

,

c′
3 = –

13
4α

+ ln
8
3

+ 1 + sin 3 +
2
m

, c′
4 =

3
α

+ ln
8

15
+ sin 3 + sin 5 – 9 –

3
m

.

Then

Jf m
0 ,f m

1 ,f m
2

(u) = –
6
α

+ ln
16
5

+ sin 3 + sin 5 + 3 +
215

3
+

3
m

.

Similarly, Jf0,f1,f2 (u) attains the minimum when α = 18, i.e., I(f m
0 , f m

1 , f m
2 ) = {u18}.

From the previous discussion, we can see that

ρ̃
(
f m, f

)
= max

0≤j≤2

∥
∥f m

j – fj
∥
∥ =

1
m

→ 0, m → +∞

and for any m > 0,

∥
∥(um)∗ – u∗∥∥ =

∥
∥u18 – u18∥∥ = 0.

Consequently, u18 is essential. What is more, H(I(f m
0 , f m

1 , f m
2 ), I(f0, f1, . . . , fp)) = H(u18, u18) =

0, so the optimal controller u18 is stable.

6 Conclusions
In this paper, we obtain some important conclusions about the existence and stability
of solutions for the optimal control problem described by nonlinear non-instantaneous
impulsive ordinary differential equations. It is concluded that most of the optimal con-
trol problems are stable in the complete metric space F , that is, the optimal solution
set I(f0, f1, . . . , fp) will not perturb largely when some disturbances occur in the function
f = (f0, f1, . . . , fp) ∈F .

In the future, we will deal with the optimal control problem with nonlinear differential
equations with non-instantaneous impulses of fractional order.
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