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Abstract
When working with mathematical models, to keep the model errors as small as
possible, a special system of linear equations is constructed whose solution vector
yields accurate discretized values for the exact solution of the second-order linear
inhomogeneous ordinary differential equation (ODE). This case involves a 1D spatial
variable x with an arbitrary coefficient function κ (x) and an arbitrary source function
f (x) at each grid point under Dirichlet or/and Neumann boundary conditions. This
novel exact scheme is developed considering the recurrence relations between the
variables. Consequently, this scheme is similar to those obtained using the finite
difference, finite element, or finite volume methods; however, the proposed scheme
provides the exact solution without any error. In particular, the adequate test
functions that provide accurate values for the solution of the ODE at arbitrarily
located grid points are determined, thereby eliminating the errors originating from
discretization and numerical approximation.

Keywords: Exact scheme; Local Green function; Discretization of boundary value
problem; Tridiagonal system of linear equations

1 Introduction
Consider the following linear second-order inhomogeneous ordinary differential equation
(ODE) in self-adjoint form:

–
d

dx

(
κ(x)

d
dx

u(x)
)

= f (x) (0 < x < �), (1.1)

where κ(x) ≥ κ0 > 0 is a positive function ensuring the existence of the integrals applied
for the solution procedure. Equation (1.1) is a fundamental formula in the mathematics of
physical laws. The practical impact of the solution of Eq. (1.1) is profound since many im-
portant physical phenomena used in various industrial applications are described by this
equation. Problems in this form arise in various fields, including thermal energy transport,
diffusion, electrostatics, and electrodynamics. In electrical applications, κ is the conduc-
tivity distribution, u is the electric potential, and f is the source term; all these parameters
depend on the 1D spatial variable x. It is assumed that the classic solution u(x) exists on
[0,�] with the appropriate boundary conditions.
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Finding and applying an analytical solution to Eq. (1.1) ensures that the error in the
mathematical algorithm used to solve the physical problem is solely numerical. There-
fore, our mathematical problem in the case of Eq. (1.1) is finding and applying the in-
verse of the differential operator to construct an analytical ODE solver. On the basis of
our research work, this paper proposes a scheme that provides the values for the exact
solutiona of Eq. (1.1) in arbitrarily chosen grid points. Although some researchers have
attempted to develop exact schemes, practically applicable solutions have been reported
only for homogeneous second-order ODEs [1]. Furthermore, some researchers [2] used
the nonstandard finite difference method to develop a scheme by using the Green function
corresponding to the operator. Based on the fundamental solutions corresponding to dif-
ferential operators, several schemes applicable to first-order ODEs have been reported [3].
In addition, some higher-order schemes for first- and second-order differential equations
were presented in [4]. Furthermore, the authors of [4] reported an exact scheme origi-
nating from Samarskii applicable to a special case, namely an equidistant distribution of
space. Delkhosh et al. proposed analytical methods for solving a second-order ODE, the
effectiveness of which was demonstrated in their published work [5, 6]. The method they
described uses the beneficial properties of the Bessel equation to solve homogenous equa-
tions with a second-order self-adjoint differential operator [5, 6]. Based on the state-of-
the-art literature, it is generally concluded that analytical methods based on the current
state of science provide solutions for some specific version of Eq. (1.1) (f (x) = 0 or κ(x) = 1).

Well-known numerical methods, such as the finite difference method (FDM) [7], finite
volume method [8], and boundary element method [9], can be used to resolve equations
in form (1.1) by approximating the analytical solution of the ODE. Among the classic nu-
merical methods for second-order differential equations, at present, the finite element
method (FEM) is the most widely used [10]. This method has also been used to develop
approaches involving a higher order of convergence, particularly with the application of
higher-order elements [10].

Thus, research on exact schemes is an important aspect in the domain of mathematical
physics, and increasing the accuracy of such schemes represents a continuous challenge
for researchers. It has been reported [11] that there is no unified theoretical foundation
for the construction of exact schemes. Furthermore, increasing the accuracy also increases
the complexity and computational burden of these schemes, resulting in difficulties dur-
ing their application. However, the proposed scheme can overcome these limitations as it
provides the exact solution at an arbitrary location independent of the spatial discretiza-
tion.

The subsequent sections present the details pertaining to the mathematical construc-
tion of the proposed method. Furthermore, we demonstrate the advantages of the method
through several examples.

2 Local Green functions of ODE for arbitrary partitioning
Consider an arbitrary discretization of the interval [0, �] into (n + 1) subintervals using
arbitrarily distributed node points:

x0 = 0 < x1 < · · · < xi–1 < xi < xi+1 < · · · < xn–1 < xn < xn+1 = �, (2.1)
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where n may be 1, 2, 3, . . . . We represent the subintervals as Ii–1 = [xi–1, xi] for the indexes
i = 1, 2, . . . , n, n + 1; thus,

[0,�] = I0 ∪ I1 ∪ · · · ∪ In–1 ∪ In. (2.2)

We define (2n) nonnegative integral functions of 1
κ(x) on the different subintervals rep-

resented as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψi–1(x) =
∫ x

xi–1

1
κ(t)

dt (x ∈ Ii–1), (2.3a)

ϕi(x) =
∫ xi+1

x

1
κ(t)

dt (x ∈ Ii), (2.3b)

for each i = 1, 2, . . . , n, assuming that the integrals are existing and finite. In the subsequent
sections, these functions are used as test functions in a similar sense to the case of the FEM
[10].

The following properties are fulfilled for the test functions based on the fundamental
theorems of calculus:

d
dx

ψi–1(x) =
1

κ(x)
,

d
dx

(
κ(x)

d
dx

ψi–1(x)
)

= 0 (x ∈ Ii–1),

ψi–1(xi–1) = 0,

(2.4)

d
dx

ϕi(x) = –
1

κ(x)
,

d
dx

(
κ(x)

d
dx

ϕi(x)
)

= 0 (x ∈ Ii),

ϕi(xi+1) = 0,

(2.5)

for all i = 1, 2, . . . , n. Based on the equalities in (2.4) and (2.5), these test functions can be
considered local Green functions as they are local solutions to the homogeneous part of
ODE (1.1), i.e., when f (x) ≡ 0.

Example 2.1 To illustrate the concepts of local Green functions, we choose an exponential
function κ(x) = ex on the interval [0, 3] and divide it into 4 = n + 1 pieces with the following
node points:

x0 = 0, x1 = 1/2, x2 = 1, x3 = 5/2, x4 = 3.

Then the local Green functions can be defined as follows:

⎧⎪⎪⎨
⎪⎪⎩

ψ0(x) =
∫ x

0
1
et dt = 1 – e–x (x ∈ [0, 1

2 ]),

ψ1(x) =
∫ x

1
2

1
et dt = e– 1

2 – e–x (x ∈ [ 1
2 , 1]),

ψ2(x) =
∫ x

1
1
et dt = e–1 – e–x (x ∈ [1, 5

2 ]),

(2.6)
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Figure 1 Local Green functions Graphs of the local Green functions ψ0, ψ1, and ψ2 (with solid lines) and ϕ1,
ϕ2, and ϕ3 (with dotted lines) when κ (x) = ex and n = 3

⎧⎪⎪⎨
⎪⎪⎩

ϕ1(x) =
∫ 1

x
1
et dt = e–x – e–1 (x ∈ [ 1

2 , 1]),

ϕ2(x) =
∫ 5

2
x

1
et dt = e–x – e– 5

2 (x ∈ [1, 5
2 ]),

ϕ3(x) =
∫ 3

x
1
et dt = e–x – e–3 (x ∈ [ 5

2 , 3]).

(2.7)

In Fig. 1, the graphs of functions ψ0, ψ1, and ψ2 are represented as solid lines, while those of
functions ϕ1, ϕ2, and ϕ3 are represented as dotted lines on the domains of their definitions.

From the derivatives listed in (2.4) and (2.5), it is clear that test functions ψi increase
monotonously and that test functions ϕi decrease on the interval of their domain Ii for all
i = 1, 2, . . . , n – 1. On the first interval I0, only the test function ψ0 is considered, while on
the last interval In, we define only the test function ϕn similar to the FEM [10]. Initially, it
appears as though the local Green functions are not all independent because

ψi(x) =
∫ x

xi

1
κ(t)

dt = –
∫ xi

x

1
κ(t)

dt = –ϕi–1(x) (i = 2, 3, . . . n – 1). (2.8)

Furthermore, as indicated by (2.8) and demonstrated in the following subsections, the
test functions are handled in a similar manner as in the FEM [10].

Remark 1 If κ(x) ≡ 1 is selected as the constant function and the uniform mesh xi = ih
(i = 0, 1, . . . , n + 1) is used on the interval [0, 1] with a step size of h = 1

n+1 , the test functions
form linear functions resembling a saw-tooth pattern, as shown in Fig. 2, and the shape
functions can be calculated as follows:

ψi–1(x) = x – (i – 1)h, ϕi(x) = ih – x (i = 1, 2, . . . , n).

3 Fundamental recursive relation: flux elimination process
In this section, we demonstrate that the test functions defined in (2.3a)–(2.3b) are ade-
quate to create a recursive relation among consecutive values of the solution u(x). This
approach enables the elimination of the derivative u′(x) from the equations. The objective
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Figure 2 Local Green functions (κ = 1) Graphs of the local Green functions ψi (solid line) and ϕi (dotted line)
in the case of κ (x)≡ 1 with a uniform mesh on [0, 1] and n = 4

is now to formulate a linear equation containing three consecutive accurate values u(xi–1),
u(xi), and u(xi+1) for the solution of ODE (1.1).

The coefficients of the linear recursive relation are defined using the following integral
formula:

ai =
1∫ xi+1

xi
1

κ(t) dt
(i = 0, 1, . . . , n). (3.1)

Using the definition of the test functions in (2.3a)–(2.3b), equivalent formulas for the
following coefficients can be defined:

1
a0

= ψ0(x1),

1
ai

= ψi(xi+1) = ϕi(xi) (i = 1, . . . , n – 1),

1
an

= ϕn(xn).

(3.2)

The recursive relation can be developed essentially in two steps. An arbitrary pair of
consecutive subintervals Ii–1 = [xi–1, xi] and Ii = [xi, xi+1] is selected with a common point
xi, where i can be 1, . . . , n.

In the first step, we multiply ODE (1.1) by the test function ψi–1(x) and then integrate
with respect to x over the interval Ii–1:

–
∫ xi

xi–1

(
κ(x)u′(x)

)′
ψi–1(x) dx =

∫ xi

xi–1

f (x)ψi–1(x) dx =: Gi–1, (3.3)

where the prime symbol (′) denotes the derivative with respect to x and i = 1, 2, . . . , n.
Applying integration by parts to the left-hand side of (3.3), the derivative of ψi–1(x) and
the anti-derivative of the remainder can be obtained as follows:

–
[
κ(x)u′(x)ψi–1(x)

]x=xi
x=xi–1

+
∫ xi

xi–1

κ(x)u′(x)ψ ′
i–1(x)︸ ︷︷ ︸

1/κ(x)

= Gi–1. (3.4)
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The first term becomes zero by substituting the lower limit according to the third iden-
tity reported in (2.4); however, by substituting the upper limit, we can obtain the coefficient

1
ai–1

= ψi–1(xi) from (3.2). The integrand of the second term can be simplified using the fac-
tor κ(x), and based on the fundamental theorems of calculus, the following expression is
obtained:

–κ(xi)u′(xi)
1

ai–1
+

(
u(xi) – u(xi–1)

)
= Gi–1.

By multiplying this equation with the coefficient ai–1, we obtain the following relation:

–κ(xi)u′(xi) + ai–1
(
u(xi) – u(xi–1)

)
= ai–1Gi–1, (3.5)

which is satisfied for all i = 1, 2, . . . , n.
It is desirable to eliminate the first term from (3.5), the so-called flux, because the deriva-

tive u′(x) is unknown. This elimination is a necessary second step to obtain the recursive
formula.

Therefore, we multiply ODE (1.1) by the test function ϕi(x) and integrate over the inter-
val Ii:

–
∫ xi+1

xi

(
κ(x)u′(x)

)′
ϕi(x) dx =

∫ xi+1

xi

f (x)ϕi(x) dx =: Hi, (3.6)

where i = 1, 2, . . . , n.
Applying integration by parts to the left-hand side of (3.6), the derivative of factor ϕi(x)

and the anti-derivative of the remainder can be obtained as follows:

–
[
κ(x)u′(x)ϕi(x)

]x=xi+1
x=xi

+
∫ xi+1

xi

κ(x)u′(x) ϕ′
i(x)︸︷︷︸

–1/κ(x)

dx = Hi. (3.7)

The first term becomes zero by substituting the upper limit according to the third iden-
tity reported in (2.5); furthermore, by substituting the lower limit, we obtain the coefficient
1
ai

= ϕi(xi), as discussed in (3.2). The integrand of the second term can be simplified us-
ing the factor κ(x), and from the fundamental theorems of calculus, we can obtain the
following:

κ(xi)u′(xi)
1
ai

–
(
u(xi+1) – u(xi)

)
= Hi. (3.8)

Multiplying this equation by the coefficient ai, the following relation is obtained:

κ(xi)u′(xi) – ai
(
u(xi+1) – u(xi)

)
= aiHi, (3.9)

which is satisfied for all i = 1, 2, . . . , n.
Now, we can eliminate the flux from Eqs. (3.5) and (3.9). By adding these two equations,

the basic recursive relation can be obtained:

–ai–1u(xi–1) + (ai–1 + ai)u(xi) – aiu(xi+1) = ai–1Gi–1 + aiHi (3.10)

for all indexes i = 1, 2, . . . , n.
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4 Exact scheme for Dirichlet boundary conditions
We use the basic recurrence relation of Eq. (3.10) to obtain the exact values of solution
(1.1) at all (n + 2) node points:

u(x0), u(x1), . . . , u(xn–1), u(xn), u(xn+1). (4.1)

However, only n equations are available in (3.10). Therefore, two values must be prescribed
arbitrarily to obtain a unique solution. One possible approach to provide two independent
values is to apply Dirichlet boundary conditions, in which the values of the solution at the
endpoints are obtained as follows:

BD =
{

u(0) = α, u(�) = β
}

. (4.2)

In this case, we substitute u(x0) = α into the first equation and u(xn+1) = β into the last
equation in (3.10) to obtain the key result as follows.

Theorem 1 Consider a system of n ≥ 3 linear equations:

⎧⎪⎪⎨
⎪⎪⎩

(a0 + a1)u1 – a1u2 = a0α + a0G0 + a1H1,

–ai–1ui–1 + (ai–1 + ai)ui – aiui+1 = ai–1Gi–1 + aiHi,

–an–1un–1 + (an–1 + an)un = anβ + an–1Gn–1 + anHn

(4.3)

with the indexes i = 2, 3, . . . , (n – 1). The coordinates of the solution vector U = (u1, u2, . . . ,
un)T lead to the same values as the solution u(x) of the second-order ODE (1.1) with Dirich-
let boundary conditions (4.2) at the interior grid points (2.1) without any error, i.e.,

u(xi) = ui (i = 1, 2, . . . , n), (4.4)

where the coefficients ai can be obtained using integrals

ai =
1∫ xi+1

xi
1

κ(t) dt
(i = 0, 1, . . . , n)

and the coefficients Gi–1 and Hi can be obtained using double integrals

⎧⎨
⎩

Gi–1 =
∫ xi

xi–1
f (t)(

∫ t
xi–1

1
κ(s) ds) dt,

Hi =
∫ xi+1

xi
f (t)(

∫ xi+1
t

1
κ(s) ds) dt

(i = 1, 2 . . . n). (4.5)

The matrix-vector format LU = FD of system (4.3) can be defined, in which the discrete
Laplacian matrix (L) is as follows:

L =

a0 + a1 –a1 0 0
–a1 a1 + a2 –a2

0 –a2 a2 + a3 –a3

0
–an–2 an–2 + an–1 –an–1

0 0 –an–1 an–1 + an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. (4.6)
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This matrix is symmetric and positive definite and has a tridiagonal shape with dimensions
of n × n. The vector on the right-hand side can be defined for the Dirichlet boundary
conditions as follows:

FD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a0α + a0G0 + a1H1

a1G1 + a2H2
...

an–2Gn–2 + an–1Hn–1

βan + an–1Gn–1 + anHn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.7)

Example 4.1 This example demonstrates the process of the proposed method through
detailed calculations for the following differential equation with homogeneous Dirichlet
boundary conditions:

–
(
exu′(x)

)′ = 5 – 2x,
{

u(0) = 0, u(3) = 0
}

. (4.8)

It can be tested by derivation that the function u(x) = x(3 – x)e–x is the solution of (4.8).
We choose the same partitioning

[0, 3] = [0, 1/2] ∪ [1/2, 1] ∪ [1, 5/2] ∪ [5/2, 3]

and the same parameter function κ(x) = ex as in Example 2.1. We can obtain the values
of the Laplacian matrix L (4.6) by performing the integrations described in (3.1), which
yields the following result:

⎧⎪⎨
⎪⎩

a0 = 1∫ 1/2
0

1
et dt

= 1
1–e–1/2 , a1 = 1∫ 1

1/2
1
et dt

= 1
e–1/2–e–1 ,

a2 = 1∫ 5/2
1

1
et dt

= 1
e–1–e–5/2 , a3 = 1∫ 3

5/2
1
et dt

= 1
e–5/2–e–3 .

(4.9)

We can assemble the entries of the Laplacian matrix based on the tridiagonal form (4.6)
by using accurate values of the exponential function ex in (4.9) without approximating
with rounded values:

L =

⎛
⎜⎝

a0 + a1 –a1 0
–a1 a1 + a2 –a2

0 –a2 a2 + a3

⎞
⎟⎠ . (4.10)

By calculating the integrals Gi and Hi in (4.5) and using the local Green functions from
Example 2.1, the following expressions are obtained:

⎧⎪⎪⎨
⎪⎪⎩

G0 =
∫ 1/2

0 (5 – 2x)(1 – e–x) dx = –3/4 + 2e–1/2,

G1 =
∫ 1

1/2(5 – 2x)(e–1/2 – e–x) dx = –1/4e–1/2 + e–1,

G2 =
∫ 5/2

1 (5 – 2x)(e–1 – e–x) dx = 5/4e–1 – 2e–5/2,

(4.11)

⎧⎪⎪⎨
⎪⎪⎩

H1 =
∫ 1

1/2(5 – 2x)(–e–1 + e–x) dx = –11/4e–1 + 2e–1/2,

H2 =
∫ 5/2

1 (5 – 2x)(–e–5/2 + e–x) dx = –1/4e–5/2 + e–1,

H3 =
∫ 3

5/2(5 – 2x)(–e–3 + e–x) dx = 13/4e–3 – 2e–5/2.

(4.12)
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Figure 3 Solution of the example of the Dirichlet problem Graph of the solution u(x) for problem
(Example 4.1) (solid line) and the discretized solution to the system of linear equations LU = FD (dotted line)

Now, we can collect the entries of the right-hand side vector based on the formula

(FD)i = ai–1Gi–1 + aiHi (i = 1, 2, 3)

and because the boundary conditions are homogeneous, i.e., α = β = 0. After simplifica-
tion, we obtain

FD =

⎛
⎜⎝

–3/4+2e–1/2
1–e–1/2 + –11/4e–1+2e–1/2

e–1/2–e–1
–1/4e–1/2+e–1

e–1/2–e–1 + –1/4e–5/2+e–1

e–1–e–5/2
5/4e–1–2e–5/2

e–1–e–5/2 + 13/4e–3–2e–5/2

e–5/2–e–3

⎞
⎟⎠ . (4.13)

By solving the 3 × 3 system of linear equations LU = FD for the unknown vector
U = (U1, U2, U3)T , the values of the exact solution u(x) = x(3 – x)e–x at the node points
are the same as the coordinates of the solution vector U :

⎧⎪⎪⎨
⎪⎪⎩

U1 = 5/4e–1/2 = u(1/2),

U2 = 2e–1 = u(1),

U3 = 5/4e–5/2 = u(5/2).

(4.14)

The solution u(x) is represented in Fig. 3 by a solid line, and the discrete values at the
grid points are connected to each other by dotted straight lines.

Example 4.2 The recursion (3.10) is valid for n = 1 when the interval [0,�] is divided into
two parts. In this case, the node points are denoted as x0 = 0, x1 = x, x2 = �. The objective
is to obtain the exact solution u(x) of ODE (1.1) given the Dirichlet boundary conditions
u(0) = α and u(�) = β . The only equation in (3.10) is formulated as follows:

⎧⎪⎨
⎪⎩

– 1∫ x
0

1
κ(t) dt

α + ( 1∫ x
0

1
κ(t) dt

+ 1∫ �
x

1
κ(t) dt

)u(x) – 1∫ �
x

1
κ(t) dt

β

= 1∫ x
0

1
κ(t) dt

∫ x
0 f (t)(

∫ t
0

1
κ(s) ds) dt + 1∫ �

x
1

κ(t) dt

∫ �

x f (t)(
∫ �

t
1

κ(s) ds) dt.
(4.15)
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Isolating u(x) from this equation yields the solution for the Dirichlet boundary conditions
in the form

u(x) =
1∫ �

0
1

κ(t) dt

(
α

∫ �

x

1
κ(t)

dt + β

∫ x

0

1
κ(t)

dt
)

+
∫ �

0
G(x, t)f (t) dt, (4.16)

where the kernel function G(x, t) is the (global) Green function

G(x, t) =
1∫ �

0
1

κ(t) dt

⎧⎨
⎩

∫ x
0

1
κ(s) ds

∫ �

t
1

κ(s) ds 0 ≤ x ≤ t ≤ �,∫ t
0

1
κ(s) ds

∫ �

x
1

κ(s) ds 0 ≤ t ≤ x ≤ �.
(4.17)

We should note that this derivation from local Green functions towards the global Green
function is reversible; i.e., we could have started with a solution of the form (4.16) with the
Green function (4.17) applied to the partitions Ii–1 and Ii, and we would still have arrived
at the basic recursion relations (3.10).

5 Exact scheme for Dirichlet and Neumann boundary conditions
Consider ODE (1.1) with a Dirichlet boundary condition at x = 0 and a Neumann bound-
ary condition at x = �:

BDN =
{

u(0) = α,κ(�)u′(�) = β
}

. (5.1)

Because the flux value β is given at x = �, we specify a function mapping from the flux β

to the solution value u(�). This function is termed the Neumann-to-Dirichlet map at the
boundary x = �.

Considering the same manipulations leading to identity (3.5) (albeit on the whole inter-
val [0,�]), in this case, we have

–κ(�)u′(�) +
1∫ �

0
1

κ(t) dt

(
u(�) – α

)
=

1∫ �

0
1

κ(t) dt

∫ �

0
f (t)

(∫ t

0

1
κ(s)

ds
)

dt.

Substituting the Neumann boundary condition and isolating u(�) from this equation re-
sults in the following:

u(�) = α + β

∫ �

0

1
κ(t)

dt +
∫ �

0
f (t)

(∫ t

0

1
κ(s)

ds
)

dt. (5.2)

Therefore, the Neumann boundary condition (5.1) at x = � is transformed into a Dirichlet
boundary condition. Applying the scheme from the Dirichlet boundary conditions and
using the Dirichlet boundary condition (5.2) instead of u(�) = β leads to the following
theorem.

Theorem 2 The solution vector U = (u1, u2, . . . , un)T of the system of linear equations, that
is,

⎧⎪⎪⎨
⎪⎪⎩

(a0 + a1)u1 – a1u2 = a0α + a0G0 + a1H1,

–ai–1ui–1 + (ai–1 + ai)ui – aiui+1 = ai–1Gi–1 + aiHi,

–an–1un–1 + (an–1 + an)un = anu(�) + an–1Gn–1 + anHn,

(5.3)
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with the indexes i = 2, 3, . . . , n – 1, yields accurate values of the solution u(x) for the second-
order ODE (1.1) with Dirichlet–Neumann boundary conditions (5.1) at the inner grid
points (2.1) without any error, i.e.,

u(xi) = ui (i = 1, 2, . . . , n), (5.4)

where the coefficients ai are defined by integrals

ai =
1∫ xi+1

xi
1

κ(t) dt
(i = 0, 1, . . . , n)

Gi–1 and Hi are defined by double integrals

⎧⎨
⎩

Gi–1 =
∫ xi

xi–1
f (t)(

∫ t
xi–1

1
κ(s) ds) dt,

Hi =
∫ xi+1

xi
f (t)(

∫ xi+1
t

1
κ(s) ds) dt

(i = 1, 2 . . . n), (5.5)

and u(�) is defined in (5.2).

The Laplacian matrix (4.6) for the Dirichlet–Neumann boundary conditions (5.1) is the
same as in the case of the Dirichlet boundary conditions. Only the last element of the
vector on the right-hand side must be changed as follows:

FDN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a0α + a0G0 + a1H1

a1G1 + a2H2
...

an–2Gn–2 + an–1Hn–1

anu(�) + an–1Gn–1 + anHn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5.6)

Example 5.1 Consider ODE (4.8) in Example 4.1 with the same interval [0, 3], the same
κ(x) = ex, the same f (x) = 5 – 2x, and the same partitioning. The objective is to attain the
same solution u(x) = x(3 – x)e–x; therefore, we prescribe the boundary conditions u(0) = 0
and κ(3)u′(3) = –3. Calculating the value u(3) directly based on identity (5.2) yields

u(�) = α + β

∫ �

0

1
κ(t)

dt +
∫ �

0
f (t)

(∫ t

0

1
κ(s)

ds
)

dt

= (–3)
∫ 3

0

1
et dt +

∫ 3

0
(5 – 2t)

∫ t

0

1
es ds = 0.

Therefore, the right-hand side vector FDN in 5.6 is the same as the vector FD in Example 4.1.
Consequently, the solution values of the system of linear equations are the same as well.

6 Case study for piecewise constant κ (x)
In this section, we demonstrate the effectiveness and robustness of the proposed exact
scheme in the case of an ODE with a discontinuous conductivity function, which appears
frequently in practical problems. Consider a physical problem based on (1.1) with ho-
mogeneous Dirichlet boundary conditions, in which the source term is f (x) = x and the
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Figure 4 A piecewise constant κ (x) Plot of the piecewise constant κ (x) function

conductivity function

κ(x) =

⎧⎨
⎩

1 if 0 ≤ x ≤ 1,

2 if 1 < x ≤ 3,
(6.1)

is not continuous at x = 1, as shown in Fig. 4.
Because the proposed method eliminates the numerical difficulties arising from the dis-

continuity, no smoothing (i.e., a sigmoid approximation of the Heaviside function) is re-
quired to obtain the exact solution. In particular, the discontinuity of κ(x) does not create
issues for the implementation of the proposed method. Although the κ(x) function is dis-
continuous, its integrals exist, and thus the necessary calculations can be performed. The
integral of the conductivity function on the whole domain is

R0 =
∫ 3

0

1
κ(x)

dx =
∫ 1

0
1 dx +

∫ 3

1

1
2

dx = 2. (6.2)

Thus, the shape functions are expressed as follows:

ψ(x) =
∫ x

0

1
κ(t)

dt =

⎧⎨
⎩

x if 0 ≤ x ≤ 1,
1
2 x + 1

2 if 1 ≤ x ≤ 3,
(6.3)

ϕ(x) =
∫ 1

x

1
κ(t)

dt =

⎧⎨
⎩

2 – x if 0 ≤ x ≤ 1,
3
2 – 1

2 x if 1 ≤ x ≤ 3,
(6.4)

as shown in Fig. 5.
The different parts of the Green function are defined as follows:

G(x, t) =
1

R0

⎧⎨
⎩

ψ(x)ϕ(t) if x ≤ t,

ϕ(x)ψ(t) if t ≤ x.
(6.5)
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Figure 5 Local Green functions for κ (x) in Eq. (6.1) Graphs of the local Green functions ψi (solid line) and ϕi

(dotted line) in the case of the piecewise constant κ (x)

Figure 6 Green function for κ (x) in Eq. (6.1) Graph of the Green function G(x, t) for the piecewise constant κ (x)

Thus, based on the shape functions (6.3), (6.4) and (6.5), we can construct the Green func-
tions corresponding to conductivity function (6.1) as follows:

G(x, t) =
1

R0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(2 – t) if x ≤ t ≤ 1,

x( 3
2 – 1

2 t) if x ≤ 1 ≤ t,

( 1
2 x + 1

2 )( 3
2 – 1

2 t) if 1 ≤ x ≤ t,

(2 – x)t if t ≤ x ≤ 1,

( 3
2 – 1

2 x)t if t ≤ 1 ≤ x

( 3
2 – 1

2 x)( 1
2 t + 1

2 ) if 1 ≤ t ≤ x.

(6.6)

Figure 6 shows the surface plot of the Green function G(x, t).
The solution of the problem u(x) can be derived by using (4.16); however, in general, the

solution is defined using

u(x) =
∫ 3

0
G(x, t)f (t) dt. (6.7)



Vizvari et al. Advances in Difference Equations        (2020) 2020:497 Page 14 of 16

By substituting (6.6) into (6.7), the following expression can be derived:
if 0 ≤ x ≤ 1,

u(x) =
1

R0

(∫ x

0
G(x, t)︸ ︷︷ ︸
t ≤ x ≤ 1

f (t) dt +
∫ 1

x
G(x, t)︸ ︷︷ ︸
x ≤ t ≤ 1

f (t) dt +
∫ 3

1
G(x, t)︸ ︷︷ ︸
x ≤ 1 ≤ t

f (t) dt
)

=
(

1
2

∫ x

0
(2 – x)t2 dt +

∫ 1

x
x(2 – t)t dt +

∫ 3

1
x
(

3
2

–
1
2

t
)

t dt
)

= –
1
6

x3 +
7
6

x,

if 1 ≤ x ≤ 3,

u(x) =
1

R0

(∫ 1

0
G(x, t)︸ ︷︷ ︸
t ≤ 1 ≤ x

f (t) dt +
∫ x

1
G(x, t)︸ ︷︷ ︸
1 ≤ t ≤ x

f (t) dt +
∫ 3

x
G(x, t)︸ ︷︷ ︸
1 ≤ x ≤ t

f (t) dt
)

=
1
2

(∫ 1

0

(
3
2

–
1
2

x
)

t2 dt +
∫ x

1

(
3
2

–
1
2

x
)(

1
2

t +
1
2

)
t dt

+
∫ 3

x

(
1
2

x +
1
2

)(
3
2

–
1
2

t
)

t dt
)

= –
1

12
x3 +

7
12

x +
1
2

.

The solution can thus be obtained in the following form:

u(x) =

⎧⎨
⎩

– 1
6 x3 + 7

6 x if 0 ≤ x ≤ 1,

– 1
12 x3 + 7

12 x + 1
2 if 1 ≤ x ≤ 3,

(6.8)

which is continuous in the whole domain but not differentiable at x = 1, as shown in Fig. 7.
Next, we verify whether u(x) is actually the solution of the original problem. To this end,
first, we calculate the derivative of u(x) with respect to x:

u′(x) =

⎧⎨
⎩

– 1
2 x2 + 7

6 if 0 ≤ x < 1,

– 1
4 x2 + 7

12 if 1 < x ≤ 3.
(6.9)

The u′(x) function is not defined at x = 1; however, if we solve the function J(x) = κ(x)u′(x),
we obtain

J(x) =

{
– 1

2 x2 + 7
6 if 0 ≤ x < 1

– 1
2 x2 + 7

6 if 1 < x ≤ 3

}
(6.10)

in which the common value can be inserted at x = 1 as follows:

J(x) =

{
– 1

2 x2 + 7
6 if x ∈ [0, 3] \ {1}
2
3 if x = 1

}
= –

1
2

x2 +
7
6

. (6.11)

The discontinuity can be removed, as shown in Fig. 7.
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Figure 7 Verifying the solution of the example with piecewise constant κ (x) Process of removing the
discontinuity of J(x) = κ (x)u′(x)

The derivative of the now differentiable J(x) proves that u(x) is actually the solution of
the original problem

–J ′(x) = x = f (x). (6.12)

7 Conclusion
This paper presents a practically useful and easily applicable robust scheme for calculating
the exact solutions of a second-order self-adjoint ODE on any grid point corresponding
to an arbitrary discretization. Through detailed derivations, we proved our theorems and
assertions, and the effectiveness of the method was demonstrated through several rele-
vant examples involving continuous and discontinuous κ(x). By rearranging the scheme,
an implicit form of the solution of the differential equation can be obtained, which can
be used to derive the analytical solution if it can be evaluated symbolically; in addition,
by numerically evaluating the integrals, the proposed approach can provide the exact nu-
merical values of the solution at any given point. Because the proposed scheme is easy to
implement in various mathematical software environments (Mathematica, Maple, MAT-
LAB, etc.), for problems possessing the given ODE structure, the exact solution can be
determined, thereby avoiding the use of and problems associated with various numerical
approximation methods. For all these reasons, the proposed method can be used not only
to effectively solve mathematical problems with the differential operators in Eq. (1.1) but
also to solve physical processes that can be described by the ODE in Eq. (1.1). In this case, if
the integrals resulting from the applied scheme can be evaluated symbolically, the physical
problem can be solved analytically, but if the integrals are numerically evaluated, we can
obtain the exact solution to the physical problem at arbitrarily located grid points. At the
moment, the proposed scheme works for the specific ODE structure discussed; a future
direction can be the extension of this method to a broader range of differential operators.
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