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Abstract
The step-type contrast structure for a second order semi-linear singularly perturbed
differential-difference equation is studied. Using the methods of boundary function
and fractional steps, we construct the formula asymptotic expansion of the problem.
At the same time, based on sewing techniques, the existence of the step-type
contrast structure solution and the uniform validity of the asymptotic expansion are
proved.
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1 Introduction
The boundary-value problems for singularly perturbed differential-difference equations
arise in various practical problems in biomechanics and physics such as in variational
problem in control theory and depolarization in Stein’s model. Many scholars have done
a lot of work on this field, especially for linear problems [1–6]. For nonlinear problems,
some results [7–12] have also been obtained. However, most of these works are related
to boundary layers, numerical solution, or the proof of the existence of the solution. Few
of them concern the contrast structures and the uniform validity of the asymptotic ex-
pansions [7, 12]. Recently, the contrast structures have become the focus of attention in
singular perturbation [13–16]. The fundamental characteristic of contrast structures is
that there exists a t∗ (or multiple t∗) within the domain of interest, which is called an in-
ternal transition point. The position of t∗ is unknown in advance, and it needs to be deter-
mined thereafter. In the neighborhood of t∗, the solution y(t,μ) will have an abrupt struc-
ture change. In the different sides of t∗, if y(t,μ) approaches different reduced solutions,
we call it step-type contrast structure. If y(t,μ) approaches the same reduced solution,
we call it spike-type contrast structure. In [17], Wang, Xu, and Ni study the spike-type
contrast structure for the following singularly perturbed differential-difference equation
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which only contains negative shift in it:

μ2y′′(t) = F
(
y(t), y(t – σ ), t

)
, 0 ≤ t ≤ T ; (1.1)

y(t,μ) = α(t), –σ ≤ t ≤ 0, y(T ,μ) = yT . (1.2)

In this paper, we study the step-type contrast structure for system (1.1), (1.2), where 0 <
μ � 1 is a small parameter and σ is a delay argument. α(t) is a smooth function defined
in [–σ , 0]. T is a positive constant that satisfies σ ≤ T ≤ 2σ . The restriction on T will not
influence the essence of the problem and it is only convenient for our discussion.

2 Algorithm for the construction of asymptotics
Let μy′ = z, then (1.1) can be rewritten as follows:

μy′(t) = z(t), μz′(t) = F
(
y(t), y(t – σ ), t

)
. (2.1)

When necessary we impose several additional conditions on Eq. (2.1).
(H1) Suppose that F(y, u, t) is sufficiently smooth with respect to each argument and for

0 ≤ t ≤ T , where u = y(t – σ ).
(H2) Suppose that the reduced equation F(y(t), y(t –σ ), t) = 0 has three disjoint real roots

y(t) = ϕi(t) (i = 1, 2, 3) in [0,σ ], but an isolate root y(t) = ψ1(t) in [σ , T].
(H3) Suppose Fy(y(t), y(t – σ ), t) > 0, when y(t) = ϕi(t) (i = 1, 3), or y(t) = ψ1(t), while

Fy(ϕ2(t),ϕ2(t – σ ), t) < 0.
Let t∗ ∈ (0,σ ) be the transfer point of the contrast structure, and it has the series form

t∗ = t0 + μt1 + · · · + μktk + · · · , (2.2)

where tk (k = 0, 1, . . .) are unknown constants determined by the smooth connection at
t = t∗.

Setting x = (y, z)T and using the method of boundary function, we construct a series
formally satisfying (2.1), (1.2) in [0, t∗], [t∗,σ ], [σ , T], respectively.

x(1)(t,μ) =
∞∑

k=0

μk(x(1)
k (t,μ) + �xk(τ0,μ) + Q(–)xk(τ∗,μ)

)
, (2.3)

x(2)(t,μ) =
∞∑

k=0

μk(x̄(2)
k (t,μ) + Q(+)xk(τ∗,μ) + Q̄(–)xk(τσ ,μ)

)
, (2.4)

x(3)(t,μ) =
∞∑

k=0

μk(x̄(3)
k (t,μ) + Q̄(+)xk(τσ ,μ) + Rxk(τT ,μ)

)
, (2.5)

where τ0 = t
μ

, τ∗ = t–t∗
μ

, τσ = t–σ
μ

, τT = t–T
μ

. �kx(τ0), Q(–)
k x(τ∗), Q(+)

k x(τ∗), Q̄(–)
k x(τσ ),

Q̄(+)
k x(τσ ), Rkx(τT ) (k ≥ 0) are called boundary functions, and

lim
τ0→+∞�kx(τ0) = 0, lim

τ∗→–∞ Q(–)
k x(τ∗) = 0, lim

τσ →+∞ Q̄(+)
k x(τσ ) = 0,

lim
τ∗→–∞ Q(–)

k x(τ∗) = 0, lim
τσ →+∞ Q̄(+)

k x(τσ ) = 0, lim
τT →–∞ Rkx(τT ) = 0

hold.
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By the method of boundary function, we obtain

z̄(1)
0 (t) = 0, F

(
ȳ(1)

0 (t),α(t – σ ), t
)

= 0; (2.6)

dȳ(1)
k–1

dt
= z̄(1)

k (t),
dz̄(1)

k–1
dt

= F̄ (1)
y ȳ(1)

k (t) + h̄(1)
k (t); (2.7)

where F̄ (1)
y takes its values at (ȳ(1)

0 (t),α(t –σ ), t) and h̄(1)
k (t) are determined functions. Equa-

tion (2.6) coincides with the reduced equation of (2.1), so we have ȳ(1)
0 (t) = ϕ1(t), z̄(1)

0 (t) = 0.
Obviously, by (H2) and (2.7), x̄(1)

k (t) are completely determined. Similar to x̄(1)
k (t), we ob-

tain ȳ(2)
0 (t) = ϕ3(t), z̄(2)

0 (t) = 0, ȳ(3)
0 (t) = ψ1(t), z̄(3)

0 (t) = 0, and x̄(2)
k (t), x̄(3)

k (t) are completely
determined.

For �0x(τ0), we have

d�0y
dτ0

= �0z,
d�0z
dτ0

= F
(
ϕ1(0) + �0y,α(–σ ), 0

)
;

�0y(0) = α(0) – ϕ1(0), �0y(+∞) = 0.

Let ϕ1(0) + �0y = ỹ(1), (ỹ(1))′ = z̃(1), and we get

dỹ(1)

dτ0
= z̃(1),

dz̃(1)

dτ0
= F

(
ỹ(1),α(–σ ), 0

)
; (2.8)

ỹ(1)(0) = α(0), ỹ(1)(+∞) = ϕ1(0). (2.9)

Integrating (2.8), we have

z̃(1) = ±√
2
(∫ ỹ(1)

ϕ1(0)
F
(
y,α(–σ ), 0

)
dy

) 1
2
� ±�1

(
ỹ(1)). (2.10)

By (H2), the equilibrium M1(ϕ1(0), 0) is a saddle point on the phase plane (ỹ(1), z̃(1)). Let
the steady manifold be 	1 : z̃(1) = –�1(ỹ(1)). Under the condition that the line ỹ(1) = α(0)
intersects with 	1, the solution of problem (2.8), (2.9) exists.

For �kx(τ0), we have the following system:

d�ky
dτ0

= �kz,
d�kz
dτ0

= F̃y�ky + Gk(τ0); (2.11)

�ky(0) = –ȳ(1)
k (0), �ky(+∞) = 0, (2.12)

where F̃y gets its value at the point (ϕ1(0) + �0y,α(–σ ), 0). Gk(τ ) are functions formed by
x̄i(t), �ix(τ0) (i = 0, 1, . . . , k – 1).

According to the Liouville formulas and the constant-change method, we infer that

�ky =
z̃(τ0)
z̃(0)

(
–ȳ(1)

k (0)
)

+ z̃(τ0)
∫ τ0

0

1
z̃2(η)

∫ η

+∞
z̃(s)Gk(s) ds dη. (2.13)

Thus, �kx(τ0) are completely determined. The exponential decay of �kx(τ0) can easily be
obtained from (2.13).
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For Q(–)
0 x(τ∗), we have

dQ(–)
0 y

dτ∗
= Q(–)

0 z,
dQ(–)

0 z
dτ∗

= F
(
ϕ1(t0) + Q(–)

0 y,α(t0 – σ ), t0
)
; (2.14)

Q(–)
0 y(0) = ϕ2(t0) – ϕ1(t0), Q(–)

0 y(–∞) = 0. (2.15)

Let ϕ1(t0) + Q(–)
0 y = ỹ(2), (ỹ(2))′ = z̃(2), and we get

dỹ(2)

dτ∗
= z̃(2),

dz̃(2)

dτ∗
= F

(
ỹ(2),α(t0 – σ ), t0

)
; (2.16)

ỹ(2)(0) = ϕ2(t0), ỹ(2)(–∞) = ϕ1(t0). (2.17)

Integrating (2.16), we get

z̃(2) = ±√
2
(∫ ỹ(2)

ϕ1(t0)
F
(
y,α(t0 – σ ), t0

)
dy

) 1
2
� ±�2

(
ỹ(2)). (2.18)

By (H2), the equilibrium M2(ϕ1(t0), 0) is a saddle point on the phase plane (ỹ(2), z̃(2)). Let
the steady manifold be 	2 : z̃(2) = �2(ỹ(2)). Under the condition that the line ỹ(2) = φ2(t0)
intersects with 	2, the solution of problem (2.16), (2.17) exists.

For Q(–)
k x(τ∗), we have the following system:

dQ(–)
k y

dτ∗
= Q(–)

k z,
dQ(–)

k z
dτ∗

= F̃ (1)
y Q(–)

k y + G(1)
k (τ∗); (2.19)

Q(–)
k y(0) =

(
φ′

2(t0) – φ′
1(t0)

)
tk + q(–)

k (t0, t1, . . . , tk–1), Q(–)
k y(+∞) = 0, (2.20)

where F̃ (1)
y gets its value at the point (ϕ1(t0) + Q(–)

0 y,α(t0 – σ ), t0). G(1)
k (τ∗) are functions

compound formed by x̄i(t), Q(–)
i x(τ0) (i = 0, 1, . . . , k – 1).

Similar to (2.11), the solution of (2.19), (2.20) is

Q(–)
k y =

z̃(2)(τ∗)
z̃(2)(0)

((
φ′

2(t0) – φ′
1(t0)

)
tk + q(–)

k
)

+ z̃(2)(τ∗)
∫ τ∗

0

1
z̃2(η)

∫ η

–∞
z̃(2)(s)G(1)

k (s) ds dη. (2.21)

Thus, Q(–)
k x(τ∗) are completely determined.

For Q(+)
0 x(τ∗), we have

dQ(+)
0 y

dτ∗
= Q(+)

0 z,
dQ(+)

0 z
dτ∗

= F
(
ϕ3(t0) + Q(+)

0 y,α(t0 – σ ), t0
)
; (2.22)

Q(+)
0 y(0) = ϕ2(t0) – ϕ3(t0), Q(+)

0 y(+∞) = 0. (2.23)

Let ϕ3(t0) + Q(+)
0 y = ỹ(3), (ỹ(3))′ = z̃(3), and we get

dỹ(3)

dτ∗
= z̃(3),

dz̃(3)

dτ∗
= F

(
ỹ(3),α(t0 – σ ), 0

)
; (2.24)
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ỹ(3)(0) = ϕ2(t0), ỹ(3)(+∞) = ϕ3(t0). (2.25)

Integrating (2.24), we have

z̃(3) = ±√
2
(∫ ỹ(3)

ϕ3(t0)
F
(
y,α(t0 – σ ), 0

)
dy

) 1
2
�±�3

(
ỹ(3)). (2.26)

By (H2), the equilibrium M3(ϕ3(t0), 0) is a saddle point on the phase plane (ỹ(3), z̃(3)). Let
the steady manifold be 	3 : z̃(3) = –�3(ỹ(3)). Under the condition that the line ỹ(3) = ϕ2(t0)
intersects with 	3, the solution of problem (2.24), (2.25) exists.

For Q(+)
k x(τ∗), we have the following system:

dQ(+)
k y

dτ∗
= Q(+)

k z,
dQ(+)

k z
dτ∗

= F̃ (2)
y Q(+)

k y + G(2)
k (τ∗); (2.27)

Q(+)
k y(0) =

(
φ′

2(t0) – φ′
3(t0)

)
tk + q(+)

k (t0, t1, . . . , tk–1), Q(+)
k y(+∞) = 0, (2.28)

where F̃ (2)
y gets its value at the point (ϕ3(t0) + Q(+)

0 y,α(t0 – σ ), t0). G(2)
k (τ∗) are functions

compound formed by x̄(2)
i (t), Q(+)

i x(τ∗) (i = 0, 1, . . . , k – 1).
Similarly, according to the Liouville formulas and the constant-change method, we get

the solution of (2.27), (2.28):

Q(+)
k y =

z̃(3)(τ∗)
z̃(3)(0)

((
φ′

2(t0) – φ′
3(t0)

)
tk + q(+)

k
)

+ z̃(3)(τ∗)
∫ τ∗

0

1
z̃(3)(η)

∫ η

+∞
z̃(3)(s)G(2)

k (s) ds dη. (2.29)

Thus, Q(+)
k x(τ∗) are completely determined. The exponential decay of Q(+)

k x(τ∗) can easily
be obtained from (2.29).

Specially, at the point t = σ , we set

y(σ ,μ) = p(μ) = p0 + μp1 + μ2p2 + · · · + μkpk + · · · ,

where pk (k = 0, 1, . . .) are unknown constants determined by the smooth connection at
t = σ .

Q̄(–)
0 x(τσ ) are determined by the following system:

dQ̄(–)
0 y

dτσ

= Q̄(–)
0 z,

dQ̄(–)
0 z

dτσ

= F
(
ϕ3(σ ) + Q̄(–)

0 y,α(0),σ
)
; (2.30)

Q̄(–)
0 y(0) = p0 – ϕ3(σ ), Q̄(–)

0 y(–∞) = 0. (2.31)

Let ϕ3(σ ) + Q̄(–)
0 y(τσ ) = ỹ(4), Q̄(–)

0 z(τσ ) = z̃(4), and we get

dỹ(4)

dτσ

= z̃(4),
dz̃(4)

dτσ

= F
(
ỹ(4),α(0),σ

)
; (2.32)

ỹ(4)(0) = p0, ỹ(4)(–∞) = ϕ3(σ ). (2.33)



Xu and Wang Advances in Difference Equations        (2020) 2020:561 Page 6 of 12

Integrating (2.32), we get

z̃(4) = ±√
2
(∫ ỹ(4)

ϕ3(σ )
F
(
y,α(0),σ

)
dy

) 1
2
� ±�4

(
ỹ(4)).

By the virtue of condition (H2), the equilibrium (ϕ3(σ ), 0) is a saddle point on the phase
plane (ỹ(4), z̃(4)). So passing through (ϕ3(σ ), 0) there exists a steady manifold 	4 : z̃(4) =
�4(ỹ(4)). Under the condition that the line ỹ(4)(0) = p0 intersects with the manifold 	4,
the solution of system (2.32), (2.33) exists.

Q̄(–)
k x(τσ ) are determined by the following system:

dQ̄(–)
k y

dτσ

= Q̄(–)
k z,

dQ̄(–)
k z

dτσ

= F̃ (3)
y Q̄(–)

k y + G(3)
k (τσ ); (2.34)

Q̄(–)
k y(0) = Pk – ȳ(2)

k (σ ), Q̄(–)
k y(–∞) = 0, (2.35)

where F̃ (3)
z , F̃ (3)

y get their values at (ϕ3(σ )+Q̄(3)
0 y,α(0),σ ). G(3)

k (τσ ) are determined functions.
In fact, the homogeneous system, corresponding to (2.34),

dQ̄(–)
k y

dτσ

= Q̄(–)
k z,

dQ̄(–)
k z

dτσ

= F̃ (3)
y Q̄(–)

k y (2.36)

is the variational equation of (2.30). Under the boundary condition Q̄(–)
k y(0) = pk – ȳ(2)

k (σ ),
Q̄(–)

k y(–∞) = 0, we get

{
(Q̄(–)

k y(τσ ))G = (pk – ȳk(σ ))�1(τσ )�–1
1 (0),

(Q̄(–)
k z(τσ ))G = d�4(ỹ(4))

dỹ(4) (pk – ȳk(σ ))�1(τσ )�–1
1 (0).

(2.37)

Next, let Q̄(–)
k y∗, Q̄(–)

k z∗ be the particular solution of (2.34). Introducing a new transforma-
tion

Q̄(–)
k y∗ = δ1, Q̄(–)

k z∗ =
d�4(ỹ(4))

dỹ(4) Q̄(–)
k y∗ + δ2

and substituting it into (2.34), we get

⎧
⎨

⎩

dδ1
dτσ

= d�4(ỹ(4))
dỹ(4) δ1 + δ2,

dδ2
dτσ

= ( d�4(ỹ(4))
dỹ(4) )δ2 + G(3)

k (τσ ).

Let δ2 = C�2(τσ ) be the general solution of dδ2
dτσ

= ( d�4(ỹ(4))
dỹ(4) )δ2, then we get a particular

solution

δ2 =
∫ τσ

–∞
�2(τσ )�–1

2 (s)G(3)
k (s) ds,

of dδ2
dτσ

= ( d�4(ỹ(4))
dỹ(4) )δ2 + G(3)

k (τσ ). Furthermore, we have

δ1 =
∫ τσ

0
�1(τσ )�–1

1 (s)
[∫ s

–∞
�2(s)�–1

2 (p)G(3)
k (p) dp

]
ds.
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So, we have
{

Q̄(–)
k y∗(τσ ) =

∫ τσ
0 �1(τσ )�–1

1 (s)[
∫ s

–∞ �2(s)�–1
2 (p)G(3)

k (p) dp] ds,
Q̄(–)

k z∗(τσ ) = d�4(ỹ4)
dỹ4 · Q̄(–)

k y∗(τσ ) +
∫ τσ

–∞ �2(τσ )�–1
2 (s)G(3)

k (s) ds.

Thus, we obtain
{

Q̄(–)
k y(τσ ) = (pk – ȳk(σ ))�1(τσ )�–1

1 (0) + Q̄(–)
k y∗(τσ ),

Q̄(–)
k z(τσ ) = d�4(ỹ4)

dỹ4 (pk – ȳk(σ ))�1(τσ )�–1
1 (0) + Q̄(–)

k z∗(τσ ).
(2.38)

Now, Q̄(–)
k x(τσ ) are all completely determined, but they contain the unknown numbers

pk . Obviously, the estimation about exponential decay of Q̄(–)
k x(τσ ) can easily be obtained

from (2.38).
Due to the deviation of arguments, the equations determining Q̄(+)

k x(τσ ) will be relevant
to �jy(τ0), 0 ≤ j ≤ k. Namely,

⎧
⎨

⎩

dQ̄(+)
0 y

dτσ
= Q̄(+)

0 z,
dQ̄(+)

0 z
dτσ

= F(ψ1(σ ) + Q̄(+)
0 y,ϕ1(0) + �0y(τσ ),σ );

Q̄(+)
0 y(0) = p0 – ψ1(σ ), Q̄(+)

0 y(+∞) = 0.

Let ψ1(σ ) + Q̄(+)
0 y(τσ ) = ỹ(5), Q̄(+)

0 z(τσ ) = z̃(5), we have

dỹ(5)

dτσ

= z̃(5),
dz̃(5)

dτσ

= F
(
ỹ(5),ϕ1(0) + �0y(τσ ),σ

)
; (2.39)

ỹ(5)(0) = p0, ỹ(5)(+∞) = ψ1(σ ). (2.40)

Combining (2.8), (2.9) with (2.39), (2.40), we have a coupled system:
⎧
⎨

⎩

dỹ(5)

dτσ
= z̃(5), dz̃(5)

dτσ
= F(ỹ(5), ỹ(1),σ );

dỹ(1)

dτ0
= z̃(1), dz̃(1)

dτ0
= F(ỹ(1),α(–σ ), 0);

ỹ(1)(0) = α(0), ỹ(1)(+∞) = ϕ1(0), ỹ(5)(0) = p0, ỹ(5)(+∞) = ψ1(σ ).

Here, the phase space (ỹ(5), z̃(5), ỹ(1), z̃(1)) is the direct sum of (ỹ(5), z̃(5)) and (ỹ(1), z̃(1)). The
equilibrium M(ψ1(σ ), 0,ϕ1(0), 0) is a hyperbolic saddle point because the characteristic
equation at M(ψ1(σ ), 0,ϕ1(0), 0) is

[
λ2 – Fỹ(5)

][
λ2 – Fỹ(1)

]
= 0

and its eigenvalues satisfy

λ1λ2 = –Fỹ(5) < 0, λ3λ4 = –Fỹ(1) < 0.

Thus, going through equilibrium M there exist a two-dimensional stable submanifold
W s(M) and a two-dimensional unstable submanifold W u(M). Set

W s(M) : Z = �̄(Y ),
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where Y = (ỹ(5), ỹ(1))T , Z = (z̃(5), z̃(1))T , �̄ = (�1,�5)T . Obviously, the projection of W s(M)
on the phase plane (ỹ(1), z̃(1)) is 	1. Namely, (W s(M))⊥(ỹ(1),z̃(1)) = 	1. Set

(
W s(M)

)⊥
(ỹ(5),z̃(5)) = 	5,

then

z̃(5) = �5
(
ỹ(5), ỹ(1)).

Under the condition that the plane ỹ(5)(0) = p0 intersects with the steady submanifold 	5

in the phase space, the solution of (2.39), (2.40) exists.
Q̄(+)

k x(τσ ) are determined by the following system:

dQ̄(+)
k y

dτσ

= Q̄(+)
k z,

dQ̄(+)
k z

dτσ

= F̃ (4)
y Q̄(+)

k y + G(4)
k (τσ );

Q̄(+)
k y(0) = Pk – ȳ(3)

k (σ ), Q̄(+)
k y(+∞) = 0,

where F̃ (+)
z , F̃ (+)

y take their values at (ψ1(σ ) + Q̄(+)
0 y,ϕ1(0) + �0y,σ ). H (+)

k (τσ ) are determined
functions.

In a similar manner, for solving Q̄(–)
k x(τσ ), we can obtain

{
Q̄(+)

k y(τσ ) = (pk – ȳ(3)
k (σ ))�3(τσ )�–1

3 (0) + Q̄(+)
k y∗(τσ ),

Q̄(+)
k z(τσ ) = d�5(ỹ5)

dỹ5 (pk – ȳ(3)
k (σ ))�3(τσ )�–1

3 (0) + Q̄(+)
k z∗(τσ ),

where

Q̄(+)
k y∗(τσ ) =

∫ τσ

0
�3(τσ )�–1

3 (s)
[∫ s

+∞
�4(s)�–1

4 (p)G(4)
k (p) dp

]
ds

and

Q̄(+)
k z∗(τσ ) =

d�5(ỹ5)
dỹ5 · Q̄(+)

k y∗(τσ ) +
∫ τσ

+∞
�4(τσ )�–1

4 (s)G(4)
k (s) ds.

Thus, Q̄(+)
k x(τσ ) are completely determined.

Lemma Under conditions (H1), (H2), (H3),

�kx(τ0), Q(±)
k x(τ∗), Q̄(±)

k x(τσ ) (k ≥ 0)

all satisfy exponential decay.

For boundary functions Rkx(τT ) (k ≥ 0), they have no essential influence on the interior
layer and the solving method of them completely coincides with �kx(τ0) (k ≥ 0). We will
not discuss them in detail.
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3 The smooth connection of the asymptotic solution
In order to get a smooth solution in [0, T], y(1)(t,μ) and y(2)(t,μ) must join smoothly at
t = t∗, at the same time, y(2)(t,μ) and y(3)(t,μ) join smoothly at t = σ . Namely,

d
dt

y(1)(t∗,μ) =
d
dt

y(2)(t∗,μ), (3.1)

d
dt

y(2)(σ ,μ) =
d
dt

y(3)(σ ,μ). (3.2)

Substituting (2.3), (2.4) and (2.5) into (3.1), (3.2) respectively, we get a series of equations:

d
dτ

Q(–)
0 y(0) =

d
dτ

Q(+)
0 y(0), (3.3)

ϕ′
1(t0) +

d
dτ

Q(–)
1 y(0) = ϕ′

3(t0) +
d

dτ
Q(+)

1 y(0), (3.4)

...

(
ȳ(1)

k–1
)′(t0) +

d
dτ

Q(–)
k y(0) =

(
ȳ(2)

k–1
)′(t0) +

d
dτ

Q(+)
k y(0) (3.5)

and

d
dτ

Q̄(–)
0 y(0) =

d
dτ

Q̄(+)
0 y(0), (3.6)

ϕ′
3(σ ) +

d
dτ

Q̄(–)
1 y(0) = ψ ′

1(σ ) +
d

dτ
Q̄(+)

1 y(0), (3.7)

...

(
ȳ(2)

k–1
)′(σ ) +

d
dτ

Q̄(–)
k y(0) =

(
ȳ(3)

k–1
)′(σ ) +

d
dτ

Q̄(+)
k y(0). (3.8)

Substituting (2.8), (2.26) into (3.3), we have

∫ ϕ2(t0)

ϕ1(t0)
F
(
y,α(t0 – σ ), t0

)
dy =

∫ ϕ2(t0)

ϕ3(t0)
F
(
y,α(t0 – σ ), t0

)
dy,

that is,

H(t0) ≡
∫ ϕ3(t0)

ϕ1(t0)
F
(
y,α(t0 – σ ), t0

)
dy = 0, (3.9)

which is the equation for finding t0.
(H4) Suppose that (3.9) is solvable for t0 (0 < t0 < σ ), and d

dt H(t0) = 0.
Therefore, Q(∓)

0 y(τ ) exists. By (3.5), the equation to determine tk is

H ′(t0)tk = Pk , (3.10)

where Pk are known constants. Thus Q±
k x(τ∗) are all completely determined.

In the following, we will seek the value of pk . Let

G(p0) = z̃(4)(0, p0) – z̃(5)(0, p0) = �4(p0) – �5
(
p0,α(0)

)
. (3.11)
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(H5) Suppose that there exists a solution p0 = p̄0 for (3.11) that satisfies dG
dp0

|p0=p̄0 < 0.
For pk , by virtue of (2.38) and (3.8), we have

(
d�4(p0)

dp0
–

d�5(p0)
dp0

)
pk

=
((

ȳ(3)
k–1(σ )

)′ –
(
ȳ(2)

k–1(σ )
)′) –

d�5(p0)
dp0

(
ȳ(3)

k–1(σ )
)

+
d�4(p0)

dp0

(
ȳ(2)

k–1(σ )
)

–
∫ 0

–∞
�2(0)�–1

2 (s)G(3)
k (s) ds +

∫ 0

+∞
�4(0)�–1

4 (s)G(4)
k (s) ds.

By (H5), the coefficient of pk is not equal to zero , so pk is determined. Thus Q̄(±)
k x(τσ )

are all completely determined.

4 The existence of the complex solution
In this section, using the method of sewing connection, we prove the existence of the solu-
tion about problem (2.1), (1.2) and give out the estimates of the remainder. The solution of
(2.1), (1.2) may be considered as a solution which is smoothly connected by the solutions
of the following auxiliary problems.

The left problem (0 ≤ t ≤ t∗):

μ2(y(1))′′ = F
(
y(1)(t),α(t – σ ), t

)
, (4.1)

y(1)(0,μ) = α(0), y(1)(t∗,μ) = φ2(t∗). (4.2)

The middle problem (t∗ ≤ t ≤ σ ):

μ2(y(2))′′ = F
(
y(2)(t),α(t – σ ), t

)
, (4.3)

y(2)(t∗,μ) = φ2(t∗), y(2)(σ ,μ) = p̄(μ), (4.4)

where p̄(μ) = p0 + μ(p1 + δ). Here, we do not expand the parameter t∗. δ is a parameter.
The right problem (σ ≤ t ≤ T ):

μ2(y(3))′′ = F
(
y(3)(t), y(1)(t – σ ,μ), t

)
, (4.5)

y(3)(σ ,μ) = p̄(μ), y(3)(T ,μ) = yT , (4.6)

where p̄(μ) = p0 + μ(p1 + δ).
The problems (4.1), (4.2), (4.3), (4.4), and (4.5), (4.6) are all boundary layer problems, so

their solutions exist and have the following form:

y(1)(t,μ) = ϕ1(t) + �0y(τ0) + Q(–)
0 y(τ∗) + O(μ), (4.7)

y(2)(t,μ) = ϕ3(t) + Q(+)
0 y(τ∗) + Q̄(–)

0 y(τσ ) + O(μ), (4.8)

y(3)(t,μ) = ψ1(t) + Q̄(+)
0 y(τσ ) + R0y(τT ) + O(μ). (4.9)

Considering (4.2) and (4.4), we see

y(1)(t∗,μ) = y(2)(t∗,μ), t∗ ∈ (0, 1), (4.10)
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which implies that y(t,μ) is continuous at t = t∗. Therefore, t∗ can be determined by the
following formula:

z(1)(t∗,μ) = z(2)(t∗,μ). (4.11)

It yields

�(t∗) = H(t∗) + O(μ) = H(t0) +
d
dt

H(t0)(t∗ – t0) + O
(
(t∗ – t0)2) + O(μ), (4.12)

where t0 is known by (3.9). Let t∗ = t0 ± kμ and put it into (4.12), we obtain

�(t0 ± kμ) = ±kμ
d
dt

H(t0) + O(μ). (4.13)

Let k in (4.13) be sufficiently large and select μ sufficiently small, then the symbols of the
right-hand side of (4.13) are different. By virtue of the intermediate value theorem, there
exists t̄∗ ∈ (t0 – kμ, t0 + kμ) such that �(t̄∗) = 0. So (4.11) holds, and t̄∗ = t0 + O(μ).

From (4.4), (4.6) we know that y(2)(t,μ), y(3)(t,μ) are continuous at t = σ . For their
smooth connection, d

dt y(2)(σ ,μ) = d
dt y(3)(σ ,μ) is necessary.

Let W (p̄,μ) = d
dt y(2)(σ ,μ) – d

dt y(3)(σ ,μ). Considering the smooth condition (3.6), (3.7),
we have

W (p̄,μ) = μ

[(
ȳ(2)

1 (σ )
)′ –

(
ȳ(3)

1 (σ )
)′ +

d
dτ

Q̄(–)
1 y(0) –

d
dτ

Q̄(+)
1 y(0)

]
+ o(μ)

= μδ
dG
dp0

∣
∣∣∣
p0=p̄0

+ o(μ).

When μ is sufficiently small and δ has different sign, G(p̄,μ) also has different sign.
By virtue of the intermediate value theorem, there exists p̄∗ ∈ [p1 – δ, p1 + δ] such that
G(p̄∗,μ) = 0.

We write the results in the following theorem.

Theory 1 Under conditions (H4)–(H5), the smooth solution y(t,μ) of (1.1), (1.2) exists in
the interval [0, T]. The zeroth asymptotic expansion of (1.1), (1.2) is

y(t,μ) =

⎧
⎪⎨

⎪⎩

ϕ1(t) + �0y(τ0) + Q(–)
0 y(τ∗) + O(μ), 0 ≤ t ≤ t∗,

ϕ3(t) + Q(+)
0 y(τ∗) + Q̄(–)

0 y(τσ ) + O(μ), t∗ ≤ t ≤ σ ,
ψ1(t) + Q̄(+)

0 y(τσ ) + R0y(τT ) + O(μ), σ ≤ t ≤ T .

Similarly, we can obtain the higher order asymptotic expansion.
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