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Abstract
In this paper, a mathematical model for COVID-19 that involves contact tracing is
studied. The contact tracing-induced reproduction numberRq and equilibrium for the
model are determined and stabilities are examined. The global stabilities results are
achieved by constructing Lyapunov functions. The contact tracing-induced
reproduction numberRq is compared with the basic reproduction numberR0 for
the model in the absence of any intervention to assess the possible benefits of the
contact tracing strategy.
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1 Introduction
The coronavirus belongs to a large family of viruses that can cause several diseases for
humans such as common cold and SARS. Recently, in December 2019, the World Health
Organization was alerted to several causes of pneumonia in Wuhan, China. Furthermore,
it has been proved that this new infection is caused by a new virus from the coronavirus
family called COVID-19. From then on, this disease has become a serious health problem.
Confirmed cases have been reported in more than 210 countries. This disease is transmit-
ted by having a contact with an infected person through droplets when a person coughs or
sneezes. Symptoms of COVID-19 are similar to those of SARS-Cov and MERS-Cov and
typically dry cough, fever, fatigue, breathing difficulty [1]. Due to the lack of specific anti-
COVID-19 therapeutic treatment and effective vaccine, some interventions have been im-
plemented by many countries to prevent and control the disease. Among these interven-
tions, we have travel restrictions and massive quarantine. Contact tracing is also one of
the implemented measure that consists to keep track of people who had direct contact
with the COVID-19 patients. Contacts are monitored for signs of illness within 14 days.
In the case of apparition of the symptoms related to the disease, they are isolated, tested
and hospitalized. Several mathematical models related to the COVID-19 epidemic have
been studied (see [2–18]). In [18], Imai et al. conducted computational modeling to estab-
lish the size of the disease outbreak in Wuhan. They show that control measures need to
block well over 60% of transmission to be effective in containing disease outbreak. Tang
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et al. [5] established that intensive contact tracing followed by quarantine and isolation
can effectively reduce the transmission risk of COVID-19. Thus, it becomes important
for health authorities to know the contact tracing coverage rate that could be required for
the disease control or elimination.

In the present paper, we propose a complete mathematical analysis of a COVID-19
model that includes contact tracing measures. A stability analysis is performed to study
the epidemiological consequences of this control strategy. Specifically, we propose to de-
termine the threshold parameter that measure initial disease transmission and to analyze
the steady state stability. This basic reproduction number is used to compute the potential
impact of contact tracing on the spread of COVID-19.

2 Model and preliminary results
We proposed a model that describes the transmission dynamics of COVID-19. Based on
the information about the disease progression, we subdivided the human population into
five compartments, namely, the susceptible population (S), the infectious without symp-
toms or exposed population (E), the quarantined exposed population (Eq), the infectious
with symptoms or infected population (I) and the recovered population (R). New indi-
vidual enter into susceptible population according to rate �. A susceptible human has a
contact with an exposed or an infected human at rate k. When this contact happens, the
probability that this susceptible gets infection from an exposed or infected human is pes

and pis, respectively. Furthermore, we assume that contact tracing is implemented by the
health authorities. Beyond these investigations a proportion of q of individuals exposed
to the virus is quarantined and the remain proportion 1 – q is missed from the contact
tracing. μ design the human natural death rate, α is the disease-induced death rate, σ –1

is the incubation period between the infection and the onset of symptoms and γ is the
rate of recovery from infection. The dynamics of the different populations is given by the
following system of differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = � – kpesSE – kpisSI – μS,
dE
dt = (1 – q)kpesSE + (1 – q)kpisSI – (μ + σ )E,
dI
dt = σE – (μ + γ + α)I,
dEq
dt = qkpesSE + qkpisSI – μEq,

dR
dt = γ I – μR.

(1)

Since the recovered human population R does not appear in the remaining equations of
system (1), it is then sufficient to consider the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS
dt = � – kpesSE – kpisSI – μS,
dE
dt = (1 – q)kpesSE + (1 – q)kpisSI – (μ + σ )E,
dI
dt = σE – (μ + γ + α)I,
dEq
dt = qkpesSE + qkpisSI – μEq,

(2)

with initial conditions

(
S(0), E(0), I(0), Eq(0)

) ∈ R4
+.
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By considering the system on the faces of R4
+, we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS
dt |S=0 = � ≥ 0,
dE
dt |E=0 = (1 – q)kpisSI ≥ 0,
dI
dt |I=0 = σE ≥ 0,
dEq
dt |Eq=0 = qkpisSI ≥ 0.

Thus, Proposition 2.1 of [19] implies that each solution of (2) remains in R4
+.

Further, we denote by N = S + E + I + Eq the human total population. Thus, it follows
that

dN
dt

≤ � – μN ,

that is,

lim sup
t→∞

N ≤ �

μ
, (3)

which shows that all solutions of (2) are bounded.
Thus, the suitable region for system (2) is

D =
{

(S, E, I, Eq) ∈ R4
+ : N ≤ �

μ

}

.

It can be verified that the compact region D is positively invariant and attracting under
the flow described by (2).

For the rest of the paper, we will study the dynamics of model (2) in D.

Proposition 2.1 For every initial value in R4
+, solutions of system (2) exist for all time t > 0.

Proof Since the right-hand side of system (2) is locally Lipschitz, the local existence fol-
lows. Since D is positively invariant and attracting, all solutions of (2) are bounded, which
gives us the global existence. This completes the proof. �

3 Stability of the disease-free equilibrium
By direct calculation we show that model (2) has a disease-free equilibrium given by

E0 =
(
S0, E0, I0, E0

q
)

=
(

�

μ
, 0, 0, 0

)

.

The new infection matrix F and the transition matrix V are given by

F =

(
(1 – q)kpes

�
μ

(1 – q)kpis
�
μ

0 0

)

, V =

(
μ + σ 0

–σ μ + γ + α

)

.

The contact tracing-induced reproduction number Rq of model (2) is then defined as the
spectral radius of the next generation matrix FV –1 (see [20]), that is,

Rq = ρ
(
FV –1) =

k�(1 – q)
μ(σ + μ)

(

pes +
σpis

μ + γ + α

)

.

The local stability result is stated as follows.
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Theorem 3.1 If Rq ≤ 1, the disease-free equilibrium E0 is locally asymptotically stable.

Proof Let Rq ≤ 1. It is sufficient to prove that the eigenvalues of Jacobian matrix of system
(2) evaluated at E0 have negative real parts.

Direct calculation shows that these eigenvalues are solutions of the equation

(λ + μ)2(λ + α + γ + μ)Q(λ) = 0,

where

Q(λ) =
(

λ + μ + σ –
(1 – q)kpes�

μ

)

(λ + γ + α + μ) –
σ (1 – q)kpis�

μ
.

Clearly the proof will be achieved if the roots of Q(λ) have negative real parts. By contra-
diction, let assume that at least one root of Q(λ) denoted by λ0 has a positive real part.
Then

(

λ0 + μ + σ –
(1 – q)kpes�

μ

)

(λ0 + γ + α + μ) =
σ (1 – q)kpIS�

μ
.

By applying the absolute value it follows that

∣
∣
∣
∣

(

λ0 + μ + σ –
(1 – q)kpes�

μ

)

(λ0 + γ + α + μ)
∣
∣
∣
∣ =

σ (1 – q)kpis�

μ

> (γ + α + μ)

×
∣
∣
∣
∣μ + σ –

(1 – q)kpes�

μ

∣
∣
∣
∣.

Thus,

σ (1 – q)kpis�

μ(μ + γ + α)
>

∣
∣
∣
∣μ + σ –

(1 – q)kpes�

μ

∣
∣
∣
∣ > μ + σ –

(1 – q)kpes�

μ
.

This yields

σ (1 – q)kpis�

μ(μ + γ + α)
+

(1 – q)kpes�

μ
> μ + σ .

So, we have

Rq =
σ (1 – q)kpis�

μ(μ + σ )(γ + α + μ)
+

(1 – q)kpes�

μ(μ + σ )
> 1,

which is a contradiction. Hence, E0 is locally asymptotically stable. This completes the
proof. �

What follows now states the global behavior result of disease-free equilibrium.

Theorem 3.2 The disease-free equilibrium E0 is globally asymptotically stable inD ifRq <
1 and unstable if Rq > 1.



Traoré and Konané Advances in Difference Equations        (2020) 2020:509 Page 5 of 12

Proof Set X = (E, I)T and u = ((1 – q)kpes, (1 – q)kpis).
We can verify that

dX
dt

≤ (F – V )X,

where F and V are given at the beginning of this section.
By doing some algebraic computation, it then follows that

ρ
(
V –1F

)
= ρ

(
FV –1) = Rq

and

uV –1F = Rqu.

Thus, u is a left eigenvector associated with the eigenvalue Rq of the matrix V –1F .
We now consider the following Lyapunov function

L = uV –1X.

Taking the differentiation of L with respect to t, we obtain

dL
dt

= uV –1 dX
dt

.

Thus,

dL
dt

≤ uV –1(F – V )X = u(Rq – 1)X.

If Rq < 1, the equality dL
dt = 0 implies that uX = 0. This leads to E = I = 0 by noting that all

components of u are positive. Hence, when Rq < 1, setting the right-hand side of (2) equal
to zero and replacing E and I by 0 yields S = S0 = �

μ
, and Eq = E = I = 0. The invariant set on

which dL
dt = 0 contains only the singleton {E0}. Therefore, by LaSalle’s invariant principle

(see [21]), E0 is globally asymptotically stable in D.
If Rq > 1, then it follows from the continuity of the vector fields that dL

dt > 0 in a neigh-
borhood of the interior of D. Thus, E0 is unstable by the Lyapunov stability theory. This
completes the proof. �

4 Global stability of the endemic equilibrium
Direct calculation shows that model (2) have a positive endemic equilibrium E∗ =
(S∗, E∗, I∗, E∗

q) when Rq > 1, where

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

S∗ = (σ+μ)(μ+γ +α)
k(1–q)(pes(μ+γ +α)+pisσ ) ,

E∗ = μ2(μ+γ +α)(Rq–1)
kpisσ+kμpes(μ+γ +α) ,

I∗ = σμ2(Rq–1)
kpisσ+kμpes(μ+γ +α) ,

E∗
q = q(σ+μ)

(1–q) × μ(μ+γ +α)(Rq–1)
kpisσ+kμpes(μ+γ +α) .

(4)
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Theorem 4.1 If Rq > 1, the endemic equilibrium E∗ is globally asymptotically stable.

Proof Setting the right-hand side of (2) equal to 0 at E∗ yields

� = kpesS∗E∗ + kpisS∗I∗ + μS∗, (5)

μ + σ = (1 – q)
kpesS∗E∗ + kpisS∗I∗

E∗ , (6)

μ =
qkpesS∗E∗ + qkpisS∗I∗

E∗
q

, (7)

μ + γ + α =
σE∗

I∗ . (8)

Let f be a function defined by f : R∗
+ → R+, f (x) = x – 1 – ln x.

The function f has a strict global minimum f (1) = 0.
Furthermore, we set G(y) =

∫ y
y∗

x–y∗
x dx for y > 0, where y∗ > 0, and y can be replaced by

S, E, I or Eq.
We define the Lyapunov function V by

V = c1G(S) + c2G(E) + c3G(Eq) + c4G(I),

where

c1 =
1

kpesS∗E∗ + kpisS∗I∗ , c2 =
1

(1 – q)c1
, c3 =

1
qc1

, c4 =
kpisS∗I∗

σE∗ .

Clearly V is non-negative and strictly minimized at the endemic equilibrium E∗. To avoid
long expression, the derivatives of G(S), G(E), G(Eq) and G(I) with respect to t will be
calculated separately and combined to get that of V .

We compute dG(S)
dt as follows:

dG(S)
dt

=
(

1 –
S∗

S

)
dS
dt

=
(

1 –
S∗

S

)

(� – kpesSE – kpisSI – μS). (9)

We replace � in (9) by using Eq. (5) to obtain

dG(S)
dt

=
(

1 –
S∗

S

)
(
kpesS∗E∗ + kpisS∗I∗ + μS∗ – kpesSE – kpisSI – μS

)

=
(

1 –
S∗

S

)(

kpesS∗E∗
(

1 –
S
S∗

E
E∗

)

+ kpisS∗I∗
(

1 –
S
S∗

I
I∗

)

+ μS∗
(

1 –
S
S∗

))

= –μ
(S – S∗)2

S
+ kpesS∗E∗

(

1 –
S∗

S
–

S
S∗

E
E∗ +

E
E∗

)

+ kpisS∗I∗
(

1 –
S∗

S
–

S
S∗

I
I∗ +

I
I∗

)
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= –μ
(S – S∗)2

S
+ kpesS∗E∗

(

f
(

E
E∗

)

– f
(

S∗

S

)

– f
(

S
S∗

E
E∗

))

+ kpisS∗I∗
(

f
(

I
I∗

)

– f
(

S∗

S

)

– f
(

S
S∗

I
I∗

))

. (10)

The derivative dG(E)
dt is given by

dG(E)
dt

=
(

1 –
E∗

E

)
dE
dt

=
(

1 –
E∗

E

)
(
(1 – q)kpesSE + (1 – q)kpisSI – (μ + σ )E

)
. (11)

Replacing μ + σ in (11) by using (6), we get

dG(E)
dt

=
(

1 –
E∗

E

)(

(1 – q)kpesSE + (1 – q)kpisSI

– (1 – q)k
(
pesS∗E∗ + pisS∗I∗) E

E∗

)

=
(

1 –
E∗

E

)(

(1 – q)kpesS∗E∗
(

S
S∗

E
E∗ –

E
E∗

)

+ (1 – q)kpisS∗I∗
(

S
S∗

I
I∗ –

E
E∗

))

= (1 – q)kpesS∗E∗
(

S
S∗

E
E∗ –

E
E∗ –

S
S∗ + 1

)

+ (1 – q)kpis

(
S
S∗

I
I∗ –

E
E∗ –

E∗

E
S
S∗

I
I∗ + 1

)

= (1 – q)kpesS∗E∗
(

f
(

S
S∗

E
E∗

)

– f
(

E
E∗

)

– f
(

S
S∗

))

+ (1 – q)kpisS∗I∗
(

f
(

S
S∗

I
I∗

)

– f
(

E
E∗

)

– f
(

E∗

E
S
S∗

I
I∗

))

. (12)

dG(Eq)
dt is computed as follows:

dG(Eq)
dt

=
(

1 –
E∗

q

Eq

)
dEq

dt

=
(

1 –
E∗

q

Eq

)

(qkpesSE + qkpisSI – μEq). (13)

In (13), μ is replaced by (7) to obtain

dG(Eq)
dt

=
(

1 –
E∗

q

Eq

)(

qkpesSE + qkpisSI –
qkpesS∗E∗ + qkpisS∗I∗

E∗
q

Eq

)

=
(

1 –
E∗

q

Eq

)(

qkpesS∗E∗
(

S
S∗

E
E∗ –

Eq

E∗
q

)

+ qkpisS∗I∗
(

S
S∗

I
I∗ –

Eq

E∗
q

))

= qkpesS∗E∗
(

S
S∗

E
E∗ –

Eq

E∗
q

–
E∗

q

Eq

S
S∗

E
E∗ + 1

)

+ qkpisS∗I∗
(

S
S∗

I
I∗
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–
Eq

E∗
q

–
E∗

q

Eq

S
S∗

I
I∗ + 1

)

= qkpesS∗E∗
(

f
(

S
S∗

E
E∗

)

– f
(

Eq

E∗
q

)

– f
(E∗

q

Eq

S
S∗

E
E∗

))

+ qkpisS∗I∗
(

f
(

S
S∗

I
I∗

)

– f
(

Eq

E∗
q

)

–
(E∗

q

Eq

S
S∗

I
I∗

))

. (14)

dG(I)
dt is given by

dG(I)
dt

=
(

1 –
I∗

I

)
dI
dt

=
(

1 –
I∗

I

)
(
σE – (μ + γ + α)I

)
. (15)

In (15), μ + γ + α is replaced by (8) to get

dG(I)
dt

=
(

1 –
I∗

I

)(

σE – σE∗ I
I∗

)

= σE∗
(

1 –
I∗

I

)(
E
E∗ –

I
I∗

)

= σE∗
(

E
E∗ –

I
I∗ –

I∗

I
E
E∗

)

= σE∗
(

f
(

E
E∗

)

– f
(

I
I∗

)

– f
(

I∗

I
E
E∗

))

. (16)

By multiplying Eqs. (10), (12), (14) and (16) by the coefficients c1, c2, c3 and c4, respectively,
and after a rearrangement we get

dV
dt

= –
μ(S – S∗)2

S(kpesS∗E∗ + kpisS∗I∗)
–

pesE∗

pesE∗ + pisI∗ f
(

S
S∗

E
E∗

)

–
pisI∗

pesE∗ + pisI∗ f
(

S
S∗

I
I∗

)

–
pesE∗

pesE∗ + pisI∗ f
(

S
S∗

)

–
pisI∗

pesE∗ + pisI∗ f
(

E∗

E
S
S∗

I
I∗

)

– kpisS∗I∗
(

f
(

I
I∗

)

+ f
(

I∗

I
E
E∗

))

–
pesE∗

pesE∗ + pisI∗ f
(E∗

q

Eq

S
S∗

E
E∗

)

–
pisI∗

pesE∗ + pisI∗

(E∗
q

Eq

S
S∗

I
I∗

)

– f
(

S∗

S

)

– f
(

Eq

E∗
q

)

.

That is,

dV
dt

≤ 0.

The equality dV
dt = 0 is fulfilled if and only if (S, E, I, Eq) = (S∗, E∗, I∗, E∗

q). The largest invari-
ant subset of dV

dt = 0 is the singleton {E∗}. Thus, by LaSalle’s invariant principle (see [21]),
E∗ is globally asymptotically stable. This completes the proof. �
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Figure 1 Cumulative confirmed cases for mainland China from January 15, 2020 to February 02, 2020 (see
[22] for the data). Red circles denote the reported cases and solid blue line denotes the simulation result. The
contact tracing-induced reproduction number isRq = 5.63 based on the parameters from Table 1

Table 1 Definition and values of model parameters

Parameters Definition Value Source

� Recruitment rate 271.23 day–1 [23]
k Contact rate 10.582 day–1 [24]
pes Transmission probability from E to S 1.5× 10–14 day–1 [24]
pis Transmission probability from I to S 2.010× 10–8 day–1 [24]
μ Natural death rate 3.01× 10–5 day–1 [23]
q Quarantine proportion of exposed individuals E 10–5 day–1 [24]
1/σ Incubation period 7 days [25]
γ Removal rate 0.33 day–1 [5]
α Disease-induced death rate 0.01 day–1 [23]

Table 2 Definition and initial values of variables of the model

Parameters Definition Initial value Source

S Susceptible population 11,081,000 [5, 26]
E Exposed population 118.552 [24]
I Infected population with symptomatic 20 [24]
Eq Quarantined exposed population 1 [24]

5 Numerical results
5.1 Graphical representation of the model
Numerical simulations are carried out to support the analytical results. Figure 1 shows
the numbers of cumulative confirmed cases in mainland China from January 15, 2020 to
February 02, 2020 (see [22] for the data). The parameters used are presented in Table 1
and the initial condition is given by Table 2. Based on the parameters values, we found
that the contact tracing-induced reproduction number is Rq = 5.63.

Figure 2 is a graphical representation that provide a prediction for S (the susceptible
individuals), E (the exposed individuals), I (the infected individuals) and Eq (the quaran-
tined exposed individuals) using model (2). Results shows that the infection will reach a
peak value for about 40 days and then go down afterwards. The long-term behavior of the
epidemic is determined by the property of the endemic equilibrium of the system, which
is found to be (S∗, E∗, I∗, E∗

q) = (1,599,001, 1561, 656, 74).
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Figure 2 A simulation result for the outbreak size in mainland China using the parameters from Table 1 and
initial values from Table 2

5.2 Effects of contact tracing on the disease control
In this section we explore the effect of contact tracing in the disease transmission. Without
contact tracing measure, the model (2) is reduced to the following system of equations:

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = � – kpesSE – kpisSI – μS,
dE
dt = kpesSE + kpisSI – (μ + σ )E,
dI
dt = σE – (μ + γ + α)I.

(17)

The model (17) has a disease-free equilibrium (�/μ, 0, 0). The new infection matrix F1

and the transition matrix V1 are given by

F1 =

(
kpes

�
μ

kpis
�
μ

0 0

)

, V1 =

(
μ + σ 0

–σ μ + γ + α

)

.

The basic reproduction number R0 of model (17) is then defined as the spectral radius of
the next generation matrix F1V –1

1 (see [20]), that is,

R0 =
k�

μ(σ + μ)

(

pes +
σpis

μ + γ + α

)

.

The basic reproduction number R0 measures the power of a disease to invade a popu-
lation under conditions that facilitate maximal growth.

The contact tracing-induced reproduction number Rq can be rewritten as

Rq = (1 – q)R0.

Note that 1 – q is the factor by which the contact tracing strategy reduces the number
of secondary infections if adopted in a community.

If R0 < 1, COVID-19 cannot develop into an endemic, and contact tracing strategy may
not be necessary. For R0 > 1, we want to know the necessary condition for slowing the
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development of COVID-19. Following Hsu Schmitz [27] we have

�E = R0 – Rq = qR0.

Clearly, if q > 0 then �E > 0.
Differentiating Rq with respect to q yields

∂Rq

∂q
= –R0 < 0.

The conditions �E > 0, ∂Rq
∂q < 0 for slowing down the epidemic are satisfied for 0 < q < 1.

Setting the contact tracing-induced reproduction number Rq = 1 and solving for q gives
the threshold proportion of contact tracing as follows:

qc = 1 – 1/R0.

Contact tracing strategy would succeed in controlling the epidemic (Rq < 1) if q > qc. We
observe that qc is increasing function of R0, thus for a population where R0 is large, a
high value of qc is required to control COVID-19 using the contact tracing strategy. We
conclude that in a population where R0 is large, COVID-19 may not be controlled using
the contact tracing measure alone because the corresponding value of qc required is high
and perhaps unattainable for such populations.

6 Summary and conclusion
We formulated and analyzed a mathematical model for COVID-19 epidemic with contact
tracing. Five sub populations were considered: susceptible, exposed, quarantine exposed,
infected with symptoms and recovered. Mathematical properties of the model are ana-
lyzed.

We computed the contact tracing-induced reproduction number Rq of the model. We
proved that when Rq < 1, the disease-free state E0 is globally asymptotically stable. We
also established that when Rq > 1, the unique endemic equilibrium E∗ is globally asymp-
totically stable.

The analysis of the model illustrates that the contact tracing strategy can reduce the
basic reproduction number R0 (without contact tracing strategy) to values below unity
as intended for disease control, thus one would succeed in controlling the epidemic. The
results obtained in this paper show that effective control of the epidemic can be achieved
when the effectiveness of contact tracing is high, and if R0 is not large. Otherwise in the
population where R0 is large, the epidemic may not be controlled using a contact tracing
strategy alone because the corresponding value qc required is high and perhaps unattain-
able for such populations. Another interesting feature to study would be to see the effects
of various preventive measures. In principle this can be done using the current paper by
considering preventive measures affecting some parameters.
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