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Abstract
In this work, a time-fractional diffusion problem with a time-space dependent
diffusivity is considered. The solution of such a problem has a weak singularity at the
initial time t = 0. Based on the L1 scheme in time on a graded mesh and the
conforming finite element method in space on a uniform mesh, the fully discrete L1
conforming finite element method (L1 FEM) of a time-fractional diffusion problem is
investigated. The error analysis is based on a nonstandard discrete Gronwall
inequality. The final superconvergence result shows that an optimal grading of the
temporal mesh should be selected as r ≥ (2 – α)/α. Numerical results confirm that
our analysis is sharp.
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1 Introduction
During the past few decades, several physical models have been developed in the form of
fractional differential equations. They can be used to modeling certain phenomena in frac-
tal networks, signal processing, turbulent flows, wave propagation, etc. Compared with a
classical integral-order equation, the main advantage of the fractional order equation is
that it provides an excellent instrument for the description of memory and hereditary
properties of various physical models.

In this paper, we consider the following time-fractional initial-boundary value problems
(IBVPs):

Dα
t u – ∇ · (a(x, t)∇u

)
= f (x, t) on Q := � × (0, T], (1a)

u(x, 0) = u0(x) for x ∈ �̄ (1b)

with u|∂� = 0 for t ∈ [0, T]. Here we assume that the spatial domain � ⊂ R
2 is a convex

polyhedral domain. We assume that u0 ∈ C(�̄), f ∈ C(Q̄), and the diffusivity coefficient
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a(x, t) satisfies

λ–1 ≤ a(x, t) ≤ λ for a fixed constant λ ≥ 1. (2)

In (1a), Dα
t is the Caputo fractional derivative operator defined by

Dα
t v(x, t) =

1
�(1 – α)

∫ t

0
(t – s)–α ∂v(x, s)

∂s
ds. (3)

The time-fractional diffusion equation (1a)–(1b) has been proved to be a very valuable
tool in modeling complex systems, for example, charge carrier transport in amorphous
semiconductors [8], nuclear magnetic resonance (NMR) diffusometry in percolative struc-
tures [18], rouse or reptation dynamics in polymeric systems [40], transport on fractal ge-
ometries [33], etc. The analytical solution of some fractional partial differential equations
can be obtained by Laplace transform, differential transform method, and fractional com-
plex transform, etc. [1, 25, 28–30]. But most of the equations have no analytical solution,
so it is very important to solve them numerically.

Numerical methods for time-fractional IBVPs with constant or time-independent dif-
fusion parameter have received a huge amount of attention over the last decade. For such
problems, several numerical methods have been proposed and analyzed, such as finite
difference method [7, 19–21, 27, 36, 38], finite element method [6, 32, 39, 41, 43, 44, 48],
discontinuous Galerkin (DG) methods [3, 4, 9–11, 31, 34], spectral method [23], and fi-
nite volume method [15, 46], etc. The time-fractional IBVPs (1a)–(1b) with time-space
dependent diffusivity is indeed very interesting and also practically important, and the
numerical solutions of this problems were considered by a few authors only. Alikhanov [2]
constructed an L2-1σ scheme for problem (1a)–(1b), and the error analysis of this scheme
was based on the sufficient smoothness assumption of the solution. Mustapha [17] stud-
ied a semidiscrete Galerkin finite element method for time-fractional diffusion equations
with time-space dependent diffusivity, and the optimal error bounds in spatial L2- and
H1-norms were derived for smooth and nonsmooth initial data by using novel energy ar-
guments. The regularity result about the solutions of the subdiffusion model was proved
for both nonsmooth initial data and incompatible source term by Jin [16], and a com-
plete error analysis was presented for a fully discrete conforming FEM. Zhang and Shi
[45] proposed a fully discrete L1 mixed finite element method for time fractional diffu-
sion equation with a smooth solution, and a novel result of the consistency error estimate
with order O(h2) of the bilinear element was obtained. Zhao et al. [47] presented a fully
discrete L1 finite element method for multiterm time fractional diffusion equation with
constant diffusivity, and a superconvergence result for H1-norm estimate was obtained.
Yin et al. [42] presented two families of novel fractional θ -methods to solve the fractional
cable model, and an optimal convergence result with O(τ 2 + hk+1) for smooth solutions
was obtained. Syed et al. [26] proposed a homotopy analysis method for the space-time
fractional Korteweg–de Vries (KdV) equation. Huang and Stynes [13] proposed a fully
discrete finite element method for the multiterm time fractional diffusion equation with
a weak singularity solution, and a simple postprocessing of the computed solution yielded
a higher order of convergence in the spatial direction.

Imitating [16, Sect. 2], we derive that the solution of (1a)–(1b) satisfies

∥∥u(·, t)
∥∥

2 ≤ C,
∥∥∂ l

t u(·, t)
∥∥

2 ≤ C
(
1 + tα–l),

∥∥Dα
t u(·, t)

∥∥
2 ≤ C (4)
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for l = 0, 1, 2 and 0 < t ≤ T . The aim of this paper is constructing a fully discrete con-
forming finite element method for time-fractional IBVPs (1a)–(1b) with a weak singular-
ity solution (4), and then the superconvergence result in H1-norm of this method will be
analyzed.

The paper is structured as follows. In Sect. 2, several operators are introduced. In Sect. 3
the L1 discretization on a graded temporal mesh of the Caputo temporal derivative is
presented, and then the finite element discretization of the spatial component of the dif-
ferential operator is described. In Sect. 4 an optimal H1(�) convergence bound for the
computed solution is derived, and a simple postprocessing of the computed solution will
yield a higher order of convergence in the spatial direction. Finally, numerical results in
Sect. 5 show that our theoretical results are optimal.

Notation. C and K are generic constants that are independent of the mesh parameters
N and h. We write ‖ · ‖ for the norm in L2(�). For each q ∈ N, the notation Hq(�) is used
for the standard Sobolev space with its associated norm ‖ · ‖q and seminorm | · |q.

2 Preliminaries
Let Th be a quasiuniform partition of � into element Km for m = 1, . . . , M, and h =
max1≤m≤M{diam(Km)} be the mesh size. Then we define the following bilinear finite el-
ement spaces:

Vh :=
{

vh ∈ H1
0 (�) : vh|Km ∈ span{1, x, y, xy} for m = 1, 2, . . . , M

}

and

V0h := {vh ∈ Vh : vh|∂� = 0}.

Next, we will introduce three operators, which are used in finite element analyses of time-
dependent problems [37]. First, we define the L2 projector Ph : L2(�) → V0h by (Phw, vh) =
(w, vh) ∀vh ∈ V0h. By [5, (1.2)], one has

‖∇Phv‖ ≤ K‖∇v‖ for all v ∈ H1
0 (�). (5)

Next we need a time-dependent Ritz projector Rh(t) : H1
0 (�) → V0h defined by (a(·, t) ×

∇Rh(t)w,∇vh) = (a(·, t)∇w,∇vh) ∀vh ∈ V0h. For a fixed k ≥ 0, since V0h ⊂ H1
0 (�) is the

space of piecewise polynomials of degree at most k, it is well known [24, (3.2)] that

∥∥w – Rh(t)w
∥∥ + h

∥∥w – Rh(t)w
∥∥

1 ≤ Chk+1|w|k+1 ∀w ∈ Hk+1(�) ∩ H1
0 (�). (6)

In order to obtain our optimal H1-norm convergence and superconvergence results
given in Sect. 4, we introduce a time-dependent discrete Laplacian 
h(t) : V0h → V0h de-
fined by

(

h(t)v, w

)
= –

(
a(·, t)∇v,∇w

) ∀v, w ∈ V0h, (7)

which will be used to convert the integral form L1 FEM (16) to the differential form scheme
(17). According to [16, p. 12], we have that 
h(t) : V0h → V0h is bounded and invertible on
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V0h under condition (2). Imitating [37, p. 11], one has

(

h(t)Rh(t)v,χ

)
= –

(
a(·, t)∇Rh(t)v,∇χ

)
= –

(
a(·, t)∇v,∇χ

)

=
(∇ · (a(·, t)∇v

)
,χ

)

=
(
Ph∇ · (a(·, t)∇v

)
,χ

)
, ∀χ ∈ V0h.

Thus these three operators are related by


h(t)Rh(t)v = Ph∇ · (a(·, t)∇v
)
, ∀v ∈ H2(�). (8)

3 Temporal graded meshes; the L1 FEM
In this section, the well-known L1 scheme on graded meshes will be introduced, and then
we present a fully discrete conforming finite element method.

Let N be a positive integer. Set tn = T(n/N)r for n = 0, 1, . . . , N , where the mesh grading
constant r ≥ 1 is chosen by the user. Set τn = tn – tn–1 for n = 0, 1, . . . , N .

For n ≥ 1, the Caputo fractional derivative Dα
t u(x, tn) of (3) can be approximated by the

well-known L1 formula:

Dα
t u(x, tn) ≈ Dα

N un :=
dn,1

�(2 – α)
un –

dn,n

�(2 – α)
u0 +

1
�(2 – α)

n–1∑

i=1

un–i(dn,i+1 – dn,i), (9)

where dn,i := [(tn – tn–i)1–α – (tn – tn–i+1)1–α]/τn–i+1 for i = 1, . . . , n. Note that dn,1 = τ–α
n . It is

easily to see that

dn,i+1 < dn,i for 0 ≤ i ≤ n – 1 ≤ N – 1. (10)

Imitating [36, Lemma 5.2], we derive the following truncation error of the L1 scheme
(9).

Lemma 3.1 Assume the solution of (1a)–(1b) satisfies (4). For all (x, tn) ∈ Q, one has

∥
∥Dα

t u(x, tn) – Dα
N u(x, tn)

∥
∥

1 ≤ Cn– min{2–α,rα}.

As in [36, (4.6)], define the positive real numbers θn,j, for n = 1, 2, . . . , N and j = 1, 2, . . . , n–
1, by

θn,n = 1, θn,j =
n–j∑

k=1

τα
n–k(dn,k – dn,k+1)θn–k,j. (11)

Observe that (10) implies θn,j > 0 for all n, j. Furthermore, as in [36, Lemma 4.3], for n =
1, 2, . . . , N , one has

τα
n

n∑

j=1

j–βθn,j ≤ TαN–β

1 – α
, provided that β ≤ rα. (12)

Next, we will state a nonstandard Gronwall inequality, which is given in [12, Lemma 4.4].
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Lemma 3.2 Assume that sequences {ξn}∞n=1, {ηn}∞n=1 are nonnegative and the grid function
{vn : n = 0, 1, . . . , N} satisfies v0 ≥ 0 and

(
Dα

N vn)vn ≤ ξnvn +
(
ηn)2 for n = 1, 2, . . . , N . (13)

Then

vn ≤ v0 + τα
n �(2 – α)

n∑

j=1

θn,jξ
j +

√
Tα�(1 – α) max

1≤j≤n
ηj for n = 1, 2, . . . , N , (14)

where θn,j is defined by (11).

Imitating the proof of [14, Lemma 4.2], we derive the following property of the L1
scheme, which will be used in our later analysis.

Lemma 3.3 Let the functions vj = v(·, tj) be in L2(�) for j = 0, 1, . . . , N . Then the discrete L1
scheme satisfies

(
a(·, tn)Dα

N vn, vn) ≥ (
Dα

N
∥
∥
√

a(·, tn)vn∥∥)∥∥
√

a(·, tn)vn∥∥ for n = 1, 2, . . . , N .

Proof Let n ∈ {1, 2, . . . , N}. Applying a(x, t) > 0 and Cauchy–Schwarz inequality, one has

(
a(·, tn)Dα

N vn, vn) =
dn,1

�(2 – α)
(
a(·, tn)vn, vn) –

dn,n

�(2 – α)
(
a(·, tn)v0, vn)

–
1

�(2 – α)

n–1∑

i=1

(dn,i – dn,i+1)
(
a(·, tn)vn–i, vn)

≥ dn,1

�(2 – α)
∥
∥
√

a(·, tn)vn∥∥2 –
dn,n

�(2 – α)
∥
∥
√

a(·, tn)v0∥∥
∥
∥
√

a(·, tn)vn∥∥

–
1

�(2 – α)

n–1∑

i=1

(dn,i – dn,i+1)
∥∥
√

a(·, tn)vn–i∥∥∥∥
√

a(·, tn)vn∥∥

=
(
Dα

N
∥
∥
√

a(·, tn)vn∥∥)∥∥
√

a(·, tn)vn∥∥,

where we used dn,i > dn,i+1 > 0. �

3.1 The L1 FEM
To begin, our problem (1a)–(1b) will be discretized only in space applying a conforming
finite element method. Then the semidiscrete FEM reads: seek uh(·, t) ∈ V0h for each t ∈
(0, T] such that

(
Dα

t uh, vh
)

+
(
a(x, t)∇uh,∇vh

)
= (f , vh) with u0

h = Rh(t0)u0 and all vh ∈ V0h. (15)

Applying the L1 scheme (9) to discretize (15) in the temporal domain, the fully discrete
L1 FEM is: seek un

h ∈ V0h such that

(
Dα

N un
h, vh

)
+

(
a(x, tn)∇un

h,∇vh
)

=
(
f n, vh

)
for n = 1, . . . , N and all vh ∈ V0h. (16)
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Invoking (7), the L1 FEM (16) takes the form: find un
h ∈ V0h for n = 0, 1, . . . , N such that

(
Dα

N un
h, vh

)
–

(

h(tn)un

h, vh
)

=
(
Phf n, vh

)
for n = 1, . . . , N and all vh ∈ V0h

with u0
h = Rh(t0)u0. This formulation of our L1 FEM can be written as: find un

h ∈ V0h for
n = 0, 1, . . . , N such that

Dα
N un

h – 
h(tn)un
h = Phf n with u0

h = Rh(t0)u0 and n = 1, . . . , N , (17)

where Dα
N un

h,
h(tn)un
h and Phf n all lie in V0h are used.

4 Superconvergence of the L1 FEM
In this section, a superconvergence bound for ‖∇Rhun – ∇un

h‖ will be presented, and then
a superconvergence result of the L1 FEM (17) will be derived.

Let un and un
h be the solutions of (1a)–(1b) and (16), respectively, at time t = tn for n =

0, 1, . . . , N . In order to facilitate the error analysis, denote ζ n := Rh(tn)un – un
h and ρn :=

Rh(tn)un – un. Then we write

un – un
h =

(
Rh(tn)un – un

h
)

–
(
Rh(tn)un – un) = ζ n – ρn, (18)

The error of ρn can be approximated immediately applying (6), but the approximation of
ζ n is difficult, and we estimate it now. From (1a), (8), and (17), one has

Dα
Nζ n – 
h(tn)ζ n =

[
Rh(tn)Dα

N un – 
h(tn)Rh(tn)un] –
(
Dα

N un
h – 
h(tn)un

h
)

=
(
Rh(tn) – Ph

)
Dα

N un + Ph
(
Dα

N un – ∇ · (a(·, tn)∇un)) – Phf n

= Ph
(
Rh(tn) – I

)
Dα

N un + Ph
(
f n – ϕn) – Phf n

= Ph
(
Dα

Nρn – ϕn), (19)

where ϕn := Dα
t u(x, tn) – Dα

N u(x, tn).
Now the optimal-rate convergence of our method in L∞(H1) and a superconvergence

bound for ‖∇Rhun – ∇un
h‖ will be stated in the following theorem.

Theorem 4.1 (Error estimate for the L1 FEM) Assume ‖u‖L∞(H2) and ‖Dα
t u‖L∞(H2) are

finite. Let un and un
h be the solutions of (1a)–(1b) and (16), respectively. Then for n =

1, 2, . . . , N , there exists a constant C such that

∥
∥∇un – ∇un

h
∥
∥ ≤ C

(
h + N– min{2–α,rα}), (20)

∥∥∇Rh(tn)un – ∇un
h
∥∥ ≤ C

(
h2 + N– min{2–α,rα}). (21)

Proof Fix n ∈ {1, 2, . . . , N}. Multiplying (19) by –
h(tn)ζ n and integrating over �, one has

–
(
Dα

Nζ n,
h(tn)ζ n) +
∥
∥
h(tn)ζ n∥∥2 = –

(
Ph

(
Dα

Nρn–ϕn),
h(tn)ζ n). (22)

It is obvious that

Dα
Nρn = Dα

Nρn – Dα
t ρn + Dα

t ρn =
(
Dα

t un – Dα
N un) – Rh(tn)

(
Dα

t un – Dα
N un) + Dα

t ρn. (23)
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Inserting (23) into (22) and recalling the definition (7) of 
h(tn) yields

(
a(·, tn)Dα

N
(∇ζ n),∇ζ n) +

∥
∥
h(tn)ζ n∥∥2

= –
(
Dα

t ρn,
h(tn)ζ n) +
(
a(·, tn)∇Ph

(
–Rh(tn)ϕn),∇ζ n).

Applying Lemma 3.3 and Cauchy–Schwarz inequality, one has

Dα
N
∥∥
√

a(·, tn)∇ζ n∥∥∥∥
√

a(·, tn)∇ζ n∥∥

≤ 1
4
∥∥Dα

t ρn∥∥2 +
∥∥
√

a(·, tn)∇Ph
(
Rh(tn)ϕn)∥∥∥∥

√
a(·, tn)∇ζ n∥∥.

Invoking (5), (6), and (2), we get

Dα
N
∥
∥
√

a(·, tn)∇ζ n∥∥
∥
∥
√

a(·, tn)∇ζ n∥∥ ≤ Ch4 +
√

λK
∥
∥∇(

Rh(tn)ϕn)∥∥
∥
∥
√

a(·, tn)∇ζ n∥∥. (24)

Observe that (24) is a particular case of (13). Thus we can invoke Lemma 3.2 to get

∥
∥
√

a(·, tn)∇ζ n∥∥ ≤ ∥
∥
√

a(·, tn)∇ζ 0∥∥ +
√

λKτα
n �(2 – α)

n∑

j=1

θn,j
∥
∥∇(

Rh(tj)ϕj)∥∥

+
√

Tα�(1 – α) max
1≤j≤n

Ch2.

Inequality ‖∇Rh(t)w‖ ≤ λ‖∇w‖ ∀w ∈ H1
0 (�) follows easily from the definition of Rh(t).

Hence

∥∥
√

a(·, tn)∇ζ n∥∥

≤ ∥∥
√

a(·, tn)∇ζ 0∥∥ + λ
√

λKτα
n �(2 – α)

n∑

j=1

θn,j
∥∥∇ϕj∥∥ + C

√
Tα�(1 – α)h2. (25)

By Lemma 3.1, we get ‖ϕj‖1 ≤ Cj– min{2–α,rα}. Substituting this inequality into (25) and re-
calling (12) yields

∥∥∇ζ n∥∥ ≤ λ
∥∥∇ζ 0∥∥ + Cλ2Kτα

n �(2 – α)
n∑

j=1

θn,jj– min{2–α,rα}

+ C
√

λ
√

Tα�(1 – α)h2

≤ Cλ2KTα�(1 – α)N– min{2–α,rα} + C
√

λTα�(1 – α)h2,

where we used ‖∇ζ 0‖ = ‖∇(Rhu0 – u0
h)‖ = 0, then invoked (12) with η = min{2 – α, rα} for

the j– min{2–α,rα} term. Combining this bound and (6) with (18), we get (20). �

Let Ih : H2(�) → V0h be the associated interpolation operator satisfying Ihu(ai) = u(ai),
where ai, (i = 1, 2, 3, 4) are the four vertices of Km. Imitating the proof given for [35,
Lemma 2] yields

∥∥Rh(t)w – Ihw
∥∥

1 ≤ Ch2‖u‖3, ∀w ∈ H1
0 (�) ∩ H3(�). (26)
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In order to derive the global superconvergence result, we adopt the same interpolation
postprocessing operator I2h as in [22], which satisfies

I2hIhw = I2hw, ∀w ∈ H2(�), (27a)

‖w – I2hw‖1 ≤ Ch2|w|3, ∀w ∈ H3(�), (27b)

‖I2hwh‖1 ≤ C‖wh‖1, ∀wh ∈ V0h. (27c)

Corollary 4.2 Under the conditions of Theorem 4.1 and assuming ‖u‖L∞(H3) is finite, let
the finite element space be the conforming rectangular bilinear element space, then the fol-
lowing superconvergence estimates hold:

∥∥Ihun – un
h
∥∥

1 ≤ C
(
h2 + N– min{2–α,rα}),

∥
∥un – I2hun

h
∥
∥

1 ≤ C
(
h2 + N– min{2–α,rα}).

Proof Applying (26) and (21), one has

∥
∥Ihun – un

h
∥
∥

1 ≤ ∥
∥Ihun – Rh(tn)un∥∥

1 +
∥
∥Rh(tn)un – un

h
∥
∥

1

≤ Ch2 + C
(
h2 + N– min{2–α,rα})

≤ C
(
h2 + N– min{2–α,rα}).

Furthermore, combining this result with (27a)–(27c) yields

∥
∥un – I2hun

h
∥
∥

1 ≤ ∥
∥un – I2hIhun∥∥

1 +
∥
∥I2hIhun – I2hun

h
∥
∥

1

=
∥∥un – I2hun∥∥

1 +
∥∥I2h

(
Ihun – un

h
)∥∥

1

≤ Ch2 + C
∥∥Ihun – un

h
∥∥

1

≤ C
(
h2 + N– min{2–α,rα}).

Thus the proof is complete. �

5 Numerical experiments
We compute numerical solutions for an example of problem (1a)–(1b) that near t = 0 be-
haves as described in (4). The EM,N

1 and EM,N
2 errors in the computed solutions are defined

by

EM,N
1 := max

0≤n≤N

∥
∥Ihun – un

h
∥
∥

1, EM,N
2 := max

0≤n≤N

∥
∥un – I2hun

h
∥
∥

1.

Example 5.1 Consider the two-dimensional time-fractional diffusion problem (1a)–(1b)
with � = (0,π ) × (0,π ), a(x, y, t) = t cos(t)xy/π2, T = 1. The function f is chosen such that
the exact solution of the problem (1a)–(1b) is u(x, y, t) = (tα + t3) sin x sin y.

Corollary 4.2 predicts the rate of convergence O(h2 + N– min{2–α,rα}) for EM,N
1 and EM,N

2 .
We choose a uniform rectangular partition of � with M +1 nodes in each spatial direction.
Tables 1 and 2 show the EM,N

1 and EM,N
2 errors for α = 0.4, 0.6, 0.8 with r = (2–α)/α. We take
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Table 1 EM,N
1 errors and orders of convergence for L1 FEM with r = (2 – α)/α

N = 20 N = 40 N = 80 N = 160 N = 320

α = 0.4 8.1943E–2 2.9074E–2 1.0138E–2 3.4975E–3 1.2089E–3
1.4949 1.5198 1.5354 1.5325

α = 0.6 8.3329E–2 3.1109E–2 1.1715E–2 4.4376E–3 1.6896E–3
1.4214 1.4089 1.4005 1.3931

α = 0.8 1.0196E–1 4.1498E–2 1.7335E–2 7.3639E–3 1.1681E–3
1.2968 1.2592 1.2352 1.2168

Table 2 EM,N
2 errors and orders of convergence for L1 FEM with r = (2 – α)/α

N = 20 N = 40 N = 80 N = 160 N = 320

α = 0.4 8.3912E–2 2.9429E–2 1.0212E–2 3.5165E–3 1.2067E–3
1.5116 1.6459 1.5381 1.5391

α = 0.6 8.5231E–2 3.1432E–2 1.1777E–2 4.4528E–3 1.6947E–3
1.4391 1.4162 1.4032 1.3969

α = 0.8 1.0362E–1 4.1759E–2 1.7383E–2 7.3766E–3 3.1681E–3
1.3111 1.2643 1.2367 1.2193

Table 3 EM,N
1 and EM,N

2 convergent results on spatial direction for L1 FEM with α = 0.4

M = 4 M = 8 M = 16 M = 32 M = 64

EM,N
1 4.1198E–1 1.0643E–1 2.6937E–2 6.8276E–3 1.7677E–3

1.9526 1.9822 1.9823 1.9476
EM,N
2 5.9157E–1 1.4835E–1 3.7192E–2 9.3590E–3 2.3847E–3

1.9958 1.9960 1.9905 1.9725

M = N so that the temporal error dominates the spatial error in the bound of Corollary 4.2.
The orders of convergence displayed indicate that the rate of convergence is N–(2–α), as
predicted by Corollary 4.2. Table 3 shows the spatial errors and the associated orders of
convergence for α = 0.4 and r = (2 – α)/α. Here we take N = 2000 so that the spatial error
dominates the results, and we observe O(h2) convergence, as predicted by Corollary 4.2.
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25. Merdan, M., Gökdoğan, A., Yildirim, A., Mohyud-Din, S.T.: Solution of time-fractional generalized Hirota–Satsuma

coupled KdV equation by generalised differential transformation method. Int. J. Numer. Methods Heat Fluid Flow
23(5), 927–940 (2013)

26. Mohyud-Din, S., Yildirim, A., Yülüklü, E.: Homotopy analysis method for space-and time-fractional KdV equation. Int. J.
Numer. Methods Heat Fluid Flow 22, 928 (2012)

27. Mohyud-Din, S.T., Akram, T., Abbas, M., Ismail, A.I., Ali, N.H.M.: A fully implicit finite difference scheme based on
extended cubic B-splines for time fractional advection–diffusion equation. Adv. Differ. Equ. 109, 17 (2018)

28. Mohyud-Din, S.T., Bibi, S., Ahmed, N., Khan, U.: Some exact solutions of the nonlinear space-time fractional differential
equations. Waves Random Complex Media 29(4), 645–664 (2019)

29. Mohyud-Din, S.T., Jabeen Awan, F., Ahmad, J., Hassan, S.M.: Differential transform method with complex transforms to
some nonlinear fractional problems in mathematical physics. Math. Probl. Eng. 9, Article ID 364853 (2015)

30. Mohyuddin, S.T., Asad Iqbal, M., Hassan, S.M.: Modified Legendre wavelets technique for fractional oscillation
equations. Entropy 17(10), 6925–6936 (2015)

31. Mustapha, K., Abdallah, B., Furati, K.M.: A discontinuous Petrov–Galerkin method for time-fractional diffusion
equations. SIAM J. Numer. Anal. 52(5), 2512–2529 (2014)

32. Natalia, K.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two
and three dimensions. Math. Comput. 88(319), 2135–2155 (2019)

33. Porto, M., Bunde, A., Havlin, S., Roman, H.E.: Structural and dynamical properties of the percolation backbone in two
and three dimensions. Phys. Rev. E 56(2), 1667 (1997)

34. Ren, J., Huang, C., An, N.: Direct discontinuous Galerkin method for solving nonlinear time fractional diffusion
equation with weak singularity solution. Appl. Math. Lett. 102, 106111 (2020)

35. Shi, D.Y., Wang, F.L., Fan, M.Z., Zhao, Y.M.: A new approach of the lowest-order anisotropic mixed finite element
high-accuracy analysis for nonlinear sine-Gordon equations. Math. Numer. Sin. 37(2), 148–161 (2015)

36. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a
time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

37. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. 2nd Revised and Expanded Edition. Springer,
Berlin (2006)



An Advances in Difference Equations        (2020) 2020:511 Page 11 of 11

38. Vong, S., Lyu, P.: On numerical contour integral method for fractional diffusion equations with variable coefficients.
Appl. Math. Lett. 64, 137–142 (2017)

39. Wang, F., Chen, H., Wang, H.: Finite element simulation and efficient algorithm for fractional Cahn–Hilliard equation.
J. Comput. Appl. Math. 356, 248–266 (2019)

40. Weber, H.W., Kimmich, R.: Anomalous segment diffusion in polymers and NMR relaxation spectroscopy.
Macromolecules 26(10), 2597–2606 (1993)

41. Yang, S., Chen, H., Wang, H.: Least-squared mixed variational formulation based on space decomposition for a kind of
variable-coefficient fractional diffusion problems. J. Sci. Comput. 78(2), 687–709 (2019)

42. Yin, B., Liu, Y., Li, H., Zhang, Z.: Finite element methods based on two families of second-order numerical formulas for
the fractional cable model with smooth solutions. J. Sci. Comput. 84(1), 2 (2020)

43. Yuan, Q., Chen, H.: An expanded mixed finite element simulation for two-sided time-dependent fractional diffusion
problem. Adv. Differ. Equ. 34, 15 (2018)

44. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional
subdiffusion equation. SIAM J. Sci. Comput. 35(6), a2976–a3000 (2013)

45. Zhang, H., Shi, D.: Superconvergence analysis for time-fractional diffusion equations with nonconforming mixed
finite element method. J. Comput. Math. 37(4), 527–544 (2019)

46. Zhao, J., Li, H., Fang, Z., Liu, Y.: A mixed finite volume element method for time-fractional reaction-diffusion equations
on triangular grids. Mathematics 7, 600 (2019)

47. Zhao, Y., Zhang, Y., Liu, F., Turner, I., Tang, Y., Anh, V.: Convergence and superconvergence of a fully-discrete scheme for
multi-term time fractional diffusion equations. Comput. Math. Appl. 73(6), 1087–1099 (2017)

48. Zhou, Z., Tan, Z.: Finite element approximation of optimal control problem governed by space fractional equation.
J. Sci. Comput. 78(3), 1840–1861 (2019)


	Superconvergence of a ﬁnite element method for the time-fractional diffusion equation with a time-space dependent diffusivity
	Abstract
	Keywords

	Introduction
	Preliminaries
	Temporal graded meshes; the L1 FEM
	The L1 FEM

	Superconvergence of the L1 FEM
	Numerical experiments
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Author's contributions
	Publisher's Note
	References


