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Abstract
This article focuses on the eradication of different strains of leishmaniasis with the
help of almost nonpharmaceutical interventions (NPIs). A comprehensive
mathematical model of the disease is formulated incorporating three types of
populations: sandflies, humans and dogs (reservoirs), and 3-types of strains: Cl ,
cutaneous leishmaniasis; Vl , kala-azar; and PKDL, post kala-azar. We find R0, the basic
reproduction number of the infection. On the basis of sensitivity test of R0, the most
active/sensitive parameters are investigated. These active parameters are controlled
with the help of control variables. In some cases different parameters depend on the
same single parameter, like ovigenesis and biting rate, both of which are linked to the
blood source. Therefore we introduce three nonpharmaceutical control variables in
the proposed model to control the biting rate of sandflies, density of seropositive
dogs, and density of vector population. Nonpharmaceutical interventions include bed
nets, eradiation of infectious dogs, and residual sprays, and thus extend the proposed
model to an optimal control model. Using Lagrangian and Hamiltonian, we minimize
the densities infected classes in human, sandfly and vector populations. Adopting
optimality approach, we check the existence of the optimal control for the system.
Using Matlab, we produce numerical simulations for the validation of results of
control variables.

Keywords: Leishmaniasis; Basic reproduction number; Mathematical model;
Sensitivity; Pontryagin’s maximum principle; Optimal control

1 Introduction
Leishmaniasis is a group of vector-borne diseases. Cutaneous and visceral strains are two
main types of the disease. The disease is caused by protozoa which belong to Leishma-
nia genus. The protozoa is transmitted/carried from one individual to another by a vec-
tor/sandfly. The three causative pathogens of visceral leishmaniasis are L. infantum, L.
donovani, and L. chagasi. The incubation/latency period varies from three to six months
with a minimum of 10 days, however, a longer period of one year has also been reported
[1–4]. Each year 500,000 new cases of Vl strain are reported worldwide [5]. The causative
agents of cutaneous strain are L. major and L. tropica, however, in some cases L. infantum
may also cause Cl strain [6].

In very rare cases, very few individuals who seem to be recovered from visceral strain de-
velop complications of the disease. The period in which complications may appear is from
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2 to 3 years in India, and about 6 months in Sudan. In such a case nodules appear on the
whole body of the victim, this form of the disease is known as post kala-azar dermal leish-
maniasis (PKDL) [7, 8]. PKDL is in general not fatal. Therefore the poor community, in
particular, does not focus on treatment and hence remains undiagnosed and untreated [9].

The flies belong to the genus Phlebotomus or Lutzomyia [10]. About, 900 species of
phlebotomine sandfly exist, and only 30% of them work as vector of leishmaniasis. The
carrier sandfly is blood-feeding, and ovigenesis in the fly depends upon the quality of the
blood [11]. The disease latency period in the fly is observed from 3 to 7 days [12, 13].

Disease control is a great challenge for scientists and physicians. The disease clinical
structure, human immune system response, and drug resistance are the main causes of
treatment’s failure. Cross-immunity between Cl and Vl can play an important role in the
reduction of the disease [14].

Recently different optimal control models have been formulated to control different in-
fectious diseases utilizing minimum resources [15, 16]. In this work we present a math-
ematical model for the transmission dynamics of the cutaneous and visceral strains of
leishmaniasis. The model incorporates the complications of visceral leishmaniasis, called
PKDL. The model consists of 22 compartments. The incubation periods of the different
strains are included. The individuals in the latent period are distributed into 6 compart-
ments on the basis of strain and attack types (e.g., recovered from one strain and attacked
by another, or initial attack by some strain). The model also includes an exposed class for
both reservoir and sandfly populations. We take into account the role of cross-immunity
between cutaneous and visceral strains of leishmaniasis. The immunity losing periods, k
and ωd , which denote the rate of loss of immunity in humans and reservoirs, respectively,
are also included into the model.

Furthermore, the model includes Zr , the recovered class of reservoirs, and τd , the natural
recovery of dogs. Also, humans, reservoirs, and sandflies almost live in the same vicinity,
particularly in poor communities. Therefore we consider homogenous mixing of the pop-
ulations involved in the model, in the sense that sandflies distribute equally over Nh + Nr .

2 Model formulation
In what follows, Nh is the density of the human class and is divided into the following
further subclasses:

• Sh, the susceptible human class;
• E1 and E2, the human classes exposed/latent for Cl and Vl infection, respectively;
• E12, the human class recovered from Cl and exposed to the infection of Vl ;
• E21, the humans recovered from Vl and exposed to the infection of Cl ;
• E23, the dormant/exposed class of PKDL, the class which otherwise seems recovered

from Vl ;
• E123, the exposed class of PKDL after being recovered from Cl ;
• I1 and I2, the infectious classes of Cl and Vl ;
• I12 and I21, the infectious classes of Vl and Cl , developing from E12 and E21;
• P2, the infectious class of PKDL;
• P12, the infectious class of PKDL after being recovered from Cl ;
• R1, R2, and M, the classes recovered from Cl strain, Vl strain, and both strains,

respectively.
Next Nr is the total reservoir population, divided into the following subclasses:

• Sr , the susceptible reservoir class;
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• Ir , the infectious class of reservoir;
• Zr , the reservoir class being recovered from infection.

Then Nv is the total vector population, divided in the following classes:
• Sv, the susceptible-vector class;
• Ev, the exposed-vector class, and
• Iv, the infectious-vector class.

A susceptible human after catching infection follows Path-1 or Path-2, according to as the
infection causing fly or the source fly was infected with Cl or Vl , respectively:

• Path-1, E1 −→ I1 −→ R1 −→ E12 −→ I12 −→ M −→ Sh;
• Path-2, E2 −→ I2 −→ R2 −→ E21 −→ I21 −→ M −→ Sh.

In case of complication of Vl strain, the transmission follows Path-3 or Path-4:
• Path-3, I2 −→ P2 −→ R2;
• Path-4, I12 −→ E123 −→ P12.

The infection follows the following path of transmission in dogs (reservoir):
• Sr−→Ir −→ Zr .

The infection follows the following path of transmission in vectors:
• Sv −→ Ev −→ Iv.

The overall path of transmission of leishmaniasis in all the three populations is shown in
the following Fig. 1. The mathematical model of the 3-strains of leishmaniasis is given by
the following set of coupled differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡh = (1 – ε1 – ε2)�h + kM – (�1 + �2)Sh – μhSh,
Ė1 = �1Sh – (k1 + μh)E1,
Ė2 = �2Sh – (k2 + μh)E2,
İ1 = k1E1 – (γ1 + μh)I1,
İ2 = k2E2 – (γ2 + δ1 + μh)I2,
Ė23 = γ2I2 – (k6 + μh)E23,
Ṗ2 = k6E23 – (β1 + δ3 + μh)P2,
Ṙ1 = ε2�h + γ1I1 – (ρ�2 + μh)R1,
Ṙ2 = ε1�h + (β1)P2 – (ρ�1 + μh)R2,
Ė12 = ρ�2R1 – (k4 + μh)E12,
Ė21 = ρ�1R2 – (k3 + μh)E21,
İ12 = k4E12 – (γ5 + δ2 + μh)I12,
Ė123 = γ5I12 – (k6 + μh)E123,
Ṗ12 = k6E123 – (β2 + δ3 + μh)P12,
İ21 = k3E21 – (γ4 + μh)I21,
Ṁ = (β2)P12 + γ4I21 – (k + μh)M,
Ṡr = �r + ωdZr – (�r + μr)Sr ,
İr = �rSr – (αd + τd + μr)Ir ,
Żr = τdIr – (ωd + μr)Zr ,
Ṡv = �v – (�v + μv)Sv,
Ėv = �vSv – (μv + �v)Ev,
İv = �vEv – μvIv.

(1)
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Figure 1 Disease flow chart

The terms of interaction �1, �2, �r , and �v between the three populations are defined
as follows:

�1 = ab1
Iv

Nh + Nr
,

�2 = ab2
Iv

Nh + Nr
,

�r = ab
Iv

Nh + Nr
,

�v =
a

Nh + Nr

(
ρ(c1I21 + c2I12 + c2P12) + c1I1 + c2(I2 + P2) + cIr

)
.

Table 1 contains the values of the different parameters used in the model (1).

3 Model analysis
Here, in Sect. 3, the properties of the model, namely the disease-free equilibrium, invariant
region, and basic reproduction number, are discussed.

3.1 Invariant region
The state variables and parameters used in the model are taken nonnegative because the
model concerns the living population:

Ṅh = �h – μhNh – δ1I2 – δ2I12 – δ3(P2 + P12), (2)

Ṅr = �r – μrNr – (αd + τd)Ir , (3)

Ṅv = �v – μvNv. (4)

From(2), (3), and (4), we have

Nh ≤ Nh(0)e–μht +
�h

μh

(
1 – e–μht),

Nr ≤ Nr(0)e–μr t +
�r

μr

(
1 – e–μr t),

Nv ≤ Nv(0)e–μvt +
�v

μh

(
1 – e–μvt).
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Table 1 Parameter values

Parameter Definition Value Source

�h Human birth rate 0.0015875 day–1 [17, 18]
�r Dog birth rate 0.073 day–1 [19]
�v Sandfly birth rate 0.299 day–1 [20]
μh Human natural mortality rate 0.00004 day–1 [20]
μr Dog natural death rate 0.000181 day–1 [21]
μv Natural mortality rate of sandflies 0.0714 day–1 [22]
k1 Inverse of Cl ’s latent period 0.0157871 day–1 [6]
k2 Inverse of Vl ’s latent period 0.007789 day–1 [2]
k3 Inverse of Cl ’s latent period after Vl recovery 0.011111 day–1 [6]
k4 Inverse of Vl ’s latent period after Cl recovery 0.005111 day–1 [2]
k6 Inverse of dormant period before the development of PKDL 0.0049259 [2]
a Biting rate of sandflies 0.125 day–1 [23]
γ4 Recovery rate from Cl , after being recovered from Vl 0.008 day–1 [14]
γ5 Vl ’s treatment rate for Cl ’s recovered 0.03 day–1 Free to choose
δ1 Vl-induced expiry in humans 0.011 day–1 [24]
δ2 Vl-induced expiry in humans for Cl recovered humans 0.006 day–1 [14, 24]
c1 Trans. prob. of Cl in sandflies 0.22 day–1 assumed
b1 Trans. prob. of Cl in humans 0.0714 day–1 assumed
c2 Trans. prob. of Vl in sandflies 0.22 day–1 [25]
b2 Trans. prob. of Vl in humans 0.0714 day–1 [26]
c Trans. prob. of either strain in a fly from reservoir 0.22 day–1 [25]
b Trans. prob. of either strain in dogs from a fly 0.0714 day–1 [26]
γ1 Per capita rate of recovery from Cl 0.0056 day–1 [14]
γ2 Vl ’s treatment rate 0.03 day–1 Free to choose
δ3 PKDL-induced expiry rate in humans 0.0006 day–1 [27]
αd Rate of Vl-induced expiry in dogs 0.00181 day–1 [23]
τd Natural recovery of dogs 0.000274 day–1 [23]
β2 PKDL’s natural healing for Cl ’s recovered human 0.01 day–1 [14, 28]
�v Inverse vectors’s incubation period 0.1428 day–1 [22]
ωd Rate of immunity loss in dogs 0.00274 day–1 [23]
k Rate of immunity loss in humans 0.000548 day–1 [23]
β1 PKDL’s natural healing in humans 0.00556 day–1 [28]
ρ Cross-immunity between Cl and Vl (0, 1) [14]

Thus
(

Nh ≤ �h

μh
, Nr ≤ �r

μr
, Nv ≤ �v

μv

)

as t → ∞.

Using [29], we claim the following result:

Proposition 1 The region 
 defined by


 =
[
(
Sh, E1, E2, I1, I2, E23, P2, R1, R2, E12, E21, I12, E123,

P12, I21, M, Sr , Ir , Zr , Sv, Ev, Iv
) ∈R

22
+ , Nh ≤ �h

μh
; Nr ≤ �r

μr
; Nv ≤ �v

μv

]

is a positively invariant domain, also the model is epidemiologically and mathematically
well-posed as all the trajectories are forward-bounded.

3.2 Reproduction number
The number of secondary infections caused by a single primary infection in the com-
pletely susceptible population is called the reproduction number and denoted by R0. The
reproduction number is found from the next generation matrix [17, 30]. Here

R0 =
√

R1 + R2 + R3 + R4 + R5,
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where

R1 = r1r2, R2 = r3r4, R3 = r5r6, R4 = r7r8, R5 = r9r10,

r1 =
ab1μr�h

μv(�hμr + �rμh)
, r2 =

ac1�vμrμh

μv(�hμr + �rμh)

(
k1ε�v

a1a3a14

)

,

r3 =
ab2μr�h

μv(�hμr + �rμh)
,

r4 =
ac2μrμh�v

μv(�hμr + �rμh)

[
εk2�v

a2a4a14

(

1 +
γ2k6

a5a6

)]

,

r5 =
abμh�r

μv(�hμr + �rμh)
, r6 =

acμhμr�v

μv(�hμr + �rμh)

(
�v

a13a14

)

,

r7 =
ab1μr�hρ

μv(�hμr + �rμh)
,

r8 =
ac2μrμh�v

μv(�hμr + �rμh)

[
ε1k4ρ�v

a7a9a14

(

1 +
γ5k6

a10a11

)]

,

r9 =
ab2μr�hρ

μv(�hμr + �rμh)
, r10 =

ac1μrμh�v

μv(�hμr + �rμh)

[
ε2ρk3�v

a8a12a14

]

,

where a1 = μh +k1, a2 = μh +k2, a3 = μh +γ1, a4 = δ1 +γ2 +μh, a5 = μh +k6, a6 = δ3 +β1 +μh,
a7 = μh + k4, a8 = μh + k3, a9 = δ2 + γ5 + μh, a10 = υ + k6, a11 = δ3 + β2 + μh, a12 = μh + γ4,
a13 = τd + μr + αd , a14 = μv + �v.

3.3 Sensitivity analysis of R0

Different parameters used in the model influence the evolution of the disease differently.
The role of parameter K in the phenomenon Z is called the sensitivity of Z with respect
to K and is given by [18, 31]

ϒK
Z =

∂Z
∂K

K
Z

.

The sensitivity indices of different parameters are shown in Table 2

Table 2 Sensitivity indices of parameters

Parameter Value Index

ε1 0.04 –0.00088880
c 0.22 0.4777
c2 0.22 0.0047
k1 0.0157871 0.000044262
k3 0.011111 1.0530× 10–12

k6 0.0049259 5.3756× 10–9

b 0.0714 0.4777
b2 0.0714 0.0047
μv 0.0714 –1.1667
ρ 0.5 0.00013175
γ2 0.01 –0.0022
γ4 0.008 2.9208× 10–10

�r 0.073 –0.4327
δ2 0.006 –0.000024642
β2 0.0.01 6.5338× 10–9

αd 0.00181 0.3818
�v 0.299 0.5000

Parameter Value Index

ε2 0.03 –0.00071601
c1 0.22 0.0175
�h 0.0015875 –0.0673
k2 0.007789 0.000023925
k4 0.005111 0.00000051155
a 0.125 +1
b1 0.0714 0.0176
μh 0.00004 0.0671
μr 0.000181 0.3945
γ1 0.0056 –0.0174
�v 0.1428 0.1667
γ5 0.01 0.000041062
δ1 0.011 –0.0024
δ3 0.0006 2.8261× 10–8

β1 0.00556 2.8261× 10–7

τd 0.000274 –0.0578
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4 Control strategies
To control the further transmission of the disease in the community, we use sensitivity
test to check the absolute value of the index of a parameter. The greater the absolute value
of the index of a parameter, the higher would be the role of this parameter. The contact
rate of the fly has sensitivity index of 1. This index is the highest, hence a plays the most
significant role in the disease transmission. The probabilities of disease transmission from
flies to dogs and from dogs to flies, denoted by b and c, respectively, have the indices of
0.47 each, while the index of sandfly birth rate, �v has the index of 0.5 as shown in Table 2.
So these three parameters need intervention. Alternatively, we address the biting rate, a,
by introducing a control variable q1. This intervention consequently helps in controlling
b, c, and �v. Control variable q1 is associated with insecticide-treated bed nets, sandfly
repulsive lotion, and electric devices, etc.

The sensitivity index of “elimination of seropositive/infected dogs” is –0.38. That is, an
increase of 10% in the culling rate of infectious dogs will decrease R0 by 3.8%. We introduce
control variable q2 for the control of seropositive dogs.

The mortality rate of flies has the sensitivity index of –1. This means that an increase in
mortality of flies will cause a decrease in R0. To increase the death rate of flies, we introduce
a control variable q3. As such, q3 is associated with residual DDT sprays in animal and
human shelters.

Based on the above control variables, we propose the following optimal control model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡh = (1 – ε1 – ε2)�h + kM – (�1 + �2)(1 – q1)Sh – μhSh,
Ė1 = �1(1 – q1)Sh – (k1 + μh)E1,
Ė2 = �2(1 – q1)Sh – (k2 + μh)E2,
İ1 = k1E1 – (γ1 + μh)I1,
İ2 = k2E2 – (γ2 + δ1 + μh)I2,
Ė23 = γ2I2 – (k6 + μh)E23,
Ṗ2 = k6E23 – (β1 + δ3 + μh)P2,
Ṙ1 = ε2�h + γ1I1 – (ρ�2(1 – q1) + μh)R1,
Ṙ2 = ε1�h + (β1)P2 – (ρ�1(1 – q1) + μh)R2,
Ė12 = ρ�2(1 – q1)R1 – (k4 + μh)E12,
Ė21 = ρ�1(1 – q1)R2 – (k3 + μh)E21,
İ12 = k4E12 – (γ5 + δ2 + μh)I12,
Ė123 = γ5I12 – (k6 + μh)E123,
Ṗ12 = k6E123 – (β2 + δ3 + μh)P12,
İ21 = k3E21 – (γ4 + μh)I21,
Ṁ = (β2)P12 + γ4I21 – (k + μh)M,
Ṡr = �r + ωdZr – (�r(1 – q1) + μr)Sr ,
İr = �r(1 – q1)Sr – (τd + αd + μr + q2)Ir ,
Żr = τdIr – (ωd + μr)Zr ,
Ṡv = �v – (�v(1 – q1) + μv + q3)Sv,
Ėv = �v(1 – q1)Sv – (μv + �v + q3)Ev,
İv = �vEv – (μv + q3)Iv.

(5)
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To reduce the density of sandflies, infected humans, and infected reservoir, we define an
objective function (OF) as:

J(q1, q2, q3) =
∫ T

0

(

Q + g8(Nv) +
1
2
(
d1q2

1(t) + d2q2
2(t) + d3q2

3(t)
)
)

dt, (6)

where

Q = g1I1 + g2I2 + g3P2 + g4I12 + g5P12 + g6I21 + g7Ir .

Here Nv denotes the total vector population and gi for i = 1, 2, 3, . . . , 8 denote the con-
cerned weight constants; 1

2 (d1q2
1(t) + d2q2

2(t) + d3q2
3(t)) denotes the cost associated with

interventions.
Next we need to find the control function J1, subject to system (5), such that

J1 = min
{

J(q1, q2, q3), if (q1, q2, q3) ∈ D)
}

,

where D denotes the set of control variables and is defined as

D =
{

(q1, q2, q3) | qi(t) is Lebesgue measurable on [0, T], 0 ≤ qi(t) < 1, i = 1, 2, 3
}

.

4.1 Solution of the proposed optimal control (OC) model
Here we investigate existence of OC for the proposed model (5) at t = 0. Using [32], we
claim that the solution of the state system (5) is bounded. This is because the control vari-
ables are bounded and Lebesgue measurable, and the initial conditions are nonnegative.

Next we prove that the system has an optimal solution. For this, we introduce a La-
grangian and Hamiltonian as follows:

L(t) = Q + g8Nv(t) +
1
2
(
d1q2

1 + d2q2
2 + d3q2

3
)
, (7)

where

Nv(t) = Sv(t) + Ev(t) + Iv(t)

and

Q = g1I1 + g2I2 + g3P2 + g4I12 + g5P12 + g6I21 + g7Ir ;

H(t) = L(t) + λ1
dSh

dt
+ λ2

dE1

dt
+ λ3

dE2

dt
+ λ4

dI1

dt
+ λ5

dI2

dt
+ λ6

dE23

dt
+ λ7

dP2

dt

+ λ8
dR1

dt
+ λ9

dR2

dt
+ λ10

dE12

dt
+ λ11

dE21

dt
+ λ12

dI12

dt
+ λ13

dE123

dt
+ λ14

dP12

dt

+ λ15
dI21

dt
+ λ16

dM
dt

+ λ17
dSr

dt
+ λ18

dIr

dt
+ λ19

dZr

dt
+ λ20

dSv

dt
+ λ21

dEv

dt
+ λ22

dIv

dt
.

(8)

Theorem 1 The set (q∗
1, q∗

2, q∗
3) of optimal controls minimizes J1 over D, subject to the initial

conditions specified at t = 0.

Proof 1 Since both the state and control variables are nonnegative, using [33], the objec-
tive function is convex in the control variables qi, i = 1, 2, 3.
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Clearly, from the definition, D is closed and convex. Further, since the optimal system is
bounded, the set of optimal controls is compact.

And the control variables q1, q2, and q3 enter as quadratic terms. Therefore the integrand
in (6) is convex on the control set D.

Also, all Y , for Y ∈ 
, are bounded. So we can find a constant ∂ > 1 and positive numbers
�1 and �2 such that J(q1, q2, q3) ≥ �1(|q1|2, |q2|2, |q3|2) ∂

2 – �2, as the state variables are
bounded.

The proof of existence of optimal control is completed.

Next we characterize the control variables of the proposed model. We use Pontryagin’s
maximum principle [34] stated here for convenience. Let

F =
(
E∗

1 , I∗
1 , E∗

2 , I∗
2 , E∗

23, P∗
2 , R∗

1, R∗
2, E∗

12, I∗
12, E∗

21, I∗
21, E∗

123, P∗
12, M∗, I∗

r , Z∗
r , E∗

v , I∗
v , S∗

h, S∗
r , S∗

v
)T

be the states associated with control variables (q∗
1, q∗

2, q∗
3). Let (y, q) be the solution of the

control model/problem, for y ∈ 
 and q = (q∗
1, q∗

2, q∗
3), then there exists a vector function

λ = (λ1,λ2, . . . ,λn) satisfying the following:

dy
dt

=
∂H(t, y, q,λ)

∂λ
,

0 =
∂H(t, y, q,λ)

∂q
,

λ′ = –
∂H(t, y, q,λ)

∂y
.

To establish the necessary condition on H , we prove the following result.

Theorem 2 The necessary condition for a control q = (q∗
1, q∗

2, q∗
3) to be optimal with corre-

sponding state F is that there exists an adjoint variable, λi, for i = 1, 2, . . . , 22, satisfying:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dλ1
dt = (λ1(t)–λ2(t))ab1(W1)(1–q1(t))Iv(t)

(Nh(t)+Nr(t))2 + (λ1(t)–λ3(t))(W1)ab2(1–q1(t))Iv(t)
(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–q1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)

(Nh(t)+Nr(t))2

+ (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)Sr(t)
(Nh(t)+Nr(t))2 + (λ21(t)–λ20(t))(W )

(Nh(t)+Nr(t))2 + μhλ1(t),
dλ2
dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–q1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)

(Nh(t)+Nr(t))2

+ (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)Sr(t)
(Nh(t)+Nr(t))2 + (λ21(t)–λ20(t))(W )

(Nh(t)+Nr(t))2

+ (λ2(t) – λ4(t))k1 + μhλ2(t),
dλ3
dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–q1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ11(t)–λ9(t))ab1(1–u1(t))ρIv(t)R2(t)

(Nh(t)+Nr(t))2

+ (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)Sr(t)
(Nh(t)+Nr(t))2 + (λ21(t)–λ20(t))(W )

(Nh(t)+Nr(t))2

+ (λ3(t) – λ5(t))k2 + μhλ3(t),
dλ4
dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–q1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)

(Nh(t)+Nr(t))2

+ (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)Sr(t)
(Nh(t)+Nr(t))2 + (λ4(t) – λ8(t))γ1 + μhλ4(t) – g1

+ (λ21(t)–λ20(t))(cIr(t)+Sva(1–q1))(W2–c1(W3+Nr)
(Nh(t)+Nr(t))2 ,
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Figure 2 Comparison of behaviors with and without control in case of Sh and E1
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dλ5
dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Hh(t)Iv(t)
(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–q1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)

(Nh(t)+Nr(t))2

+ (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)Sr(t)
(Nh(t)+Nr(t))2 + (λ5(t) – λ6(t))γ2 + λ5(t)(δ1 + μh) – g2

+ (λ21(t)–λ20(t))(cIr(t)+Sva(1–q1))(W4–c2(W5+Nr)
(Nh(t)+Nr(t))2 ,

dλ6
dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–q1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)

(Nh(t)+Nr(t))2

+ (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)Sr(t)
(Nh(t)+Nr(t))2 + (λ21(t)–λ20(t))(W )

(Nh(t)+Nr(t))2

+ (λ6(t) – λ7(t))k6 + μhλ6(t),
dλ7
dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–q1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)

(Nh(t)+Nr(t))2

+ (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)Sr(t)
(Nh(t)+Nr(t))2 + (λ7(t) – λ9(t))β1 + λ7(t)(δ3 + μh) – g3

+ (λ21(t)–λ20(t))(Sva(1–q1))(W4–c2(W5+Nr)
(Nh(t)+Nr(t))2 ,

dλ8
dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2

+ (λ8(t)–λ10(t))ab2(1–q1(t))ρIv(t)(W6+Nr)
(Nh(t)+Nr(t))2 + (λ21(t)–λ20(t))(W )

(Nh(t)+Nr(t))2 + μhλ8(t)

+ (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)
(Nh(t)+Nr(t))2 + (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)Sr(t)

(Nh(t)+Nr(t))2 ,
dλ9
dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–q1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)Sr(t)

(Nh(t)+Nr(t))2

+ (λ9(t)–λ11(t))ab1(1–q1(t))ρIv(t)(W7+Nr(t))
(Nh(t)+Nr(t))2 + (λ21(t)–λ20(t))(W )

(Nh(t)+Nr(t))2 + μhλ9(t),
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Figure 3 Comparison of behaviors with and without control in case of E2 and I1

Figure 4 Comparison of behaviors with and without control in case of I2 and E23
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Figure 5 Comparison of behaviors with and without control in case of P2 and R1

Figure 6 Comparison of behaviors with and without control in case of R2 and E12
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Figure 7 Comparison of behaviors with and without control in case of E21 and I12

Figure 8 Comparison of behaviors with and without control in case of E123 and P12
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Figure 9 Comparison of behaviors with and without control in case of I21 and M

Figure 10 Comparison of behaviors with and without control in case of Sr and Ir
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Figure 11 Comparison of behaviors with and without control in case of Zr and Sv
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dλ10
dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–q1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)

(Nh(t)+Nr(t))2

+ (λ18(t)–λ17(t))ab(1–u1(t))Iv(t)Sr (t)
(Nh(t)+Nr(t))2 + (λ21(t)–λ20(t))(W )

(Nh(t)+Nr(t))2

+ (λ10(t) – λ12(t))k4 + λ10(t)μh,
dλ11

dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–u1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)

(Nh(t)+Nr(t))2

+ (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)Sr (t)
(Nh(t)+Nr(t))2 + (λ21(t)–λ20(t))(W )

(Nh(t)+Nr(t))2

+ (λ11(t) – λ15(t))k3 + λ11(t)μh,
dλ12

dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–q1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)

(Nh(t)+Nr(t))2

+ (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)Sr (t)
(Nh(t)+Nr(t))2 + (λ12(t) – λ13(t))γ5 + λ12(t)(δ2 + μh) – g4

+ (λ21(t)–λ20(t))(Sv(t)a(1–q1(t)))(W8–c2ρ(W9+Nr))
(Nh(t)+Nr(t))2 ,

dλ13
dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2

+ (λ8(t)–λ10(t))ab2(1–q1(t))ρIv(t)(W6+Nr)
(Nh(t)+Nr(t))2 + (λ21(t)–λ20(t))(W )

(Nh(t)+Nr(t))2

+ (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)
(Nh(t)+Nr(t))2 + (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)Sr (t)

(Nh(t)+Nr(t))2

+ (λ13(t) – λ14(t))k6 + μhλ13(t),
dλ14

dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–q1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)

(Nh(t)+Nr(t))2

+ (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)rS(t)
(Nh(t)+Nr(t))2 + (λ14(t) – λ16(t))(β2 + γ2)

+ (λ21(t)–λ20(t))(Sv(t)a(1–q1(t)))(W8–c2ρ(W9+Nr))
(Nh(t)+Nr(t))2 + λ14(t)(δ3 + μh) – g5,
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Figure 12 Comparison of behaviors with and without control in case of Ev and Iv
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dλ15
dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–q1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)

(Nh(t)+Nr(t))2

+ (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)Sr (t)
(Nh(t)+Nr(t))2 + (λ15(t) – λ16(t))γ4 + λ15(t)μh – g6

+ (λ21(t)–λ20(t))(Sv(t)a(1–q1(t)))(W10–c1ρ(W11+Nr))
(Nh(t)+Nr(t))2 ,

dλ16
dt = (λ2(t)–λ1(t))ab1(1–u1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–q1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)

(Nh(t)+Nr(t))2

+ (λ17(t)–λ18(t))ab(1–q1(t))Iv(t)Sr (t)(Nh(t)–(Ir(t)+Zr(t)))
(Nh(t)+Nr(t))2 + (λ21(t)–λ20(t))W

(Nh(t)+Nr(t))2

+ (λ16(t) – λ1(t))k + λ16(t)μh,
dλ17

dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–q1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)

(Nh(t)+Nr(t))2

+ (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)Sr (t)
(Nh(t)+Nr(t))2 + (λ21(t)–λ20(t))W

(Nh(t)+Nr(t))2 + λ17(t)μh,
dλ18

dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–q1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)

(Nh(t)+Nr(t))2

+ (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)Sr (t)
(Nh(t)+Nr(t))2 + (λ21(t)–λ20(t))((W12–ρc(Nh–(Sr+Zr))

(Nh(t)+Nr(t))2

+ (λ18(t) – λ19(t))τd + λ18(t)(ζd + μr + q2) – g7,
dλ19

dt = (λ2(t)–λ1(t))ab1(1–q1(t))Sh(t)Iv(t)
(Nh(t)+Nr(t))2 + (λ3(t)–λ1(t))ab2(1–q1(t))Sh(t)Iv(t)

(Nh(t)+Nr(t))2

+ (λ10(t)–λ8(t))ab2(1–q1(t))ρIv(t)R1(t)
(Nh(t)+Nr(t))2 + (λ11(t)–λ9(t))ab1(1–q1(t))ρIv(t)R2(t)

(Nh(t)+Nr(t))2

+ (λ18(t)–λ17(t))ab(1–q1(t))Iv(t)Sr (t)
(Nh(t)+Nr(t))2 + (λ21(t)–λ20(t))(W )

(Nh(t)+Nr(t))2

+ (λ19(t) – λ17(t))ωd + λ19(t)(μh),
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Figure 13 Control variables q1, q2, and q3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dλ20
dt = (λ21(t)–λ20(t))a(1–q1(t))

(Nh(t)+Nr(t))2 (c1I1(t) + c2(I2(t) + P2(t)) + ρ(c1I21(t)

+ c2I12(t) + c2P12(t))) + λ20(t)(μv + q3(t)) – g8,
dλ21

dt = (λ21(t)–λ20(t))�v
(Nh(t)+Nr(t))2 + λ21(t)(μv + q3(t)) – g8,

dλ22
dt = (λ1(t)–λ2(t))ab1(1–q1(t))Sh(t)

(Nh(t)+Nr(t))2 + (λ1(t)–λ3(t))ab2(1–q1(t))Sh(t)
(Nh(t)+Nr(t))2

+ (λ8(t)–λ10(t))ab2(1–q1(t))ρR1(t)
(Nh(t)+Nr(t))2 + (λ9(t)–λ11(t))ab1(1–q1(t))ρR2(t)

(Nh(t)+Nr(t))2

+ (λ17(t)–λ18(t))ab(1–q1(t))Sr(t)
(Nh(t)+Nr(t))2 + λ22(t)(μv + q3(t)) – g8

(9)

with transversality/boundary conditions

λi(tend) = λi(T) = 0 for i = 1, 2, . . . , 22. (10)
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And the optimal controls q∗
2, q∗

3, and q∗
1 are given by

q∗
1 = max

{
min{Z, 1}, 0

}
, (11)

q∗
2 = max

{

min

{
λ18I∗

r
d2

, 1
}

, 0
}

, (12)

q∗
3 = max

{

min

{
λ20S∗

v + λ21E∗
v + λ22I∗

v
d3

, 1
}

, 0
}

, (13)

where

Z =
(λ1 – λ2)ab1I∗

v S∗
h + (λ1 – λ3)ab2I∗

v S∗
h + (λ8(t) – λ10(t))ab2ρI∗

v (t)R∗
1(t)

d1(Nh + Nr)

+
(λ9(t) – λ11(t))ab1ρI∗

v (t)R∗
2(t) + (λ17(t) – λ18(t))abI∗

v (t)S∗
r (t)

d1(Nh + Nr)

+
((

λ20(t) – λ21(t)
)(

S∗
v (t)

(
c1I∗

1 (t) + c2
(
I∗

2 (t) + P∗
2(t)

)
+ ρ

(
c1I∗

21(t)

+ c2
(
I∗

12(t) + P∗
12(t)

)))
+ cI∗

r (t)
))

/
(
d1(Nh + Nr)

)
,

W = a
(
1 – q1(t)

)
Sv(t)

(
c1I1(t) + c2I2(t) + c2P2(t) + ρc1I21(t) + ρc2I12(t)

+ ρc2P12(t) + cIr(t)
)
,

W1 = E1(t) + E2(t) + I1(t) + I2(t) + E23(t) + P2(t) + R1(t) + R2(t) + E12(t) + E21(t)

+ I12(t) + E123(t) + P12(t) + I21(t) + M(t) + Nr(t),

W2 =
(
c2I2(t) + c2P2(t) + ρc1I21(t) + ρc2I12(t) + ρc2P12(t) + cIr(t)

)
,

W3 = Sh(t) + E1(t) + E2(t) + I2(t) + E23(t) + P2(t) + R1(t) + R2(t)

+ E12(t) + E21(t) + I12(t) + E123(t) + P12(t) + I21(t) + M(t),

W4 =
(
c1I1(t) + ρc1I21(t) + ρc2I12(t) + ρc2P12(t) + cIr(t)

)
,

W5 = Sh(t) + E1(t) + E2(t) + I1(t) + E23(t) + R1(t) + R2(t) + E12(t) + E21(t)

+ I12(t) + E123(t) + P12(t) + I21(t) + M(t),

W6 = Sh(t) + E1(t) + E2(t) + I1(t) + I2(t) + E23(t) + P2(t) + R2(t) + E12(t) + E21(t)

+ I12(t) + E123(t) + P12(t) + I21(t) + M(t),

W7 = Sh(t) + E1(t) + E2(t) + I1(t) + I2(t) + E23(t) + P2(t) + R1(t) + E12(t) + E21(t)

+ I12(t) + E123(t) + P12(t) + I21(t) + M(t),

W8 =
(
c1I1(t) + c2I2(t) + c2P2(t) + ρc1I21(t) + cIr(t)

)
,

W9 = Sh(t) + E1(t) + E2(t) + I1(t) + I2(t) + E23(t) + P2(t) + R1(t) + R2(t) + E12(t)

+ E21(t) + E123(t) + I21(t) + M(t),

W10 =
(
c1I1(t) + c2I2(t) + c2P2(t) + ρc2I12(t) + ρc2P12(t) + cIr(t)

)
,

W11 = Sh(t) + E1(t) + E2(t) + I1(t) + I2(t) + E23(t) + P2(t) + R1(t) + R2(t) + E12(t)

+ E21(t) + I12(t) + E123(t) + P12(t) + M(t),

W12 = a
(
1 – q1(t)

)
Sv(t)

(
c1I1(t) + c2I2(t) + c2P2(t) + ρc1I21(t) + ρc2I12(t) + ρc2P12(t)

)
.
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Proof 2 First we differentiate H given in (8) with respect to the state variables involved in
the model. As a result we get the system involving dλi

dt for i = 1, 2, 3, . . . , 22.
To find (q∗

1, q∗
2, q∗

3), we solve the following system, using the properties of control set and
optimality conditions:

∂H
∂q1

= 0,
∂H
∂q2

= 0,
∂H
∂q3

= 0.

Solving the above system, we have the results (11)–(13).

Here, the second derivative of Lagrangian L with respect to q∗
3, q∗

2, and q∗
1 is +ve. This

shows that the optimal control is a maximum at control q∗
3, q∗

2, and q∗
1. We put these values

in system (5) and propose the following optimal control model.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ∗
h = (1 – ε1 – ε2)�h + kM∗ – (�∗

1 + �∗
2)(1 – max{min{Z, 1}, 0})S∗

h – μhS∗
h,

Ė∗
1 = �∗

1(1 – max{min{Z, 1}, 0})S∗ – (k1 + μh)E∗
1 ,

Ė∗
2 = �∗

2(1 – max{min{Z, 1}, 0})S∗
h – (k2 + μh)E∗

2 ,

İ∗
1 = k1E∗

1 – (γ1 + μh)I∗
1 ,

İ∗
2 = k2E∗

2 – (γ2 + δ1 + μh)I∗
2 ,

˙E∗
23 = γ2I∗

2 – (k6 + μh)E∗
23,

Ṗ∗
2 = k6E∗

23 – (β1 + δ3 + μh)P∗
2 ,

Ṙ∗
1 = ε2�h + γ1I∗

1 – (ρ�∗
2(1 – max{min{Z, 1}, 0}) + μh)R∗

1,

Ṙ∗
2 = ε1�h + β1P∗

2 – (ρ�∗
1(1 – max{min{Z, 1}, 0}) + μh)R∗

2,
˙E∗
12 = ρ�∗

2(1 – max{min{Z, 1}, 0})R∗
1 – (k4 + μh)E∗

12,
˙E∗
21 = ρ�∗

1(1 – max{min{Z, 1}, 0})R∗
2 – (k3 + μh)E∗

21,
˙I∗
12 = k4E∗

12 – (γ5 + δ2 + μh)I∗
12,

˙E∗
123 = γ5I∗

12 – (k6 + μh)E∗
123,

˙P∗
12 = k6E∗

123 – (β2 + δ3 + μh)P∗
12,

˙I∗
21 = k3E∗

21 – (γ4 + μh)I∗
21,

Ṁ∗ = β2P∗
12 + γ4I∗

21 – (k + μh)M∗,

Ṡ∗
r = �r + ωdZ∗

r – (�∗
r (1 – max{min{Z, 1}, 0}) + μr)S∗

r ,

İ∗
r = �∗

r (1 – max{min{Z, 1}, 0})S∗
r – (τd + αd + μr + max{min{ λ18I∗r

d2
, 1}, 0})I∗

r ,

Ż∗
r = τdI∗

r – (ωd + μr)Z∗
r ,

Ṡ∗
v = �v – (�∗

v (1 – max{min{Z, 1}, 0}) + (μv + q∗
3)S∗

v ,

Ė∗
v = �∗

v (1 – max{min{Z, 1}, 0})S∗
v – (μv + �v + q∗

3)E∗
v ,

İ∗
v = �vE∗

v – (μv + max{min{ λ20S∗
v +λ21E∗

v +λ22I∗v
d3

, 1}, 0})I∗
v .

(14)

with

H∗ = g1I1 + g2I2 + g3P2 + g4I12 + g5P12 + g6I21 + g7Ir + g8N∗
v

+
1
2

(

d1
(
max

{
min{Z, 1}, 0

})2 + d2

(

max

{

min

{
λ18I∗

r
d2

, 1
}

, 0
})2
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+ d3

(

max

{

min

{
λ20S∗

v + λ21E∗
v + λ22I∗

v
d3

, 1
}

, 0
})2)

+ λ1
dS∗

h
dt

+ λ2
dE∗

1
dt

(15)

+ λ3
dE∗

2
dt

+ λ4
dI∗

1
dt

+ λ5
dI∗

2
dt

+ λ6
dE∗

23
dt

+ λ7
dP∗

2
dt

+ λ8
dR∗

1
dt

+ λ9
dR∗

2
dt

+ λ10
dE∗

12
dt

+ λ11
dE∗

21
dt

+ λ12
dI∗

12
dt

+ λ13
dE∗

123
dt

+ λ14
dP∗

12
dt

+ λ15
dI∗

21
dt

+ λ16
dM∗

dt
+ λ17

dS∗
r

dt

+ λ18
dI∗

r
dt

+ λ19
dZ∗

r
dt

+ λ20
dS∗

v
dt

+ λ21
dE∗

v
dt

+ λ22
dI∗

v
dt

.

5 Numerical simulations and discussion
We solve the optimality system (14) numerically using RK4 method. The method solves
the state system (5), forward in time, and the adjoint system (9), backward in the time, and
system (10), the controls are updated continuously using systems (11) to (13). The process
is continued until the results at the consecutive iterations (CI) are close. For details, see
[35].

We assign the following values to weight constants (WC): g1 = 0.5, g2 = 0.5, g3 = 0.5,
g4 = 0.5, g5 = 0.5, g6 = 0.5, g7 = 0.5, g8 = 0.7, d1 = 1, d2 = 10, and d3 = 20. We have used
Sh = 1000, E1 = 30, E2 = 30, I1 = 30, I2 = 30, E23 = 30, P2 = 30, R1 = 30, R2 = 30, E12 = 30,
E21 = 30, I12 = 30, E123 = 30, P12 = 30, I21 = 30, M = 30, Sr = 10, Ir = 5, Zr = 2, Sv = 10,000,
Ev = 1000, and Iv = 500.

Note Stage 1 infection means that a susceptible human at the first time is attacked by
some strain. Stage 2 infection means that the individual has recovered form some strain
of leishmaniasis and after recovery is attacked by another stain of leishmaniasis.

In the following figures we have presented the behavior of different subclasses of the total
population involved in the model. Figure 2 represents two subclasses: Sh, the susceptible
human class, and E1, the Cl-exposed human class. The figure shows that without interven-
tion or control variables (presented by red lines), the density of the susceptible human class
decreases because the susceptible humans are infected and they move from the susceptible
class to the infected class E1. At the same time the density of the infected class increases.
However, in case of proper intervention, the density of the exposed class decreases, and
there is no notable decrease in the density of the susceptible human population. Figure 3
presents the behavior of E2, the Vl-exposed human class, and I1, the infectious human
class of Cl strain. The gap between the red and blue lines represents the effectiveness of
the control variables. Figure 4 presents the behavior of I2, the Vl-infectious human class,
and E23, the human class in the dormant period of developing PKDL. The figures show
that the interventions have a notable effect on the control of I2 and E23. Figure 5 repre-
sents the behaviors of P2, the human class infected with PKDL, and R1, the human class
recovered from the cutaneous strain. Here too the effect of interventions is notable. The
effect of interventions on R2 is not so high. The reason might be the prolonged dormancy
period of PKDL. All the above mentioned cases are concerned with Stage 1 infection and
the effect of interventions is high.

From Fig. 6 to Fig. 9, these behaviors are associated with Stage 2 infection. Like in
Fig. 6, E12 represents the human class recovered from cutaneous leishmaniasis and in-
fected/attacked by visceral leishmaniasis after the said recovery. In all Stage 2 infection
cases, the effect of the interventions is not high. Figure 10 presents the behavior of Sr , the
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susceptible reservoir, and Ir , the infectious reservoir. The intervention involving “culling of
seropositive dogs” directly addresses the infectious class of the reservoir population and
hence the density of Ir reduces rapidly. Similarly, the density of all the subclasses in the
vector population reduces very rapidly because the use of residual sprays directly affects
all the subclasses. Figure 11 represents the behavoir of susceptible sanflies and recovered
resorvoirs. it takes 5-10 days to elimanate susceptible vectors using control variable. Fig-
ure 12 represents the behavoirs of exposed and infectious vectors with and without con-
trol. The density of exposed vectors reduces to zero in five days while that of infectious
vectors reduces to zero in ten days. Figure 13 suggests that the interventions should be
continue for a long time.

6 Conclusion
A model of three populations, namely sandflies, dogs, and humans, was considered for the
epidemic of leishmaniasis. The main aim of the study was the minimization of the objec-
tive function, that is, the reduction of total sandflies population and the minimization of
infected classes in the human and dog populations. Three control variables, q1, q2, and q3,
were introduced to control the biting rate of sandflies and the densities of the infectious
class of dog and vector populations. For this, first of all we investigated the sensitivity of
the initial rate of transmission, R0, for different parameters involved in the transmission.
Different parameters used in R0 have different sensitivity indices. We needed to address
the parameters with high sensitivity. However, some parameters are beyond the human
control, like the birth and death rates of human and reservoir populations. The sensitivity
index of a, the biting rate of sandfly, is 1. That is, a decrease of 20% in a would cause a
decrease of 20% in R0, the initial rate of disease transmission. Similarly, μv, �v, μr , and
�r have high sensitivity indices and hence a high impact on the disease transmission. The
most sensitive parameters, namely a, the biting rate of sandfly, μv, the mortality rate of
sandflies, and μr , the death rate of dogs, are directly influenced by using control vari-
ables q1, q2, and q3. Aso �v, the birth rate of sandflies, is addressed indirectly by imposing
restrictions on the collection of blood meal, and hence reducing ovigenesis. Numerical
simulations show that as a result of these interventions cutaneous leishmaniasis can be
eliminated in the period of 1200 days. However, I2, P2, and I12 reduce to zero in 750, 1750,
and 1150 days, respectively. Moreover, P12, I21, Ir , and Iv reduce to zero in 1700, 950, 7,
and 7 days, respectively.
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