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Abstract
Since Kermack and McKendrick have introduced their famous epidemiological SIR
model in 1927, mathematical epidemiology has grown as an interdisciplinary
research discipline including knowledge from biology, computer science, or
mathematics. Due to current threatening epidemics such as COVID-19, this interest is
continuously rising. As our main goal, we establish an implicit time-discrete SIR
(susceptible people–infectious people–recovered people) model. For this purpose,
we first introduce its continuous variant with time-varying transmission and recovery
rates and, as our first contribution, discuss thoroughly its properties. With respect to
these results, we develop different possible time-discrete SIR models, we derive our
implicit time-discrete SIR model in contrast to many other works which mainly
investigate explicit time-discrete schemes and, as our main contribution, show
unique solvability and further desirable properties compared to its continuous
version. We thoroughly show that many of the desired properties of the
time-continuous case are still valid in the time-discrete implicit case. Especially, we
prove an upper error bound for our time-discrete implicit numerical scheme. Finally,
we apply our proposed time-discrete SIR model to currently available data regarding
the spread of COVID-19 in Germany and Iran.
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1 Introduction
1.1 Motivation
Since its outbreak in Wuhan (China) in December 2019, the quick spread of COVID-19
has threatened people worldwide. Politicians around the globe have to balance different
interests and need to make tremendous decisions which impact our daily life. For these
reasons, governments around the world heavily rely on scientific advice in the present sit-
uation. Thus, John Hopkins University has been collecting epidemiological data regarding
COVID-19 from many countries during the last months [1, 2]. Additionally, many biolog-
ical and medical studies regarding different aspects of this new coronavirus have been
rapidly appearing in scientific journals [3–9]. However, to estimate the impact of COVID-
19, governments need forecasts from as many models as possible.
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Kermack and McKendrick introduced the now well-known SIR model in one of math-
ematical epidemiology’s most groundbreaking works in 1927 [10]. They assumed a fixed
population size and divided this population into three different homogeneous groups of
people, namely susceptible people, infectious people, and recovered people, excluding
births, deaths, and deaths by disease from their model. Due to its success and simplic-
ity, their work was reprinted in 1991 [11–13]. In upcoming decades, epidemiologists and
mathematicians have developed many variants and extensions of this basic model by, for
example, adding age or spatial structures [14–20].

After the outbreak of COVID-19, many scientists have recently published articles with
emphasis on epidemic forecasts which strongly relate to mathematical models. Many ap-
proaches, mainly focusing on stochastic arguments, with respect to predicting forecasts
of the total number of infected people have appeared during the last weeks [21–26] or
in the past [27, 28]. Recently, neural networks have been applied to forecasting [29] and,
additionally, different authors such as Atangana, Baleanu, or Khan have used fractional
differential equations in extended SIR-type models to investigate the spread of COVID-
19 or mathematical biology in general [30–34].

1.2 Contributions
There are works with respect to SIR models [35–37] and their time-discrete versions [38].
However, one finds mainly explicit schemes with respect to time-discrete SIR models in
the aforementioned works and references therein. For this reason, we summarize and ex-
tend some results on properties of the time-continuous classical SIR model, and we pro-
pose an implicit time-discrete version of this classical SIR model and prove that this time-
discrete variant maintains many of time-continuous version’s properties. Hence, the aim
of our study is to propose a nonautonomous SIR model, analyze the properties of its time-
continuous formulation, and develop an implicit numerical solution algorithm where the
main properties of the time-continuous variant are conserved. More precisely, our main
contributions can be summarized as follows:

1) At first, we propose a modified time-continuous SIR model with time-varying
transmission and recovery rates;

2) Secondly, we conclude well-posedness of our time-continuous problem formulation.
This includes global existence in time, global uniqueness in time, based on an
inductive application of Banach’s fixed point theorem, and continuous dependence
on initial conditions and time-varying rates;

3) In case of the time-discrete implicit model, we provide unique solvability,
monotonicity properties, and an upper error bound between the solution of the
implicit time-discrete problem formulation and the solution of the time-continuous
problem formulation;

4) Finally, we compare our model predictions with real-world data regarding the spread
of COVID-19 from different countries. Data have been collected by John Hopkins
University.

Conclusively, we summarize our results and give a brief outlook on possible extensions.

2 Time-continuous SIR model
In this section, we portray the time-continuous SIR model and its properties.



Wacker and Schlüter Advances in Difference Equations        (2020) 2020:556 Page 3 of 44

2.1 Mathematical background material
Here, we recall Lipschitz continuity of a function on Euclidean spaces.

Definition 1 ([39, Sect. 3.2]) Let d1, d2 ∈N. If S ⊂R
d1 , a defined function F : S −→R

d2 is
called Lipschitz continuous on S if there exists a nonnegative constant L ≥ 0 such that

∥
∥F(x) – F(y)

∥
∥
R

d2 ≤ L · ‖x – y‖
R

d1 (1)

holds for all x, y ∈ S. Here, ‖·‖ denotes a suitable norm on the corresponding Euclidean
space.

Let U ⊂R
d1 be open, let F : U −→R

d2 . We shall call F locally Lipschitz continuous if for
every point x0 ∈ U there exists a neighborhood V of x0 such that the restriction of F to V
is Lipschitz continuous on V .

In a more general framework, we consider a nonlinear initial value problem

⎧

⎨

⎩

z′(t) = G(t, z(t)),

z(0) = z0,
(2)

where we define our solution vector z(t) = (x1(t), . . . , xn(t))T , our vectorial function
G(t, z(t)) = (g1(t, z(t)), . . . , gn(t, z(t)))T , and our initial condition z0 ∈R

n. To conclude global
existence in time, we can apply the following theorem that is a direct consequence of Grön-
wall’s lemma.

Theorem 1 ([39, Theorem 4.2.1]) If G : Rn −→ R
n is locally Lipschitz continuous and if

there exist nonnegative real constants B and K such that

∥
∥G
(

t, z(t)
)∥
∥
Rn ≤ K · ∥∥z(t)

∥
∥
Rn + B (3)

holds for all z(t) ∈ R
n, then the solution of the initial value problem (2) exists for all time

t ∈R and, moreover, it holds

∥
∥z(t)

∥
∥
Rn ≤ ‖z0‖Rn · exp

(

K · |t|) +
B
K

· (exp
(

K · |t|) – 1
)

(4)

for all t ∈R.

To prove global uniqueness in time, we need Banach’s fixed point theorem since fixed
point theorems have been successfully applied as a versatile tool in different areas of math-
ematics [40, 41].

Theorem 2 ([42, Theorem V.18]) Let (X,�) be a complete metric space with the metric
mapping � : X × X −→ [0,∞). Let T : X −→ X be a strict contraction, i.e., there exists a
constant K ∈ [0, 1) such that �(Tx, Ty) ≤ K · �(x, y) holds for all x, y ∈ X. Then the mapping
T has a unique fixed point.

Finally, since we want to provide continuous dependence on initial conditions and other
data, we need the following inequality named after Gronwall and Bellman.
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Theorem 3 ([43, Theorem 1.3.1]) Let I := [a, b]. Let u, f : I −→ [0,∞) be continuous and
nonnegative functions. Let g : I −→ (0,∞) be a continuous, positive, and nondecreasing
function. If the inequality

u(t) ≤ g(t) +
∫ t

a
f (s) · u(s) ds (5)

holds for all t ∈ I , then we obtain

u(t) ≤ g(t) · exp

(∫ t

a
f (s) ds

)

(6)

for all t ∈ I .

2.2 Continuous problem formulation
At first, let us state the model’s assumptions [16, 17]:

1) The population’s size N is fixed over time, i.e., N(t) = N for all t ∈ [0,∞);
2) We divide a population into three homogeneous subgroups, namely susceptible

people (S), infectious people (I), and recovered people (R). We can clearly assign
every individual to exactly one subgroup. Hence, we obtain

N = S(t) + I(t) + R(t) (7)

for all t ∈ [0,∞);
3) Additionally, no births and deaths occur;
4) The time-varying transmission rate α : [0,∞) −→ [0,∞) is Lipschitz continuous and

continuously differentiable once, and there exist positive constants αmin > 0 and
0 < αmax such that αmin ≤ α(t) ≤ αmax holds for all t ≥ 0;

5) The time-varying recovery rate β : [0,∞) −→ [0,∞) is Lipschitz continuous and
continuously differentiable once, and there are positive constants βmin > 0 and
0 < βmax such that βmin ≤ β(t) ≤ βmax holds for all t ≥ 0.

We briefly comment on our choice of time-varying transmission rates. The choice of time-
dependent transmission rates is possible because countermeasures such as lock-downs,
social distancing, or other political actions such as curfews reduce possible contacts be-
tween susceptible and infectious people. In addition to that, time-varying recovery rates
might also be an interesting choice due to different medical treatments over the course of
new epidemics such as COVID-19.

Furthermore, we exclude age structures or spatial relationships from our time-contin-
uous model [16, 19]. For abbreviation, we write f ′(t) := df (t)

dt . Our equations of the time-
continuous SIR model read as follows:

⎧

⎪⎪⎨

⎪⎪⎩

S′(t) = –α(t) · I(t)·S(t)
N ,

I ′(t) = α(t) · S(t)·I(t)
N – β(t) · I(t),

R′(t) = β(t) · I(t)

(8)
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Figure 1 Flowchart of the three different subgroups
described by the time-continuous SIR model

with initial conditions S(0) = S1 > 0, I(0) = I1 > 0, and R(0) = R1 ≥ 0. We portray a chart of
the flow between the different three subgroups in Fig. 1. Obviously, the equation

N ′(t) = S′(t) + I ′(t) + R′(t) = 0

is valid, and hence the first assumption is fulfilled.

2.3 Nonnegativity and boundedness of solution
Now, we prove boundedness of the solution. For this purpose, we modify ideas from [17]
and [44] because we, in contrast to them, consider bounded, time-varying transmission
rates α : [0,∞) −→ [0,∞) and recovery rates β : [0,∞) −→ [0,∞).

Lemma 1 Each solution function of (8) is bounded below by zero.

Proof Here, we split the proof into three parts.
1) We first consider S′(t) = –α(t) · I(t)·S(t)

N . Separation of variables leads to

S′(t)
S(t)

= –α(t) · I(t)
N

.

Integration yields

ln

(
S(t)
S1

)

= –
∫ t

0
α(τ ) · I(τ )

N
dτ ,

and this implies

S(t) = S1 · exp

(

–
∫ t

0
α(τ ) · I(τ )

N
dτ

)

.

Hence, it holds S(t) ≥ 0 for all t ≥ 0.
2) Let us continue with I ′(t) = α(t) · I(t)·S(t)

N – β(t) · I(t). Separation of variables gives
us

I ′(t)
I(t)

=
(

α(t) · S(t)
N

– β(t)
)
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and, applying the same argument as in our first step, we conclude

I(t) = I1 · exp

(∫ t

0

{

α(τ ) · S(τ )
N

– β(t)
}

dτ

)

.

This yields I(t) ≥ 0 for all t ≥ 0.
3) Finally, since R′(t) = β(t) · I(t) holds, we clearly obtain

R(t) = R1 +
∫ t

0
β(t) · I(τ ) dτ

and R(t) ≥ 0 for all t ≥ 0 is valid.
This completes our proof. �

Since N = S(t) + I(t) + R(t) holds by our first assumption, we can finally state our bound-
edness theorem.

Theorem 4 For all solution functions of (8), we have:
1) 0 ≤ S(t) ≤ N ;
2) 0 ≤ I(t) ≤ N ;
3) 0 ≤ R(t) ≤ N

for all t ≥ 0.

2.4 Global existence in time
In contrast to many other works, we formulate a theorem regarding global existence in
time of (8) based on Theorem 1. For abbreviation, we introduce the supremum norm

∥
∥f (t)

∥
∥∞ := sup

t∈[a,b]

∣
∣f (t)
∣
∣

on an arbitrary time interval [a, b] for a continuous function f : [a, b] −→ R. A similar
definition holds for vector-valued functions. In our case, we consider [0,∞) in general.
Now, we show that a possible solution to (8) exists for all times t ≥ 0.

Theorem 5 The nonlinear first order ordinary differential equation system (8) has at least
one solution which exists for all t ≥ 0.

Proof By defining z(t) = (S(t), I(t), R(t))T , we can set

G : [0,∞) ×R
3 −→R

3,
(

t, z(t)
)−→

⎛

⎜
⎝

–α(t) · I(t)·S(t)
N

α(t) · S(t)·I(t)
N – β(t) · I(t)

β(t) · I(t)

⎞

⎟
⎠ . (9)

Clearly, G is Lipschitz continuous. By considering the supremum norm on our Euclidean
space and applying the triangle inequality, we get

∥
∥G
(

t, z(t)
)∥
∥∞

= sup
t∈[0,∞)

{∣
∣
∣
∣
–α(t)

I(t) · S(t)
N

∣
∣
∣
∣
,
∣
∣
∣
∣
α(t)

S(t) · I(t)
N

– β(t) · I(t)
∣
∣
∣
∣
,
∣
∣β(t) · I(t)

∣
∣

}
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≤ sup
t∈[0,∞)

{

αmax ·
∣
∣
∣
∣

I(t) · S(t)
N

∣
∣
∣
∣
,αmax ·

∣
∣
∣
∣

I(t) · S(t)
N

∣
∣
∣
∣

+ βmax · ∣∣I(t)
∣
∣,βmax · ∣∣I(t)

∣
∣

}

≤ sup
t∈[0,∞)

{

αmax · ∣∣S(t)
∣
∣,αmax · ∣∣I(t)

∣
∣ + βmax · ∣∣I(t)

∣
∣,βmax · ∣∣I(t)

∣
∣
}

≤ (αmax + βmax) · ∥∥z(t)
∥
∥∞

from (9) by the boundedness of our solution functions and the boundedness of our time-
varying transmission and recovery rates. Thus, all our assumptions of Theorem 1 are ful-
filled and our proof is complete. �

2.5 Global uniqueness in time
We present our proof of global uniqueness in time based on an inductive application of
Banach’s fixed point theorem, i.e., that the initial value problem (8) is uniquely solvable for
all times t ≥ 0.

Theorem 6 The nonlinear first order ordinary differential equation system (8) has a
unique solution that exists for all t ≥ 0.

Proof 1) Let us first consider the time interval [0, τ ] where we have to choose τ accordingly
such that Banach’s fixed point theorem is applicable.

2) We need one brief lemma. Let x1, x2, y1, y2 ∈ R be arbitrary. By zero addition and
application of the triangle inequality, we obtain

|x1 · y1 – x2 · y2| = |x1 · y1 – x1 · y2 + x1 · y2 – x2 · y2|
≤ |x1 · y1 – x1 · y2| + |x1 · y2 – x2 · y2|
= |x1| · |y1 – y2| + |y2| · |x1 – x2|.

3) We assume that S, I , R, S̃, Ĩ , R̃ : [0,∞) −→ [0,∞) are two solutions of (8). At first, it
holds

sup
t∈[0,τ ]

∣
∣S(t) – S̃(t)

∣
∣

= sup
t∈[0,τ ]

∣
∣
∣
∣

∫ t

0
–

α(z)
N

· S(z) · I(z) +
α(z)
N

· S̃(z) · Ĩ(z) dz
∣
∣
∣
∣

≤ sup
t∈[0,τ ]

αmax

N
·
∫ t

0

∣
∣S̃(z) · Ĩ(z) – S(z) · I(z)

∣
∣dz

≤ sup
t∈[0,τ ]

αmax · t · {∣∣I(t) – Ĩ(t)
∣
∣ +
∣
∣S(t) – S̃(t)

∣
∣
}

≤ 2 · αmax · τ · ∥∥z(t) – z̃(t)
∥
∥∞

by our inequality of the second step.
4) Secondly, we obtain

sup
t∈[0,τ ]

∣
∣I(t) – Ĩ(t)

∣
∣

= sup
t∈[0,τ ]

∣
∣
∣
∣

∫ t

0

α(z)
N

· {I(z) · S(z) – Ĩ(z) · S̃(z)
}

+ β(z) · {I(z) – Ĩ(z)
}

dz
∣
∣
∣
∣
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≤ sup
t∈[0,τ ]

αmax

N
·
∫ t

0

∣
∣I(z) · S(z) – Ĩ(z) · S̃(z)

∣
∣dz + sup

t∈[0,τ ]
βmax ·

∫ t

0

∣
∣I(z) – Ĩ(z)

∣
∣dz

≤ sup
t∈[0,τ ]

αmax · t · {∣∣I(t) – Ĩ(t)
∣
∣ +
∣
∣S(t) – S̃(t)

∣
∣
}

+ sup
t∈[0,τ ]

βmax · t · ∣∣I(t) – Ĩ(t)
∣
∣

≤ (2 · αmax + βmax) · τ · ∥∥z(t) – z̃(t)
∥
∥∞

by our inequality of the second step and application of the triangle inequality.
5) Furthermore, we conclude that

sup
t∈[0,τ ]

∣
∣R(t) – R̃(t)

∣
∣

= sup
t∈[0,τ ]

∣
∣
∣
∣

∫ t

0
β(z) · {I(z) – Ĩ(z)

}

dz
∣
∣
∣
∣

≤ βmax · τ · ∥∥z(t) – z̃(t)
∥
∥∞

holds.
6) Summarizing the previous steps, we obtain

∥
∥z(t) – z̃(t)

∥
∥∞ ≤ (2 · αmax + βmax) · τ · ∥∥z(t) – z̃(t)

∥
∥∞.

If we choose τ := 1
2·(2·αmax+βmax) , this implies

∥
∥z(t) – z̃(t)

∥
∥∞ ≤ 1

2
· ∥∥z(t) – z̃(t)

∥
∥∞,

and hence we conclude the uniqueness of solution on the time interval [0, τ ].
7) Inductively, we see that we can derive this contraction property on all time intervals

[k · τ , (k + 1) · τ ] for all k ∈ N0 by choosing k · τ as our starting point and for our initial
conditions. Henceforth, our proof of global uniqueness in time is complete. �

2.6 Continuous dependence on initial conditions and time-varying rates
Here, we consider the perturbed initial value problems

⎧

⎪⎪⎨

⎪⎪⎩

S′
a(t) = –αa(t) · Ia(t)·Sa(t)

N ,

I ′
a(t) = αa(t) · Sa(t)·Ia(t)

N – βa(t) · Ia(t),

R′
a(t) = βa(t) · Ia(t)

(10)

with initial conditions Sa(0) = Sa,1 > 0, Ia(0) = Ia,1 > 0, Ra(0) = Ra,1 ≥ 0 and

⎧

⎪⎪⎨

⎪⎪⎩

S′
b(t) = –αb(t) · Ib(t)·Sb(t)

N ,

I ′
b(t) = αb(t) · Sb(t)·Ib(t)

N – βb(t) · Ib(t),

R′
b(t) = βb(t) · Ib(t)

(11)

with initial conditions Sb(0) = Sb,1 > 0, Ib(0) = Ib,1 > 0, Rb(0) = Rb,1 ≥ 0, where αa, αb, βa,
βb : [0,∞) −→ [0,∞) are different time-varying transmission and recovery rates. Now, we
prove that small perturbations in initial conditions or small differences in time-varying



Wacker and Schlüter Advances in Difference Equations        (2020) 2020:556 Page 9 of 44

transmission or recovery rates lead to small differences in the solutions on short time
intervals [0, T]. This fact is summarized in the following theorem.

Theorem 7 Let za(t) = (Sa(t), Ia(t), Ra(t))T and zb(t) = (Sb(t), Ib(t), Rb(t))T be the solutions
of (10) and (11). Define the function

g(t) :=
∥
∥za(0) – zb(0)

∥
∥∞ + Na · t · ∥∥αa(t) – αb(t)

∥
∥∞

+
Nb

Na
· t · max{αmax,a;αmax,b} · |Na – Nb| + Na · t · ∥∥βa(t) – βb(t)

∥
∥∞

and the constant

KGB :=
{

max{αmax,a;αmax,b} ·
(

1 +
Nb

Na

)

+ max{βmax,a;βmax,b}
}

.

We see that

∥
∥za(t) – zb(t)

∥
∥∞ ≤ g(t) · exp(KGB · t) (12)

holds for arbitrary t ∈ [0, T] with given T ≥ 0.

Proof 1) Let us first mention that we often use the inequality

|x1 · y1 – x2 · y2| ≤ |x1| · |y1 – y2| + |y2| · |x1 – x2|

for arbitrary x1, x2, y1, y2 ∈R as proven in Theorem 6. Additionally, we see that

Na = Sa(0) + Ia(0) + Ra(0) and Nb = Sb(0) + Ib(0) + Rb(0)

hold for all t ∈ [0, T].
2) At first, we obtain the inequality

∣
∣Sa(t) – Sb(t)

∣
∣

≤ ∣∣Sa(0) – Sb(0)
∣
∣ +
∫ t

0

∣
∣
∣
∣

αa(τ )
Na

· Ia(τ ) · Sa(τ ) –
αb(τ )

Nb
· Ib(τ ) · Sb(τ )

∣
∣
∣
∣
dτ

≤ ∣∣Sa(0) – Sb(0)
∣
∣ +
∫ t

0

∣
∣
∣
∣

αa(τ )
Na

· Ia(τ ) · Sa(τ ) –
αb(τ )

Na
· Ia(τ ) · Sa(τ )

∣
∣
∣
∣
dτ

+
∫ t

0

∣
∣
∣
∣

αb(τ )
Na

· Ia(τ ) · Sa(τ ) –
αb(τ )

Na
· Ia(τ ) · Sb(τ )

∣
∣
∣
∣
dτ

+
∫ t

0

∣
∣
∣
∣

αb(τ )
Na

· Ia(τ ) · Sb(τ ) –
αb(τ )

Nb
· Ib(τ ) · Sb(τ )

∣
∣
∣
∣
dτ

≤ ∣∣Sa(0) – Sb(0)
∣
∣ + Na · t · ∥∥αa(t) – αb(t)

∥
∥∞

+ max{αmax,a;αmax,b} ·
∫ t

0

∣
∣Sa(τ ) – Sb(τ )

∣
∣dτ

+ max{αmax,a;αmax,b} · Nb ·
∫ t

0

∣
∣
∣
∣

1
Na

· Ia(τ ) –
1

Nb
· Ib(τ )

∣
∣
∣
∣
dτ
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≤ ∣∣Sa(0) – Sb(0)
∣
∣ + Na · t · ∥∥αa(t) – αb(t)

∥
∥∞

+ max{αmax,a;αmax,b} ·
∫ t

0

∣
∣Sa(τ ) – Sb(τ )

∣
∣dτ

+ max{αmax,a;αmax,b} · Nb ·
∫ t

0

{
1

Na
· ∣∣Ia(τ ) – Ib(τ )

∣
∣ + Nb ·

∣
∣
∣
∣

1
Na

–
1

Nb

∣
∣
∣
∣

}

dτ

≤ ∣∣Sa(0) – Sb(0)
∣
∣ + Na · t · ∥∥αa(t) – αb(t)

∥
∥∞

+ max{αmax,a;αmax,b} ·
∫ t

0

∣
∣Sa(τ ) – Sb(τ )

∣
∣dτ

+ max{αmax,a;αmax,b} · Nb

Na
·
∫ t

0

∣
∣Ia(τ ) – Ib(τ )

∣
∣dτ

+
Nb

Na
· t · max{αmax,a;αmax,b} · |Na – Nb|

for arbitrary t ∈ [0, T] by application of the triangle inequality, boundedness of our all
functions, and the inequality of our first step.

3) Secondly, we have to estimate |Ia(t) – Ib(t)|. We see that

∣
∣Ia(t) – Ib(t)

∣
∣

≤ ∣∣Ia(0) – Ib(0)
∣
∣ +
∫ t

0

∣
∣
∣
∣

αa(τ )
Na

· Ia(τ ) · Sa(τ ) –
αb(τ )

Nb
· Ib(τ ) · Sb(τ )

∣
∣
∣
∣
dτ

︸ ︷︷ ︸

:=I

+
∫ t

0

∣
∣βa(τ ) · Ia(τ ) – βb(τ ) · Ib(τ )

∣
∣dτ

︸ ︷︷ ︸

:=II

holds for arbitrary t ∈ [0, T]. The summand I can be estimated in the previous step. This
yields

I ≤ Na · t · ∥∥αa(t) – αb(t)
∥
∥∞ + max{αmax,a;αmax,b} ·

∫ t

0

∣
∣Sa(τ ) – Sb(τ )

∣
∣dτ

+ max{αmax,a;αmax,b} · Nb

Na
·
∫ t

0

∣
∣Ia(τ ) – Ib(τ )

∣
∣dτ

+
Nb

Na
· t · max{αmax,a;αmax,b} · |Na – Nb|

for arbitrary t ∈ [0, T]. For the third summand II , we observe that

II ≤
∫ t

0

∣
∣βa(τ ) · Ia(τ ) – βb(τ ) · Ib(τ )

∣
∣dτ

≤
∫ t

0

∣
∣βa(τ ) · Ia(τ ) – βb(τ ) · Ia(τ )

∣
∣dτ +

∫ t

0

∣
∣βb(τ ) · Ia(τ ) – βb(τ ) · Ib(τ )

∣
∣dτ

≤ Na · t · ∥∥βa(t) – βb(t)
∥
∥∞ + max{βmax,a;βmax,b} ·

∫ t

0

∣
∣Ia(τ ) – Ib(τ )

∣
∣dτ
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is valid for arbitrary t. Summarizing these results, we obtain

∣
∣Ia(t) – Ib(t)

∣
∣

≤ ∣∣Ia(0) – Ib(0)
∣
∣ + Na · t · ∥∥αa(t) – αb(t)

∥
∥∞

+
Nb

Na
· t · max{αmax,a;αmax,b} · |Na – Nb| + Na · t · ∥∥βa(t) – βb(t)

∥
∥∞

+ max{αmax,a;αmax,b} ·
∫ t

0

∣
∣Sa(τ ) – Sb(τ )

∣
∣dτ

+ max{αmax,a;αmax,b} · Nb

Na
·
∫ t

0

∣
∣Ia(τ ) – Ib(τ )

∣
∣dτ

+ max{βmax,a;βmax,b} ·
∫ t

0

∣
∣Ia(τ ) – Ib(τ )

∣
∣dτ

for arbitrary t ∈ [0, T].
4) Now, we must estimate |Ra(t) – Rb(t)|. It holds

∣
∣Ra(t) – Rb(t)

∣
∣

≤ ∣∣Ra(0) – Rb(0)
∣
∣ +
∫ t

0

∣
∣βa(τ ) · Ia(τ ) – βb(τ ) · Ib(τ )

∣
∣dτ

≤ ∣∣Ra(0) – Rb(0)
∣
∣ +
∫ t

0

∣
∣βa(τ ) · Ia(τ ) – βb(τ ) · Ia(τ )

∣
∣dτ

+
∫ t

0

∣
∣βb(τ ) · Ia(τ ) – βb(τ ) · Ib(τ )

∣
∣dτ

≤ ∣∣Ra(0) – Rb(0)
∣
∣ + Na · t · ∥∥βa(t) – βb(t)

∥
∥∞

+ max{βmax,a;βmax,b} ·
∫ t

0

∣
∣Ia(τ ) – Ib(τ )

∣
∣dτ

for arbitrary t ∈ [0, T].
5) Finally, we obtain

∥
∥za(t) – zb(t)

∥
∥∞

≤ ∥∥za(0) – zb(0)
∥
∥∞ + Na · t · ∥∥αa(t) – αb(t)

∥
∥∞

+
Nb

Na
· t · max{αmax,a;αmax,b} · |Na – Nb| + Na · t · ∥∥βa(t) – βb(t)

∥
∥∞

+ max{αmax,a;αmax,b} ·
∫ t

0

∥
∥za(τ ) – zb(τ )

∥
∥∞ dτ

+ max{αmax,a;αmax,b} · Nb

Na
·
∫ t

0

∥
∥za(τ ) – zb(τ )

∥
∥∞ dτ

+ max{βmax,a;βmax,b} ·
∫ t

0

∥
∥za(τ ) – zb(τ )

∥
∥∞ dτ
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for arbitrary t ∈ [0, T]. This implies

∥
∥za(t) – zb(t)

∥
∥∞

≤ ∥∥za(0) – zb(0)
∥
∥∞ + Na · t · ∥∥αa(t) – αb(t)

∥
∥∞

+
Nb

Na
· t · max{αmax,a;αmax,b} · |Na – Nb| + Na · t · ∥∥βa(t) – βb(t)

∥
∥∞

+
{

max{αmax,a;αmax,b} ·
∫ t

0

∥
∥za(τ ) – zb(τ )

∥
∥∞ dτ

+ max{αmax,a;αmax,b} · Nb

Na
·
∫ t

0

∥
∥za(τ ) – zb(τ )

∥
∥∞ dτ

+ max{βmax,a;βmax,b} ·
∫ t

0

∥
∥za(τ ) – zb(τ )

∥
∥∞ dτ

}

.

6) Define the functions

u(t) :=
∥
∥za(t) – zb(t)

∥
∥∞,

g(t) :=
∥
∥za(0) – zb(0)

∥
∥∞ + Na · t · ∥∥αa(t) – αb(t)

∥
∥∞

+
Nb

Na
· t · max{αmax,a;αmax,b} · |Na – Nb| + Na · t · ∥∥βa(t) – βb(t)

∥
∥∞,

f (t) :=
{

max{αmax,a;αmax,b} ·
(

1 +
Nb

Na

)

+ max{βmax,a;βmax,b}
}

=: KGB.

Since all the assumptions of Theorem 3 are fulfilled, we see that

∥
∥za(t) – zb(t)

∥
∥∞ ≤ g(t) · exp(KGB · t)

holds for arbitrary t ∈ [0, T], which finishes our proof. �

2.7 Monotonicity properties and long-time behavior
We now investigate the long-time behavior of solution, some monotonicity properties and
summarize our results in the following theorem.

Theorem 8 We get:
1) S is monotonically decreasing, and there exists a number S� ≥ 0 such that

limt→∞ S(t) = S�. It even holds S� > 0;
2) R is monotonically increasing, and there exists a number R� ≥ 0 such that

limt→∞ R(t) = R�;
3) I is Lebesgue-integrable on [0,∞) and limt→∞ I(t) = 0

for all solution functions of (8).

Proof 1) Since S′(t) ≤ 0 for all t ≥ 0 and 0 ≤ S(t) ≤ S0 by Theorem 4, S : [0,∞) −→ [0,∞)
is monotonically decreasing and bounded below by zero. This implies the existence of
S� ≥ 0 such that limt→∞ S(t) = S�. Additionally, by considering S′(t)

R′(t) for t > 0, we obtain

S′(t)
R′(t)

= –
α(t) · S(t)
β(t) · N

≥ –
αmax

βmin
· S(t)

N
,
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and separation of variables implies

S′(t)
S(t)

≥ –
αmax

βmin · N
· R′(t).

Integration yields

S(t) ≥ S(0) · exp

(

–
αmax

βmin · N
· (R(t) – R(0)

)
)

≥ S(0) · exp

(

–
αmax

βmin

)

> 0

for all t ≥ 0. Hence, it holds S� > 0.
2) Since R′(t) ≥ 0 for all t ≥ 0 and 0 ≤ R(t) ≤ N is true by application of Theorem 4,

R : [0,∞) −→ [0,∞) is monotonically increasing and bounded above by N . This yields the
existence of R� ≥ 0 such that limt→∞ R(t) = R� holds.

3) Since S′(t) = –α(t) · I(t)·S(t)
N holds, integration yields

S1 – S� =
∫ ∞

0

α(τ )
N

· S(τ ) · I(τ ) dτ

≥ αmin · S�

N
·
∫ t

0
I(τ ) dτ

because all functions α, S, I : [0,∞) −→ [0,∞) are bounded and nonnegative. Therefore,
we obtain that I is Lebesgue-integrable on [0,∞) and limt→∞ I(t) = 0. This finishes our
proof. �

2.8 Calculation of the time-continuous basic reproduction number
In our nonautonomous SIR model, the time-dependent basic reproduction number can
be defined by

R0(t) :=
α(t)
β(t)

, (13)

which is similar to the constant case [17, 45, 46].

Lemma 2 Equation (13) is well defined.

Proof We observe that

0 <
αmin

βmax
≤ α(t)

β(t)
=: R0(t) :=

α(t)
β(t)

≤ αmax

βmin

is valid for all t ≥ 0. This proves our claim. �

3 Time-discrete implicit SIR model
In this section, we examine time-discrete versions of the given time-continuous SIR model
(8). Let us assume that our time interval [0, T] can be divided by a strictly increasing se-
quence {tj}M

j=1 for M ∈N with t1 = 0 and tM = T . For abbreviation, we write f (tj) := fj for all
j ∈ {1, . . . , M} and an arbitrary time-dependent function f .
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3.1 Discussion of formulations
Here, we only state a fully explicit scheme

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sj+1–Sj
tj+1–tj

= –αj+1 · Ij·Sj
N ,

Ij+1–Ij
tj+1–tj

= αj+1 · Ij·Sj
N – βj+1 · Ij,

Rj+1–Rj
tj+1–tj

= βj+1 · Ij

(14)

and a fully implicit scheme

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sj+1–Sj
tj+1–tj

= –αj+1 · Ij+1·Sj+1
N ,

Ij+1–Ij
tj+1–tj

= αj+1 · Ij+1·Sj+1
N – βj+1 · Ij+1,

Rj+1–Rj
tj+1–tj

= βj+1 · Ij+1

(15)

of the time-continuous SIR model (8) for all j ∈ {1, . . . , M – 1}. Both formulations fulfill

N = Sj+1 + Ij+1 + Rj+1 = Sj + Ij + Rj (16)

for all j ∈ {1, . . . , M – 1}. However, the fully explicit scheme (14) simply reduces to a linear
system, while the fully implicit scheme (15) maintains the nonlinear structure of the con-
tinuous problem formulation (8). For this reason, we investigate this fully implicit scheme
in the following.

3.2 Time-discrete implicit problem formulation
We assume that 0 < αmin ≤ aj ≤ αmax < 1 and 0 < βmin ≤ βj < βmax ≤ 1 are given for all
j ∈ {1, . . . , M} and that 0 < tj+1 – tj ≤ 1 for all j ∈ {1, . . . , M – 1} and that S1 > 0, I1 > 0, and
R1 ≥ 0 are given. As later observed in our numerical examples, these assumptions are
fulfilled in epidemiological data of the spread of COVID-19. An implicit solution scheme
of (15) reads as follows:

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sj+1 = Sj

1+αj+1·(tj+1–tj)·
Ij+1

N

,

Ij+1 = Ij

1+βj+1·(tj+1–tj)–αj+1·(tj+1–tj)·
Sj+1

N

,

Rj+1 = Rj + βj+1 · (tj+1 – tj) · Ij+1

(17)

for all j ∈ {1, . . . , M – 1}. Now, we are able to obtain an appropriate solution scheme from
(17) which even implies unique solvability for all j ∈ {1, . . . , M – 1} under the assumption
that Sj > 0, Ij > 0, and Rj ≥ 0 for all j ∈ {1, . . . , M}.

3.3 Unique solvability
Our main ingredient is the equation

Ij+1 =
Ij

1 + βj+1 · (tj+1 – tj) – αj+1 · (tj+1 – tj) · Sj+1
N

(18)
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from (17). Plugging

Sj+1 =
Sj

1 + αj+1 · (tj+1 – tj) · Ij+1
N

into (18) and writing �j+1 = (tj+1 – tj) yields

Ij+1 =
(N + αj+1 · �j+1 · Ij+1) · Ij

(1 + βj+1 · �j+1) · (N + αj+1 · �j+1 · Ij+1) – αj+1 · �j+1 · Sj
(19)

for all j ∈ {1, . . . , M – 1}. Hence, we get

(1 + βj+1 · �j+1) · (αj+1 · �j+1) · I2
j+1 + (1 + βj+1 · �j+1) · N · Ij+1

= αj+1 · �j+1 · (Sj + Ij) · Ij+1 + N · Ij,

and by setting

Aj+1 := (1 + βj+1 · �j+1) · (αj+1 · �j+1) (20)

and

Bj+1 :=
(1 + βj+1 · �j+1) · N – αj+1 · �j+1 · (Sj + Ij)

2
, (21)

we get Aj+1 · I2
j+1 + 2 · Bj+1 · Ij+1 = N · Ij and can finally conclude

Ij+1 = –
Bj+1

Aj+1
+

√
√
√
√

B2
j+1

A2
j+1

+
N · Ij

Aj+1
(22)

for all j ∈ {1, . . . , M – 1}. We now have an explicit solution formula for Ij+1 for all j ∈
{1, . . . , M – 1} and therefore also for Sj+1 and Rj+1 for all j ∈ {1, . . . , M – 1}. Summarizing
our results, we can formulate the following theorem.

Theorem 9 Let us assume that 0 < αmin ≤ aj ≤ αmax < 1 and 0 < βmin ≤ βj ≤ βmax < 1 are
given for all j ∈ {1, . . . , M}, that 0 < tj+1 – tj ≤ 1 holds for all j ∈ {1, . . . , M – 1}, and that
S1 > 0, I1 > 0, and R1 ≥ 0 are prescribed. The implicit solution scheme (17)

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sj+1 = Sj

1+αj+1·(tj+1–tj)·
Ij+1

N

,

Ij+1 = Ij

1+βj+1·(tj+1–tj)–αj+1·(tj+1–tj)·
Sj+1

N

,

Rj+1 = Rj + βj+1 · (tj+1 – tj) · Ij+1

is uniquely solvable for all j ∈ {1, . . . , M – 1}. It holds (22)

Ij+1 = –
Bj+1

Aj+1
+

√
√
√
√

B2
j+1

A2
j+1

+
N · Ij

Aj+1
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for all j ∈ {1, . . . , M – 1} with

Aj+1 := (1 + βj+1 · �j+1) · (αj+1 · �j+1)

and

Bj+1 :=
(1 + βj+1 · �j+1) · N – αj+1 · �j+1 · (Sj + Ij)

2
,

from (20) and (21).

3.4 Monotonicity properties and long-time behavior
We show that many of the continuous properties from Theorems 4 and 8 even translate
to the time-discrete implicit scheme (17).

Theorem 10 For our time-discrete implicit solution scheme (17), we have:
1) 0 ≤ Ij ≤ N for all j ∈ {1, . . . , M};
2) 0 ≤ Sj ≤ N for all j ∈ {1, . . . , M} and Sj+1 ≤ Sj for all j ∈ {1, . . . , M – 1};
3) 0 ≤ Rj ≤ N for all j ∈ {1, . . . , M} and Rj+1 ≥ Rj for all j ∈ {1, . . . , M – 1};
4) limj→∞ Ij = 0.

Proof 1) It holds Ij ≥ 0 due to (22) and Ij ≤ N due to (16) for all j ∈ {1, . . . , M}.
2) By our first property and due to (16), we have the inequality 0 ≤ Sj ≤ N for all j ∈

{1, . . . , M}. Again by our first property, we obtain

Sj+1 =
Sj

1 + αj+1 · �j+1 · Ij+1
N

≤ Sj

for all j ∈ {1, . . . , M – 1}.
3) By our first property and due to (16), we obtain the inequality 0 ≤ Rj ≤ N for all

j ∈ {1, . . . , M}. Again by our first property, we conclude

Rj+1 = Rj + βj+1 · �j+1 · Ij+1 ≥ Rj

for all j ∈ {1, . . . , M – 1}.
4) Since {Rj}j∈N is monotonically increasing and bounded above by the total population

size N , there exists a nonnegative constant R� such that limj→∞ Rj = R�. Furthermore, it
holds

Rj+1 – Rj = βj+1 · �j+1 · Ij+1,

which yields

Ij+1 ≤ Rj+1 – Rj

βmin · �j+1
.

This implies limj→∞ Ij = 0 and completes our assertion’s proof. �
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3.5 Error analysis
Now, we want to provide an upper bound for error propagation. Before proving this state-
ment, we need to formulate some assumptions for our convergence analysis. We summa-
rize them in the following list:

1) Let [0, T] be the considered time interval where t1 = 0 < t2 < · · · < tM–1 < tM = T ;
2) Let the initial conditions of the time-continuous and the time-discrete models

coincide;
3) Let the solution functions S, I , R : [0, T] −→ [0,∞) be twice continuously

differentiable;
4) Let the time-varying transmission rate α : [0, T] −→ [0,∞) and the time-varying

recovery rate β : [0, T] −→ [0,∞) be once continuously differentiable;
5) Let the time-varying transmission and recovery rates be bounded, i.e., there are

nonnegative constants αmin, αmax, βmin, βmax such that 0 < αmin ≤ α(t) ≤ αmax < 1 and
0 < βmin ≤ β(t) ≤ βmax < 1 hold for all t ∈ [0, T];

6) Choose �p < min{ 1
4·(αmax+βmax) , 1} ≤ 1 for all p ∈N and set � := maxp∈N �p.

Under these conditions, we obtain the following theorem where we adapt ideas from the
error analysis of an explicit-implicit solution algorithm as presented in [20].

Theorem 11 If the aforementioned assumptions are fulfilled, the difference between the so-
lution of the time-continuous problem formulation (8) and the solution of the time-discrete
problem formulation (17) fulfills

∥
∥zp+1 – z(tp+1)

∥
∥∞ ≤ Cloc · � ·

{(
1

1 – 2 · (αmax + βmax) · �
)p

– 1
}

. (23)

Proof We briefly describe our strategy first because this proof is technical. We begin with
an estimation of local errors between time-continuous and time-discrete solutions. After-
wards, we consider error propagation in time. Conclusively, we investigate the cumulation
of these errors. Time-discrete solutions are written as Sp at time tp and time-continuous
solutions as S(tp) at the same time.

1) For examination of local errors, we assume that

(tp, Sp)T =
(

tp, S(tp)
)T , (tp, Ip)T =

(

tp, I(tp)
)T , (tp, Rp)T =

(

tp, R(tp)
)T

hold for arbitrary p ∈ {1, . . . , M – 1} on the time interval [tp, tp+1]. Here, we consider solely
one time step and denote corresponding time-discrete solutions by S̃p+1, Ĩp+1, and R̃p+1.

1.1) It first holds

S̃p+1 =
Sp

1 + αp+1 · �p+1 · Ĩp+1
N

= S(tp) –
αp+1 · �p+1 · Ĩp+1

N · S(tp)

1 + αp+1 · �p+1 · Ĩp+1
N

,

and this implies

∣
∣S(tp+1) – S̃p+1

∣
∣

=
∣
∣
∣
∣
S(tp+1) – S(tp) +

αp+1 · �p+1 · Ĩp+1
N · S(tp)

1 + αp+1 · �p+1 · Ĩp+1
N

∣
∣
∣
∣
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=
∣
∣
∣
∣

∫ tp+1

tp

S′(τ ) dτ +
αp+1 · �p+1 · Ĩp+1

N · S(tp)

1 + αp+1 · �p+1 · Ĩp+1
N

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ tp+1

tp

S′(τ ) dτ – �p+1 · S′(tp) + �p+1 · S′(tp) +
αp+1 · �p+1 · Ĩp+1

N · S(tp)

1 + αp+1 · �p+1 · Ĩp+1
N

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ tp+1

tp

S′(τ ) dτ – �p+1 · S′(tp)
∣
∣
∣
∣

︸ ︷︷ ︸

:=IS,1

+
∣
∣
∣
∣
�p+1 · S′(tp) +

αp+1 · �p+1 · Ĩp+1
N · S(tp)

1 + αp+1 · �p+1 · Ĩp+1
N

∣
∣
∣
∣

︸ ︷︷ ︸

:=IIS,1

by application of the triangle inequality. We estimate these terms separately. For IS,1, we
obtain

IS,1 =
∣
∣
∣
∣

∫ tp+1

tp

S′(τ ) dτ – �p+1 · S′(tp)
∣
∣
∣
∣

=
∣
∣
∣
∣

∫ tp+1

tp

{

S′(τ ) – S′(tp)
}

dτ

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ tp+1

tp

(τ – tp) · S′(τ ) – S′(tp)
τ – tp

dτ

∣
∣
∣
∣

and the mean value theorem of calculus implies the existence of ξS,1 ∈ (tp, tp+1) such that

∣
∣S′′(ξS,1)

∣
∣ =
∣
∣
∣
∣

S′(τ ) – S′(tp)
τ – tp

∣
∣
∣
∣
≤ ∥∥S′′(t)

∥
∥∞

holds. This yields

IS,1 ≤ ∥∥S′′(t)
∥
∥∞ ·
∫ tp+1

tp

(τ – tp) dτ =
1
2

· �2
p+1 · ∥∥S′′(t)

∥
∥∞. (24)

For IIS,1, we see that

IIS,1 =
∣
∣
∣
∣
�p+1 · S′(tp) +

αp+1 · �p+1 · Ĩp+1
N · S(tp)

1 + αp+1 · �p+1 · Ĩp+1
N

∣
∣
∣
∣

=
∣
∣
∣
∣
–αp · �p+1 · S(tp) · I(tp)

N
+

αp+1 · �p+1 · Ĩp+1
N · S(tp)

1 + αp+1 · �p+1 · Ĩp+1
N

∣
∣
∣
∣

=
∣
∣
∣
∣

�p+1 · S(tp)
N

∣
∣
∣
∣
·
∣
∣
∣
∣
–αp · I(tp) +

αp+1 · Ĩp+1

1 + αp+1 · �p+1 · Ĩp+1
N

∣
∣
∣
∣

≤ �p+1 ·
∣
∣
∣
∣

–αp · I(tp) · {1 + αp+1 · �p+1 · Ĩp+1
N } + αp+1 · Ĩp+1

1 + αp+1 · �p+1 · Ĩp+1
N

∣
∣
∣
∣

≤ �p+1 ·
∣
∣
∣
∣
–αp · I(tp) ·

{

1 + αp+1 · �p+1 · Ĩp+1

N

}

+ αp+1 · Ĩp+1

∣
∣
∣
∣

= �p+1 ·
∣
∣
∣
∣
αp+1 · Ĩp+1 – αp · I(tp) ·

{

1 + αp+1 · �p+1 · Ĩp+1

N

}∣
∣
∣
∣
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≤ �p+1 · ∣∣αp+1 · Ĩp+1 – αp · I(tp)
∣
∣ + �p+1 ·

∣
∣
∣
∣
αp · I(tp) · αp+1 · �p+1 · Ĩp+1

N

∣
∣
∣
∣

≤ �p+1 · ∣∣αp+1 · Ĩp+1 – αp · I(tp)
∣
∣

︸ ︷︷ ︸

:=IIIS,1

+�2
p+1 · α2

max · N

is valid by the definition of S′(t), boundedness of our solution functions, and application
of the triangle inequality. By plugging

Ĩp+1 =
I(tp)

1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

into IIIS,1, we obtain

IIIS,1 = �p+1 · ∣∣αp+1 · Ĩp+1 – αp · I(tp)
∣
∣

= �p+1 ·
∣
∣
∣
∣
αp · I(tp) – αp+1 · I(tp)

1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

∣
∣
∣
∣

= �p+1 · ∣∣I(tp)
∣
∣ ·
∣
∣
∣
∣
αp –

αp+1

1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

∣
∣
∣
∣

≤ �p+1 · N ·
∣
∣
∣
∣

αp · {1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N } – αp+1

1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

∣
∣
∣
∣

≤ �p+1 · N
1 – αmax

·
∣
∣
∣
∣
αp ·
{

1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1

N

}

– αp+1

∣
∣
∣
∣

≤ �p+1 · N
1 – αmax

·
{

|αp – αp+1| +
∣
∣
∣
∣
αp ·
{

βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1

N

}∣
∣
∣
∣

}

=
�2

p+1 · N
1 – αmax

·
{∣
∣
∣
∣

αp+1 – αp

tp+1 – tp

∣
∣
∣
∣

+
∣
∣
∣
∣
αp ·
{

βp+1 – αp+1 · S̃p+1

N

}∣
∣
∣
∣

}

by the boundedness of our solution functions and application of the triangle inequality.
By the mean value theorem, there exists ξα,1 ∈ [tp, tp+1] such that

∣
∣α′(ξα,1)

∣
∣ =
∣
∣
∣
∣

αp+1 – αp

tp+1 – tp

∣
∣
∣
∣
≤ ∥∥α′(t)

∥
∥∞

holds. Hence, an additional application of the triangle inequality and boundedness of the
solution functions yields

IIIS,1 ≤ �2
p+1 · N

1 – αmax
· {∥∥α′(t)

∥
∥∞ + αmax · (αmax + βmax)

}

. (25)

Plugging (25) into IIS,1, we conclude that

IIS,1 ≤ �2
p+1 · N

1 – αmax
· {∥∥α′(t)

∥
∥∞ + αmax · (αmax + βmax)

}

+ �2
p+1 · α2

max · N (26)
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holds. Combining (24) and (26), we infer that

∣
∣S(tp+1) – S̃p+1

∣
∣

≤ IS,1 + IIS,1

≤ 1
2

· �2
p+1 · ∥∥S′′(t)

∥
∥∞ +

�2
p+1 · N

1 – αmax
· {∥∥α′(t)

∥
∥∞ + αmax · (αmax + βmax)

}

+ �2
p+1 · α2

max · N

= �2
p+1 ·
{

1
2

· ∥∥S′′(t)
∥
∥∞ +

N · {‖α′(t)‖∞ + αmax · (αmax + βmax)}
1 – αmax

+ N · α2
max

}

︸ ︷︷ ︸

=:Cloc,S

is valid. Thus, it holds

∣
∣S(tp+1) – S̃p+1

∣
∣≤ Cloc,S · �2

p+1. (27)

1.2) We observe that

Ĩp+1 =
Ip

1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

=
I(tp)

1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

= I(tp) – I(tp) · βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

is valid. Hence, it follows

∣
∣I(tp+1) – Ĩp+1

∣
∣

=
∣
∣
∣
∣
I(tp+1) – I(tp) + I(tp) · βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1

N

1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ tp+1

tp

I ′(τ ) dτ + I(tp) · βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ tp+1

tp

I ′(τ ) dτ – �p+1 · I ′(tp)
∣
∣
∣
∣

+
∣
∣
∣
∣
�p+1 · I ′(tp) + I(tp) · βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1

N

1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

∣
∣
∣
∣

≤ �2
p+1

2
· ∥∥I ′′(t)

∥
∥∞ +

∣
∣
∣
∣
�p+1 · I ′(tp) + I(tp) · βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1

N

1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

∣
∣
∣
∣

︸ ︷︷ ︸

=:II,1
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by application of the triangle inequality and with similar arguments as provided in the
previous step. As

I ′(tp) =
αp · I(tp) · S(tp)

N
– βp · I(tp)

holds, we further obtain

II,1 =
∣
∣
∣
∣
�p+1 · I ′(tp) + I(tp) · βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1

N

1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

∣
∣
∣
∣

= �p+1 ·
∣
∣
∣
∣
I ′(tp) +

βp+1 · I(tp) – αp+1 · I(tp) · S̃p+1
N

1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

∣
∣
∣
∣

= �p+1 ·
∣
∣
∣
∣

αp · I(tp) · S(tp)
N

– βp · I(tp) +
βp+1 · I(tp) – αp+1 · I(tp) · S̃p+1

N

1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

∣
∣
∣
∣

≤ �p+1

1 – αmax
·
∣
∣
∣
∣
αp · I(tp) · S(tp)

N
– αp+1 · I(tp) · S̃p+1

N
+ βp+1 · I(tp) – βp · I(tp)

∣
∣
∣
∣

+
�2

p+1 · N
1 – αmax

·
∣
∣
∣
∣

(

βp+1 – αp+1 · S̃p+1

N

)

·
(

αp · S(tp)
N

– βp

)∣
∣
∣
∣

≤ �p+1

1 – αmax
· ∣∣αp · S(tp) – αp+1 · S̃p+1

∣
∣ +

�p+1

1 – αmax
· ∣∣βp+1 · I(tp) – βp · I(tp)

∣
∣

+
�2

p+1

1 – αmax
· (αmax + βmax)2

≤ �p+1

1 – αmax
· ∣∣αp · S(tp) – αp+1 · S̃p+1

∣
∣

︸ ︷︷ ︸

=:III,1

+
�p+1 · N
1 – αmax

· |βp+1 – βp|
︸ ︷︷ ︸

=:IIII,1

+
�2

p+1

1 – αmax
· (αmax + βmax)2

by the boundedness of the solution functions and application of the triangle inequality. By
using

S̃p+1 =
S(tp)

1 + αp+1 · �p+1 · Ĩp+1
N

,

we obtain

III,1 =
∣
∣αp · S(tp) – αp+1 · S̃p+1

∣
∣

=
∣
∣
∣
∣
αp · S(tp) – αp+1 · S(tp)

1 + αp+1 · �p+1 · Ĩp+1
N

∣
∣
∣
∣

≤ ∣∣αp · S(tp) – αp+1 · S(tp)
∣
∣ + �p+1 · ∣∣αp · αp+1 · S(tp)

∣
∣

≤ N · ∥∥α′(t)
∥
∥∞ · �p+1 + N · α2

max · �p+1

(28)
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by the boundedness of the solution functions, the mean value theorem of calculus, and
application of the triangle inequality. Additionally, it holds

IIII,1 = |βp+1 – βp|
≤ �p+1 · ∥∥β ′(t)

∥
∥∞

(29)

by application of the mean value theorem of calculus. Combining (28) and (29) and plug-
ging these results into

II,1 ≤ �p+1

1 – αmax
· III,1 +

�p+1 · N
1 – αmax

· IIII,1 +
�2

p+1

1 – αmax
· (αmax + βmax)2

yields

II,1 ≤ �p+1

1 – αmax
· {N · ∥∥α′(t)

∥
∥∞ · �p+1 + N · α2

max · �p+1
}

+
�p+1 · N
1 – αmax

· �p+1 · ∥∥β ′(t)
∥
∥∞ +

�2
p+1

1 – αmax
· (αmax + βmax)2

=
�2

p+1

1 – αmax
· {N · ∥∥α′(t)

∥
∥∞ + N · α2

max + N · ∥∥β ′(t)
∥
∥∞ + (αmax + βmax)2}

︸ ︷︷ ︸

=:CI,help,1

.

Plugging this inequality into

∣
∣I(tp+1) – Ĩp+1

∣
∣≤ �2

p+1

2
· ∥∥I ′′(t)

∥
∥∞ + II,1

implies

∣
∣I(tp+1) – Ĩp+1

∣
∣≤ �2

p+1 ·
{

1
2

· ∥∥I ′′(t)
∥
∥∞ +

CI,help,1

1 – αmax

}

︸ ︷︷ ︸

=:Cloc,I

. (30)

1.3) We see that

R̃p+1 = R(tp) + βp+1 · �p+1 · Ĩp+1

holds. This implies

∣
∣R(tp+1) – R̃p+1

∣
∣

=
∣
∣R(tp+1) – R(tp) – βp+1 · �p+1 · Ĩp+1

∣
∣

=
∣
∣
∣
∣

∫ tp+1

tp

R′(τ ) dτ – �p+1 · R′(tp) + �p+1 · R′(tp) – βp+1 · �p+1 · Ĩp+1

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ tp+1

tp

(

R′(τ ) – R′(tp)
)

dτ

∣
∣
∣
∣

+
∣
∣�p+1 · R′(tp) – βp+1 · �p+1 · Ĩp+1

∣
∣

≤ �2
p+1

2
· ∥∥R′′(t)

∥
∥∞ + �p+1 · ∣∣R′(tp) – βp+1 · Ĩp+1

∣
∣.
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By applying

R′(tp) = βp · I(tp)

and

Ĩp+1 =
I(tp)

1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1
N

= I(tp) –
I(tp) · {βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1

N }
1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1

N

,

we obtain

∣
∣R′(tp) – βp+1 · Ĩp+1

∣
∣

=
∣
∣
∣
∣
βp · I(tp) – βp+1 · I(tp) + βp+1 · I(tp) · {βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1

N }
1 + βp+1 · �p+1 – αp+1 · �p+1 · S̃p+1

N

∣
∣
∣
∣

≤ N · |βp – βp+1| + �p+1 · N · β2
max + N · αmax · βmax

1 – αmax

≤ N · �p+1 · ∥∥β ′(t)
∥
∥∞ + �p+1 · N · β2

max + N · αmax · βmax

1 – αmax

= �p+1 ·
{

N · ∥∥β ′(t)
∥
∥∞ +

N · β2
max + N · αmax · βmax

1 – αmax

}

︸ ︷︷ ︸

=:CR,help,1

.

Plugging this inequality into

∣
∣R(tp+1) – R̃p+1

∣
∣≤ �2

p+1

2
· ∥∥R′′(t)

∥
∥∞ + �p+1 · ∣∣R′(tp) – βp+1 · Ĩp+1

∣
∣

yields

∣
∣R(tp+1) – R̃p+1

∣
∣≤ �2

p+1

2
· ∥∥R′′(t)

∥
∥∞ + �p+1 · ∣∣R′(tp) – βp+1 · Ĩp+1

∣
∣

≤ �2
p+1

2
· ∥∥R′′(t)

∥
∥∞ + �2

p+1 · CR,help,1

= �2
p+1 ·
{

1
2

· ∥∥R′′(t)
∥
∥∞ + CR,help,1

}

︸ ︷︷ ︸

=:Cloc,R

.

(31)

1.4) Define Cloc := max{Cloc,S; Cloc,I; Cloc,R}. It holds

∥
∥z(tp+1) – z̃p+1

∥
∥∞ ≤ Cloc · �2

p+1 (32)

for local errors on time intervals [tp, tp+1].
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2) In reality, (tp, Sp)T , (tp, Ip)T , and (tp, Rp)T do not exactly lie on the graph of the time-
continuous solution. Therefore, we must examine how procedural errors such as Sp –S(tp),
Ip – I(tp) or Rp – R(tp) propagate to the (p + 1)th time step. These investigations are carried
out in step 2) and in step 3). By (9), we see that

zp+1 – z(tp+1) =
(

zp – z(tp)
)

+ �p+1 · {G(tp+1, zp+1) – G
(

tp+1, z(tp+1)
)}

holds, and this implies

∥
∥zp+1 – z(tp+1)

∥
∥∞

≤ ∥∥zp – z(tp)
∥
∥∞ + �p+1 · ∥∥G(tp+1, zp+1) – G

(

tp+1, z(tp+1)
)∥
∥∞.

We see that

∥
∥G(tp+1, zp+1) – G

(

tp+1, z(tp+1)
)∥
∥∞

=

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

αp+1
N · {I(tp+1) · S(tp+1) – Ip+1 · Sp+1}

αp+1
N · {Ip+1 · Sp+1 – I(tp+1) · S(tp+1)} + βp+1 · {I(tp+1) – Ip+1}

βp+1 · {Ip+1 – I(tp+1)}

⎞

⎟
⎠

∥
∥
∥
∥
∥
∥
∥

∞

≤

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

αp+1 · {‖Ip+1 – I(tp+1)‖∞ + ‖Sp+1 – S(tp+1)‖∞}
αp+1 · {‖Ip+1 – I(tp+1)‖∞ + ‖Sp+1 – S(tp+1)‖∞} + βp+1 · ‖Ip+1 – I(tp+1)‖∞

βp+1 · ‖Ip+1 – I(tp+1)‖∞

⎞

⎟
⎠

∥
∥
∥
∥
∥
∥
∥

∞

≤ 2 · (αmax + βmax) · ∥∥zp+1 – z(tp+1)
∥
∥∞

holds, and this implies

∥
∥zp+1 – z(tp+1)

∥
∥∞ ≤ ∥∥zp – z(tp)

∥
∥∞ + 2 · (αmax + βmax) · �p+1 · ∥∥zp+1 – z(tp+1)

∥
∥∞.

Hence, we conclude

∥
∥zp+1 – z(tp+1)

∥
∥∞ ≤ 1

1 – 2 · (αmax + βmax) · �p+1
· ∥∥zp – z(tp)

∥
∥∞

≤ 1
1 – 2 · (αmax + βmax) · � · ∥∥zp – z(tp)

∥
∥∞

(33)

with � := maxp∈{1,...,M–1} �p+1 < 1
4·(αmax+βmax) .

3) Now, we want to prove the upper error bound between the time-discrete solution and
the time-continuous solution. At first, we notice that

∥
∥z2 – z(t2)

∥
∥∞ ≤ ‖z2 – z̃2‖∞ +

∥
∥z̃2 – z(t2)

∥
∥∞

≤
(

1
1 – 2 · (αmax + βmax) · �

)

· ∥∥z1 – z(t1)
∥
∥∞

︸ ︷︷ ︸

=0

+Cloc · �2

= Cloc · �2
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is valid for p = 1 by (32), by (33), and by our assumption that initial conditions of the time-
continuous and the time-discrete models coincide. For p = 2, we obtain

∥
∥z3 – z(t3)

∥
∥∞ ≤ ‖z3 – z̃3‖∞ +

∥
∥z̃3 – z(t3)

∥
∥∞

≤
(

1
1 – 2 · (αmax + βmax) · �

)

· ∥∥z2 – z(t2)
∥
∥∞ + Cloc · �2

≤
(

1
1 – 2 · (αmax + βmax) · �

)

· {Cloc · �2} + Cloc · �2

= Cloc · �2 ·
{ 3–2
∑

j=0

(
1

1 – 2 · (αmax + βmax) · �
)j
}

.

For arbitrary p ∈ {1, . . . , M – 2}, we assume that

∥
∥zp+1 – z(tp+1)

∥
∥∞ ≤ Cloc · �2 ·

{ p–1
∑

j=0

(
1

1 – 2 · (αmax + βmax) · �
)j
}

is valid. This yields

∥
∥zp+2 – z(tp+2)

∥
∥∞

≤ ‖zp+2 – z̃p+2‖∞ +
∥
∥z̃p+2 – z(tp+2)

∥
∥∞

≤ Cloc · �2 +
(

1
1 – 2 · (αmax + βmax) · �

)

· ∥∥zp+1 – z(tp+1)
∥
∥∞

≤ Cloc · �2 ·
{

1 +
p–1
∑

j=0

(
1

1 – 2 · (αmax + βmax) · �
)j+1
}

= Cloc · �2 ·
{ p
∑

j=0

(
1

1 – 2 · (αmax + βmax) · �
)j
}

by induction. By applying the geometric series, we obtain

∥
∥zp+1 – z(tp+1)

∥
∥∞

≤ Cloc · �2 ·
{ p–1
∑

j=0

(
1

1 – 2 · (αmax + βmax) · �
)j
}

= Cloc · �2 · ( 1
1–2·(αmax+βmax)·� )p – 1

( 1
1–2·(αmax+βmax)·� ) – 1

.

If we assume � < 1
4·(αmax+βmax) , we conclude

�

( 1
1–2·(αmax+βmax)·� ) – 1

≤ 1,
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and hence it follows

∥
∥zp+1 – z(tp+1)

∥
∥∞ ≤ Cloc · � ·

{(
1

1 – 2 · (αmax + βmax) · �
)p

– 1
}

, (34)

which finishes our proof of (23). �

3.6 Calculation of the time-discrete basic reproduction number
In our nonautonomous time-discrete SIR model, the time-dependent basic reproduction
number can be defined by

R0(tk) :=
α(tk)
β(tk)

(35)

for arbitrary k ∈ {1, . . . , M}, which is similar to the case of constant transmission and re-
covery rates [17, 45].

Lemma 3 Equation (35) is well defined.

Proof This proof is identical to Lemma 2. �

3.7 Numerical algorithm
We are now able to give a brief description of our numerical algorithm to solve the time-
discrete implicit solution scheme (17). Here, we summarize our inputs, our computational
steps, and our algorithmic outputs. We sketch the resulting algorithm in Table 1.

4 Numerical examples with discussion
We apply our time-discrete implicit SIR solution scheme (22) from Table 1 to available data
regarding the spread of COVID-19 in Germany and Iran from John Hopkins University
[1, 2]. These countries are chosen because they update confirmed, dead, and estimated
recovered cases on a regular basis. In Table 2, we summarize projected population sizes
for 2019 from the United Nations [47].

Table 1 Numerical algorithm for the time-discrete implicit SIR solution scheme (17)

Inputs: – Population size N
– Initial values S1 > 0, I1 > 0, and R1 ≥ 0
– Time-varying transmission rate sequence {αj}Mj=2
– Time-varying recovery rate sequence {βj}Mj=2
– Strictly increasing sequence {tj}Mj=1 of time points with t1 = 0 and tM = T

Step 1: – Compute all �j+1 = tj+1 – tj for all j ∈ {1, . . . ,M – 1}
Step 2: – Compute Ij+1 by (22), (21) and (20) for all j ∈ {1, . . . ,M – 1}

– Compute Sj+1 and Rj+1 by (17) for all j ∈ {1, . . . ,M – 1}
Outputs: – Sequences {Sj}Mj=1, {Ij}Mj=1 and {Rj}Mj=1

Table 2 Projected population sizes for Germany and Iran for 2019

Country Germany Iran
Population size 83,784,000 83,993,000
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At first, we consider the example of Germany in detail. We thoroughly describe our ap-
proach to check our model’s validity. We only give some simple parameter estimation tech-
niques and vary user-chosen time-dependent parameter functions. Since inverse prob-
lems are an active field of research, we refer the readers to works by Bock and Schittkowski
for more sophisticated parameter estimation techniques in dynamical systems [48, 49].
Our work also focuses on usefulness in possibly describing real-world data. Afterwards,
we state some computational results for data from Iran.

4.1 Description of our approach by the example of Germany
4.1.1 Data preprocessing
To apply our model, we have to process the given data of cumulative confirmed infected
people {̃Ij}M

j=1, cumulative confirmed dead people {D̃j}M
j=1, and cumulative confirmed re-

covered people {R̃j}M
j=1. For our model, we need to compute the processed real-world data

⎧

⎪⎪⎨

⎪⎪⎩

˜̃Rj = R̃j + D̃j,
˜̃Ij = Ĩj – ˜̃Rj,
˜̃Sj = N –˜̃Ij – ˜̃Rj

(36)

for all j ∈ {1, . . . , M}. The unprocessed and processed data for Germany are depicted in
Figs. 2 and 3. On the one hand, it can be clearly seen in Fig. 2 that both sequences of
cumulative infected and cumulative recovered people are monotonically increasing for
our unprocessed data. On the other hand, we notice in Fig. 3 that the behavior changes
for our processed data.

4.1.2 Calculation of time-varying transmission and recovery rates from real-world data
Here, we present an algorithm to calculate our time-varying transmission and recovery
rates based on our numerical algorithm (15) for all j ∈ {1, . . . , M – 1}. We rely on the first

Figure 2 Unprocessed data for Germany with t1 = 0 (1 March 2020) and tM = 184 (1 September 2020)
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Figure 3 Processed data for Germany with t1 = 0 (1 March 2020) and tM = 184 (1 September 2020)

equation and the last equation for susceptible and recovered people. Short calculations
with the assumptions ˜̃Ij+1 
= 0 and ˜̃Sj+1 
= 0 yield

˜̃αj+1 = –
N

˜̃Ij+1 · ˜̃Sj+1
·
˜̃Sj+1 – ˜̃Sj

�j+1

=
N

˜̃Ij+1 · ˜̃Sj+1
·
˜̃Sj – ˜̃Sj+1

�j+1

≥ 0

and

˜̃βj+1 =
1
˜̃Ij+1

·
˜̃Rj+1 – ˜̃Rj

�j+1
≥ 0.

Summarizing our results, we obtain

˜̃αj+1 =
N

˜̃Ij+1 · ˜̃Sj+1
·
˜̃Sj – ˜̃Sj+1

�j+1
(37)

and

˜̃βj+1 =
1
˜̃Ij+1

·
˜̃Rj+1 – ˜̃Rj

�j+1
, (38)

and a short algorithmic summary can be found in Table 3.
The time-varying transmission rate from real-world data for Germany is presented in

Fig. 4. Clearly, the transmission rate decreases due to countermeasures such as local lock-
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Table 3 Numerical algorithm for the time-discrete implicit SIR solution scheme (17)

Inputs: – Population size N

– Real-world data {˜̃Sj}Mj=1, {˜̃Ij}Mj=1, and {˜̃Rj}Mj=1 according to (36)
– Strictly increasing sequence {tj}Mj=1 of time points with t1 = 0 and tM = T

Step 1: – Compute all �j+1 = tj+1 – tj for all j ∈ {1, . . . ,M – 1}
Step 2: – For all j ∈ {2, . . . ,M}, compute ˜̃αj and

˜̃βj according to (37) and (38) with
real-world data

Outputs: – Sequences {˜̃αj}Mj=2 and {˜̃βj}Mj=2

Figure 4 Time-varying transmission rate from real-world data for Germany with t1 = 0 (1 March 2020) and
tM = 184 (1 September 2020)

downs and voluntary social distancing by the population. However, a weak increasing
trend can be seen at the end of the time-series in August. Possible explanations might
be opening of schools, universities or people who do not wear masks for protection.

The time-varying recovery rate from real-world data for Germany is depicted in Fig. 5.
At the early stage of an epidemic, there are possible just few recoveries, thus this rate is
relatively small. After some time, this situation changes as more people defeat the disease
and recover. The rate seems to be constant with heavy variations due to the test capacity.
Additionally, there are unknown cases because these people might have a mild disease
course.

4.1.3 Calculation of time-dependent basic reproduction number from real-world data
Now, the time-dependent basic reproduction number R0(tj) is readily computed by (35).
Our computational results from this approach are portrayed in Fig. 6. Since there are only
few recovered people at the beginning of disease, our computations provide high numer-
ical basic reproduction number. We observe that the computational basic reproduction
number is monotonically decreasing in spring due to political countermeasures and so-
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Figure 5 Time-varying recovery rate from real-world data for Germany with t1 = 0 (1 March 2020) and
tM = 184 (1 September 2020)

Figure 6 Time-varying basic reproduction number from real-world data for Germany with t1 = 0 (1 March
2020) and tM = 184 (1 September 2020)

cial distancing. However, the graph shows that the computation basic reproduction num-
ber rises in summer because contacts between people rose. Variations are seen for similar
reasons as mentioned for our time-dependent transmission and recovery rates.

4.1.4 Parameter estimation—a simple least-squares approach
We only briefly sketch the parameter identification problem because it is an inverse prob-
lem [50, 51]. A deep discussion is beyond the scope of this paper and would be a topic of
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own interest. By looking at Figs. 4 and 5, we assume

α(t) := α1 · exp(–αt2 · t) (39)

and

β(t) := β (40)

with real constants α1, α2, and β which we determine from real-world transmission and
recovery rate sequences {˜̃αj}M

j=2 and {˜̃βj}M
j=2. Since ˜̃αj > 0 and ˜̃βj > 0 for all j ∈ {2, . . . , M}, we

can assume α1 > 0 and β > 0. Since α(t) is nonlinear, we use the transformation

ln
(

α(t)
)

= ln(α1) – α2 · t = γ1 + γ2 · t (41)

with γ1 := ln(α1) and γ2 := –α2 as in the case of maximum log-likelihood estimation. Now,
our cost function J : R3 −→ [0,∞) reads as follows:

J (γ1,γ2,β) :=
M
∑

j=2

(

γ1 + γ2 · tj – ln(˜̃αj)
)2 +

M
∑

j=2

(β – ˜̃βj)2. (42)

We obtain the following theorem.

Theorem 12 Assume that

M
∑

j=2

t2
j –

1
M – 1

·
( M
∑

j=1

tj

)2

> 0

holds for the strictly increasing time sequence {tj}M
j=1. The cost function (42) possesses a

unique local minimizer. In fact, this unique local minimizer is even a unique global mini-
mizer.

Proof 1) We first show that J possesses a unique local minimizer.
1.1) To achieve our goal, we calculate the first derivatives. We obtain

∂J
∂γ1

(γ1,γ2,β) = 2 ·
M
∑

j=2

{

γ1 + γ2 · tj – ln(˜̃αj)
}

,

∂J
∂γ2

(γ1,γ2,β) = 2 ·
M
∑

j=2

tj ·
{

γ1 + γ2 · tj – ln(˜̃αj)
}

,

∂J
∂β

(γ1,γ2,β) = 2 ·
M
∑

j=2

{β – ˜̃βj}.

1.2) To get a local minimizer (γ̂1, γ̂2, β̂), it is necessary that all partial derivatives vanish
at candidates for local extrema.
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1.2a) Setting ∂J
∂β

(γ̂1, γ̂2, β̂) = 0, we conclude

β̂ =
1

M – 1
·

M
∑

j=2

˜̃βj. (43)

1.2b) Setting ∂J
∂γ1

(γ̂1, γ̂2, β̂) = 0, we infer that

γ̂1 =
1

M – 1
·
{ M
∑

j=2

(

ln(˜̃αj) – tj · γ̂2
)

}

(44)

holds.
1.2c) If we set ∂J

∂γ2
(γ̂1, γ̂2, β̂) = 0, we obtain

γ̂2 ·
( M
∑

j=2

t2
j

)

=
M
∑

j=2

{

tj · ln(˜̃αj)
}

– γ1 ·
M
∑

j=2

tj

=
M
∑

j=2

{

tj · ln(˜̃αj)
}

–

{

1
M – 1

·
{ M
∑

j=2

ln(˜̃αj) – γ̂2 ·
M
∑

j=2

tj

}}

·
{ M
∑

j=2

tj

}

and this yields

γ̂2 ·
{( M
∑

j=2

t2
j

)

–
1

M – 1
·
( M
∑

j=2

tj

)2}

=

( M
∑

j=2

{

tj · ln(˜̃αj)
}

)

–
1

M – 1
·
{ M
∑

j=2

ln(˜̃αj)

}

·
{ M
∑

j=2

tj

}

.

Finally, we conclude that

γ̂2 =
(
∑M

j=2{tj · ln(˜̃αj)}) – 1
M–1 · {∑M

j=2 ln(˜̃αj)} · {∑M
j=2 tj}

{(∑M
j=2 t2

j ) – 1
M–1 · (

∑M
j=2 tj)2} (45)

holds.
1.3) Since the Hessian is given by

H(γ1,γ2,β) =

⎛

⎜
⎝

2 · (M – 1) 2 ·∑M
j=2 tj 0

2 ·∑M
j=2 tj 2 ·∑M

j=2 t2
j 0

0 0 2 · (M – 1)

⎞

⎟
⎠ ,

we investigate all determinants of all upper-left sub-matrices. The first determinant 2 ·
(M – 1) > 0 because M ≥ 2 holds. The second determinant reads as follows:

4 · (M – 1) ·
M
∑

j=2

–4 ·
( M
∑

j=2

tj

)2

.
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Table 4 Numerical algorithm for our parameter estimation approach of our cost function (42)

Inputs: – Strictly increasing sequence {tj}Mj=1 of time points with t1 = 0 and tM = T

– Sequences {˜̃αj}Mj=2 and {˜̃βj}Mj=2
Step 1: – Compute β̂ by (43)

Step 2: – Compute γ̂2 by (45)

Step 3: – Compute γ̂1 by (44)

Step 4: – Compute α̂1 and α̂2 according to transformation (41)

Outputs: – Parameters α̂1, α̂2, and β̂ for our parametric rates (39) and (40)

By the Hölder inequality, we obtain

4 · (M – 1) ·
M
∑

j=2

t2
j – 4 ·

( M
∑

j=2

tj

)2

≥ 0

with equality only in the case that all tj are equal. Since we have a strictly increasing time
sequence, the second determinant of the upper-left sub-matrices is also positive. Finally,
the determinant of the full matrix is positive as well. Hence, our cost function J is strictly
convex. Conclusively, it possesses a unique local minimizer by [52, Theorem 2.4].

2) By strict convexity, we infer that the unique local minimizer is also the unique global
minimizer of our cost function J by [52, Theorem 2.5]. �

We summarize our algorithmic approach for parameter estimation of our time-varying
transmission and recovery rates in Table 4.

4.1.5 Results for our parameter estimation approach using German data for short-term
predictions

In Fig. 7, we see that the assumption of exponentially decaying time-dependent trans-
mission rates is acceptable at the beginning of spreading disease with respect to German
data. Due to short-term prediction, we notice that the constant recovery rate is underes-
timated in Fig. 8. Conclusively, both assumptions seem to be acceptable at the first weeks
of a spreading disease. Computational results for two models on the time interval [25, 62]
are depicted in Figs. 9–12. Figures 9–12 indicate that sensitivity of parameters is really
an issue in epidemiological models. This is in accordance with Theorem 7. These results
also imply that an exponentially decaying transmission rate is an acceptable choice at the
beginning of spreading disease.

4.1.6 Results for our parametric approach using German data from May to September
Figures 4 and 5 indicate that constant transmission and recovery rates are reasonable as-
sumption at later stages. Computational results can be found in Figs. 13 and 14. We also
notice that the number of infected people rises in summer, possibly due to more social
contacts. This could eventually be regarded as the beginning of a ‘second wave’.

For future investigations, it might be interesting to use more complex transmission rates
or piecewise defined functions with switching points, see e.g. [49].
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Figure 7 Time-varying transmission rates from real-world data and from parameter estimation for short-term
prediction of German data with t1 = 0 (1 March 2020) and tM = 62 (2 May 2020). The estimated parameters for
model 1 are α1 ≈ 0.3194 and α2 ≈ 0.003911. For model 2, we fix α1 = 1.0 and choose α2 ≈ 0.070

Figure 8 Recovery rates from real-world data and from parameter estimation for short-term prediction of
German data with t1 = 0 (1 March 2020) and tM = 62 (2 May 2020). The first estimated recovery rate reads
β ≈ 0.04403 for the mean value on the full interval. The second estimated recovery rate reads β ≈ 0.063 as
the mean value on the time interval [25, 62] because the fluctuations in β arise while there is no recovery rate
estimation possible for the first days

4.2 Computational short-time results for data from Iran
Real-world data from Iran and short-term computational results for COVID-19 data from
Iran can be found in Figs. 15–23. Figure 17 again supports the assumption of an exponen-
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Figure 9 Computational results for model 1 of infected people in Germany for α1 ≈ 0.3194, α2 ≈ 0.003911,
β ≈ 0.063 for short-time simulation on t1 = 25 (26 March 2020) and tM = 62 (2 May 2020) with real-world data
as initial conditions

Figure 10 Computational results for model 1 of recovered people in Germany for α1 ≈ 0.3194,
α2 ≈ 0.003911, β ≈ 0.063 for short-time simulation on t1 = 25 (26 March 2020) and tM = 62 (2 May 2020) with
real-world data as initial conditions

tially decaying transmission rate at the beginning of the spread of life-threatening disease.
The computation results, depicted in Figs. 22 and 23, show qualitative agreement with the
trends in real-world data. These results indicate that time-dependent transmission rates
are a necessary addition to the classical SIR model. Alternatively, models with fractional
derivatives could be considered [53, 54].
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Figure 11 Computational results for model 2 of infected people in Germany for α1 ≈ 1.0, α2 ≈ 0.070,
β ≈ 0.063 for short-time simulation on t1 = 25 (26 March 2020) and tM = 62 (2 May 2020) with real-world data
as initial conditions

Figure 12 Computational results for model 2 of recovered people in Germany for α1 ≈ 1.0, α2 ≈ 0.070,
β ≈ 0.063 for short-time simulation on t1 = 25 (26 March 2020) and tM = 62 (2 May 2020) with real-world data
as initial conditions

5 Conclusion and outlook
We established certain properties such as well-posedness of the solution of our time-
continuous SIR model in Sect. 2. Fortunately, we were able to transfer many properties
of the time-continuous model to our time-discrete implicit SIR model in Sect. 3. These
include unique solvability and monotonicity properties. In contrast to many other works
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Figure 13 Computational results for our model of infected people in Germany for user-chosen α1 ≈ 0.040,
α2 ≈ 0.0, β ≈ 0.075 for short-time simulation on t1 = 61 (1 May 2020) and tM = 184 (1 September 2020) with
real-world data as initial conditions

Figure 14 Computational results for our model of recovered people in Germany for user-chosen α1 ≈ 0.040,
α2 ≈ 0.0, β ≈ 0.075 for short-time simulation on t1 = 61 (1 May 2020) and tM = 184 (1 September 2020) with
real-world data as initial conditions

mentioned in Sect. 1, we avoid an explicit forward model, but we could transform our
implicit scheme to an easily solvable scheme. Thus, this makes our proposed scheme an
attractive first prediction choice. In addition to that, we showed that our numerical scheme
possesses an upper error bound.
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Figure 15 Unprocessed data for Iran with t1 = 1 (1 March 2020) and tM = 62 (1 May 2020)

Figure 16 Processed data for Iran with t1 = 1 (1 March 2020) and tM = 62 (1 May 2020)

Regarding our computational results, we see that our parametrization

α(t) = α1 · exp(–α2 · t)

is an appropriate fit for first forecasts considering the first wave of a spreading virus. Since
these transmission rates are monotonically decreasing, we, however, remark that we will
need to use another parametrization if we want to model diseases with seasonal behav-
ior [55]. Regarding our chosen examples, we get reasonable results. Additionally, we ob-
serve that our theoretical findings regarding monotonicity of recovered people from The-
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Figure 17 Time-varying transmission rate from real-world data for Iran with t1 = 1 (1 March 2020) and tM = 62
(1 May 2020)

Figure 18 Time-varying recovery rate from real-world data for Iran with t1 = 1 (1 March 2020) and tM = 62 (1
May 2020)

orem 10 are fulfilled in both examples. This stresses the attractiveness of our implicit so-
lution scheme.

As depicted in Sect. 4, the inverse problem definitely needs further investigation. This is
a topic of its own interest [56–59] since we need tools from different mathematical disci-
plines. As future research directions, extensions to further epidemiological forward mod-
els should be considered as we surely need more tools to predict the impact of upcoming
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Figure 19 Time-varying basic reproduction number from real-world data for Iran with t1 = 1 (1 March 2020)
and tM = 62 (1 May 2020)

Figure 20 Time-varying transmission rates from real-world data for data from Iran with t1 = 1 (1 March 2020)
and tM = 62 (1 May 2020). The user-chosen parameters for our model are α1 ≈ 0.350 and α2 ≈ 0.040

epidemics. One can also consider delayed-differential or stochastic variants of our SIR
model or modifications and extensions [23, 27] because, from a biological point of view,
we often have to face integration of incubation times in epidemic models.
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Figure 21 Recovery rates from real-world data for data from Iran with t1 = 1 (1 March 2020) and tM = 62 (2
May 2020). The user-chosen recovery rate reads β ≈ 0.082

Figure 22 Computational results for our model with transmission and recovery rates from Figs. 20 and 21 of
infected people in Iran for short-time simulation on t1 = 1 (1 March 2020) and tM = 62 (1 May 2020) with
real-world data as initial conditions
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Figure 23 Computational results for our model with transmission and recovery rates from Figs. 20 and 21 of
recovered people in Iran for short-time simulation on t1 = 1 (1 March 2020) and tM = 62 (1 May 2020) with
real-world data as initial conditions
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