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Abstract
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MSC: 26D15; 26E25; 26A33

Keywords: Interval-valued functions; T -convex; Hermite–Hadamard type
inequalities; Ostrowski type inequalities

1 Introduction
Interval analysis was first proposed in order to reduce errors during mathematical com-
putation. Also, it has been widely used in engineering, economics, statistics, and many
other fields. Especially in engineering field, the dynamics model can solve many dynamic
problems which always involve multiple uncertain parameters or interval coefficients. The
monograph written by Moore [13] is the first systematic review of relevant studies on this
theory. In 2009, Stefanini introduced the concepts of gH-difference and gH-derivative in
[18] which addressed the problems in subtraction between two intervals. The theory of in-
terval analysis has been continuously developed since then. In 2015, Lupulescu developed
a theory of the fractional calculus for interval-valued functions in [11]. In 2019, Chalco-
Cano dealt with the algebra of gH-differentiable interval-valued functions in [5]. More
and more attention has been paid to the research of interval analysis, interval differential
equations, interval optimization, and other related problems.

The importance of convexity is reflected in all fields of mathematics. Over the past
years, the classical convex has been generalized to other different types such as harmoni-
cally convex, h-convex, p-convex, etc. In 2017, Costa gave the concepts of interval-valued
convex in [6]. Based on the works of Costa, many convexities related to real functions
have been gradually generalized to the case of interval-valued functions. Meanwhile, some
inequalities have been also expanded, such as Hermite–Hadamard inequality, Gauss in-
equality, Ostrowski inequality (for more details, see [7, 10, 12, 14–17, 19]). Based on the
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work of Lupulescu, in 2019, Budak and Tunç presented the right-hand side Riemann–
Liouville fractional integral for interval-valued functions and studied fractional Hermite–
Hadamard inequalities. In the year 2020, Dragomir gave a new generalization of convexity
for real functions which related different composite functions [9]. Motivated by the above
works, we define a map T and introduce the concept of T -convex interval-valued func-
tions in this paper. Some important properties are also given. After this, we present some
new generalizations of Hermite–Hadamard inequalities, fractional Hermite–Hadamard
inequalities, and Ostrowski type inequalities. In addition, the concepts of map T and T -
convex can be used as a powerful tool in fuzzy-valued function, interval optimization, and
interval-valued differential equations.

In Sect. 2, we provide the basic theory of interval analysis and some properties. The
definitions of T and T -convex are proposed in Sect. 3. Based on these, the statements of
Hermite–Hadamard type inequalities, fractional Hermite–Hadamard type inequalities,
and fractional Ostrowski type inequalities are given in Sects. 3 and 4.

2 Preliminaries
First, letKc = {I = [a, b] | a, b ∈ R, a ≤ b} denote the set of all nonempty intervals belonging
to R. The length of any interval I = [a, b] ∈Kc can be defined by �(I) := b – a.

For two intervals A = [a–, a+] and B= [b–, b+] belonging toKc, A ⊆ B if and only if a– ≥ b–

and a+ ≤ b+. Some basic properties of algebra operations between two intervals can be
found in [13]. Now we give the following important properties.

Definition 2.1 ([18]) For any A, B ∈ Kc, the gH-difference between A, B can be defined
as follows:

A �g B =

⎧
⎨

⎩

[a– – b–, a+ – b+], if �(A) ≥ �(B),

[a+ – b+, a– – b–], if �(A) < �(B).
(2.1)

Specially, if B = b ∈R is a constant, then

A �g B =
[
a– – b, a+ – b

]
.

More properties of gH-difference can be found in [18].
The Hausdorff–Pompeiu distance H : Kc ×Kc → [0,∞) between A and B is defined by

H(A, B) = max{|a– – b–|, |a+ – b+|}. Then (Kc,H) is a complete and separable metric space
(see [8]).

Based on this, the map ‖ · ‖: Kc → [0,∞) defined by ‖A‖:=max{|a–|, |a+|} = H(A, {0}) is
a norm on Kc. Hence, (Kc,‖ · ‖) is a normed quasi-linear space (see [11]).

In this paper, we use symbols F and G to refer to interval-valued functions. Let I be any
finite interval for any F : I → Kc such that F = [f –, f +], we say that F is �-increasing (or �-
decreasing) on I if �(F) : I → [0,∞) is increasing(or decreasing) on I . If �(F) is monotone
on I , then we say F is �-monotone on [a, b].

Definition 2.2 ([11]) Let F : I →Kc. F is said to be continuous at x0 ∈ I if

lim
x→x0

∥
∥F(x) �g F(x0)

∥
∥ = 0. (2.2)
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We denote by C(I,Kc) the set of all continuous interval-valued functions on [a, b]. Then
C(I,Kc) is a complete normed space with respect to the norm ‖F‖c := maxx∈I ‖F(x)‖.

Definition 2.3 ([18]) Let F : I → Kc, we say that F(x) is gH-differential at x0 ∈ I if there
exists D ∈Kc such that

lim
h→0

F(x0 + h) �g F(x0)
h

= D. (2.3)

D defined in this fashion is denoted by the symbol F ′(x0), and F ′(x0) is said to be the gH-
derivative of F(x) at x0.

For more details about gH-derivative, please see [5]. Let F : I →Kc such that F = [f –, f +].
We say that F is (i)-gH-differentiable on I if F is �-increasing on I and F ′ = [(f –)′, (f +)′].
Similarly, we say that F is (ii)-gH-differentiable on I if F is �-decreasing on I and F ′ =
[(f +)′, (f –)′].

The introduction of Lebesgue integral for interval-valued function can be found in [1]
and [2]. For 1 ≤ p ≤ ∞, let Lp(I,Kc) be the set of p-times Lebesgue integrable interval-
valued functions on I . The next statement of fundamental theorem of calculus can be
found in [11].

Theorem 2.4 Let F : [s, t] → Kc be gH-differentiable on [s, t]. If F ′ ∈ L1([s, t],Kc) and F is
�-monotone on [s, t], then

F(x) �g F(s) =
∫ x

s
F ′(τ ) dτ , x ∈ [s, t]. (2.4)

The following results are easily obtained through the basic properties of interval-valued
Lebesgue integral, so we omit the proof.

Corollary 2.5 Let F , G : [s, t] →Kc. If F , G ∈ L1([s, t],Kc), then

∥
∥
∥
∥

∫ t

s
F �g

∫ t

s
G

∥
∥
∥
∥ ≤

∫ t

s
‖F �g G‖. (2.5)

3 T -Convex for interval-valued functions
In this section, we define the map T and introduce the concept of T -convex which can be
regard as a sense of “weak” convex compared with classical convex. Let I ⊂R be any finite
interval.

Consider the map T : Kc →Kc satisfying T (A) ⊆ A, ∀A ∈Kc. We denote T by the family
of all these maps, i.e., T = {T | T : Kc →Kc and T (A) ⊆ A,∀A ∈Kc}.

We define the partial order relationship “” between T1,T2 ∈ T such that, for all A ∈Kc,

T1  T2 if and only if T1(A) ⊇ T2(A).

We now give a new generalization of convexity for interval-valued function.
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Definition 3.1 Let T ∈ T and F : I →Kc. We say that F is T -convex if, for any 0 ≤ θ ≤ 1
and x, y ∈ I ,

θT
(
F(x)

)
+ (1 – θ )T

(
F(y)

) ⊆ F
(
θx + (1 – θ )y

)
. (3.1)

For any T ∈ T, we denote

CXT (I,Kc) = {F : I →Kc, F is T -convex}.

Remark 3.2 For the case T = ID ∈ T is an identity map, i.e., ID(A) = A for any A ∈ Kc,
then we get the classical convex of interval-valued functions in [6], and we denote

CX(I,Kc) = {F : I →Kc, F is convex}.

Example 3.3 We consider T defined by

T (A) =

⎧
⎨

⎩

[ea– , a+] if ea– < a+,

A if ea– ≥ a+,

for any A = [a–, a+] ∈Kc. Obviously, T ∈ T and T is well-defined. Next, let F : [1, 2] →Kc

given by F(x) = [ln(x2), x + 2]. We can verify F(x) is T -convex but never convex on [1, 2].

Let F : I → Kc and a, b ∈ I with a < b, we say that F is convex if θF(a) + (1 – θ )F(b) ⊆
F(θa + (1 – θ )b) for any θ ∈ [0, 1]. The left part θF(a) + (1 – θ )F(b) can be regarded as a
contraction of F(x) on [a, b] (see Fig. 1). Actually, any convex F(x) can be controlled on
I , which means the length of F(x) cannot always be increasing. Thus, convex interval-
valued functions have great advantages in interval optimization, interval data processing,
and other fields.

For any F = [f –, f +] is convex if and only if f – is convex and f + is concave (see [6]). So, we
can find a suitable map T as a contraction of any F with nice properties but never convex
in the classical sense and treat these F as a “convex” function.

Figure 1 Convex interval-valued function F = [f –, f+]. The red dotted line represents θF(a) + (1 – θ )F(b)
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We now give some fundamental properties for the map T .

Theorem 3.4 Let T1,T2 ∈ T, then T1  T2 if and only if

CXT1 (I,Kc) ⊆ CXT2 (I,Kc).

Moreover,

CX(I,Kc) ⊆ CXT (I,Kc) for any T ∈ T.

Proof Assume that F ∈ CXT1 (I,Kc). Since T1  T2, for any A ∈Kc, we have T1(A) ⊇ T2(A).
Then

F
(
θx + (1 – θ )y

) ⊇ θT1
(
F(x)

)
+ (1 – θ )T1

(
F(y)

)

⊇ θT2
(
F(x)

)
+ (1 – θ )T2

(
F(y)

)
,

which implies F ∈ CXT2 (I,Kc).
Conversely, for any F ∈ CXT1 (I,Kc), we have F ∈ CXT2 (I,Kc). It shows that if θT1(F(x)) +

(1 – θ )T1(F(y)) ⊆ F(θx + (1 – θ )y), then θT2(F(x)) + (1 – θ )T2(F(y)) ⊆ F(θx + (1 – θ )y). Thus,
we have

θT2
(
F(x)

)
+ (1 – θ )T2

(
F(y)

) ⊆ θT1
(
F(x)

)
+ (1 – θ )T1

(
F(y)

)

and T2(F(x)) ⊆ T1(F(x)). Otherwise, we may assume T2(F(x)) ⊃ T1(F(x)). For the case
θT1(F(x)) + (1 – θ )T1(F(y)) = F(θx + (1 – θ )y), that is contradiction. By the arbitrariness
of F and I , we obtain T1  T2.

Finally, T (A) ⊆ A = ID(A) and ID  T for any T ∈ T. Consequently,

CX(I,Kc) ⊆ CXT (I,Kc). �

Theorem 3.5 Consider T ∈ T. For n = 0, 1, 2, . . . , let T 0 = ID and T n+1 = T ◦ T n, then
T n ∈ T. Moreover,

CXT n (I,Kc) ⊆ CXT n+1 (I,Kc).

Proof For all A ∈Kc, take T ∈ T, we have T (A) ⊆ A. Since T (A) ∈Kc, it is obvious that

T 2(A) = T
(
T (A)

) ⊆ T (A) ⊆ A.

Repeating this step, we obtain

T n(A) ⊆ T n–1(A) ⊆ · · · ⊆ T (A) ⊆ T 0(A) = A,

which implies T n ∈ T and T n  T n+1. By Theorem 3.4, we have

CXT n (I,Kc) ⊆ CXT n+1 (I,Kc). �
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Corollary 3.6 Let T ∈ T and F : I →Kc. If T ◦ F ∈ CX(I,Kc), then F ∈ CXT (I,Kc).

Proof Assume that T ◦ F ∈ CX(I,Kc), then for any x, y ∈ I and θ ∈ [0, 1], we have

F
(
θx + (1 – θ )y

) ⊇ T
(
F
(
θx + (1 – θ )y

))

⊇ θT
(
F(x)

)
+ (1 – θ )T

(
F(y)

)
.

Consequently, F ∈ CXT (I,Kc). �

The next example shows that the converse of Corollary 3.6 is not true.

Example 3.7 Take F(x) = [ln(x2), x + 2] in Example 3.3, and let

T (A) =

⎧
⎨

⎩

[(a–) + 1, a+] if �(A) > 1,

{a+} if �(A) ≤ 1.

We can verify that F ∈ CXT (I,Kc), but T ◦ F /∈ CX(I,Kc).

Now, we give Hermite–Hadamard type inequalities for T -convex interval-valued func-
tions. Take I = [s, t] where s ≤ t and s, t ∈R.

Theorem 3.8 Let T ∈ T and F ∈ CXT ([s, t],Kc). If F ,T ◦ F ∈ L1([s, t],Kc), then

T (F(s)) + T (F(t))
2

⊆ 1
t – s

∫ t

s
F(x) dx (3.2)

and

1
t – s

∫ t

s
T

(
F(x)

)
dx ⊆ F

(
s + t

2

)

. (3.3)

Proof Since F ∈ CXT ([s, t],Kc), we have

θT
(
F(s)

)
+ (1 – θ )T

(
F(t)

) ⊆ F
(
θs + (1 – θ )t

)
, where θ ∈ [0, 1].

Integrating θ over [0, 1], then

T (F(s)) + T (F(t))
2

⊆
∫ 1

0
F
(
θs + (1 – θ )t

)
dθ .

Taking x = θs + (1 – θ )t, we obtain (3.2).
For the last part, let us consider

s + t
2

=
θs + (1 – θ )t

2
+

(1 – θ )s + θ t
2

.

Then

F
(

s + t
2

)

⊇ T (F(θs + (1 – θ )t)) + T (F((1 – θ )s + θ t))
2

.



Sha et al. Advances in Difference Equations        (2020) 2020:544 Page 7 of 15

Integrating θ over [0, 1], we have

F
(

s + t
2

)

⊇ 1
2

[∫ 1

0
T

(
F
(
θs + (1 – θ )t

))
dθ +

∫ 1

0
T

(
F
(
(1 – θ )s + θ t

))
dθ

]

.

By changing variate τ = 1 – θ , we obtain

∫ 1

0
T

(
F
(
(1 – θ )s + θ t

))
dθ =

∫ 1

0
T

(
F
(
τ s + (1 – τ )t

))
dτ ,

which implies

F
(

s + t
2

)

⊇
∫ 1

0
T

(
F
(
θs + (1 – θ )t

))
dθ .

Taking x = θs + (1 – θ )t, we obtain (3.3). �

Theorem 3.9 Let T ∈ T and F ∈ CXT ([s, t],Kc). If T ◦ F ∈ L1([s, t],Kc) ∩ CXT ([s, t],Kc),
then

T 2(F(s)) + T 2(F(t))
2

⊆ 1
t – s

∫ t

s
T

(
F(x)

)
dx ⊆ F

(
s + t

2

)

. (3.4)

Proof Since T ◦ F is T -convex, we easily obtain that

θT 2(F(s)
)

+ (1 – θ )T 2(F(t)
) ⊆ T

(
F
(
θs + (1 – θ )t

))
.

Integrating θ over [0, 1],

T 2(F(s)) + T 2(F(t))
2

⊆
∫ 1

0
T

(
F
(
θs + (1 – θ )t

))
dθ .

Thus,

T 2(F(s)) + T 2(F(t))
2

⊆ 1
t – s

∫ t

s
T

(
F(x)

)
dx.

Combine with (3.3), the result follows directly. �

Example 3.10 Consider T ∈ T and F : [1, 2] →Kc in Example 3.3. We obtain

F
(

s + t
2

)

= F
(

3
2

)

=
[

ln
9
4

,
7
2

]

,

1
t – s

∫ t

s
T

(
F(x)

)
dx =

∫ 2

1

[
x2, x + 2

]
dx =

[
7
3

,
7
2

]

,

and

T 2(F(s)) + T 2(F(t))
2

=
T 2(F(1)) + T 2(F(2))

2
=

[
e + 4

2
,

7
2

]

.
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Since
[

e + 4
2

,
7
2

]

⊆
[

7
3

,
7
2

]

⊆
[

ln
9
4

,
7
2

]

,

which implies

T 2(F(s)) + T 2(F(t))
2

⊆ 1
t – s

∫ t

s
T

(
F(x)

)
dx ⊆ F

(
s + t

2

)

.

Consequently, Theorem 3.9 is verified.

Corollary 3.11 Let T ∈ T and F ∈ CXT ([s, t],Kc). If T n ◦ F ,T n–1 ◦ F ∈ L1([s, t],Kc) ∩
CXT ([s, t],Kc), then

T n+1(F(s)) + T n+1(F(t))
2

⊆ 1
t – s

∫ t

s
T n(F(x)

)
dx ⊆ T n–1F

(
s + t

2

)

, n = 1, 2, . . . .
(3.5)

Remark 3.12 Let n = 1 in Corollary 3.11, we obtain Theorem 3.9. Also, for the case T ≡
ID, we obtain the classic Hermite–Hadamard inequality.

4 Fractional integral inequalities
In this section, we introduce fractional Hermite–Hadamard type inequalities and Os-
trowski type inequality for T -convex interval-valued functions. Not so long ago, Budak
introduced the fractional Hermite–Hadamard type inequalities for interval-valued func-
tions in [3].

Let F ∈ L1([s, t],Kc), the left-hand side Riemann–Liouville fractional integral of F is de-
fined by (see [11])

J
α
s+ F(x) =

1
�(α)

∫ x

s
(x – τ )α–1F(τ ) dτ , x > s,α > 0, (4.1)

where � is the Euler gamma function. Meanwhile, the right-hand side Riemann–Liouville
fractional integral of F is defined by (see [3])

J
α
t– F(x) =

1
�(α)

∫ t

x
(τ – x)α–1F(τ ) dτ , x < t,α > 0. (4.2)

More properties of Riemann–Liouville fractional integral can be found in [11]. Now we
can give the following statement for T -convex interval-valued function.

Theorem 4.1 Let T ∈ T and F ∈ CXT ([s, t],Kc). If F ,T ◦ F ∈ L1([s, t],Kc), then

T (F(s)) + T (F(t))
2

⊆ �(α + 1)
2(t – s)α

[
J

α
s+F(t) + J

α
t–F(s)

]
(4.3)

and

�(α + 1)
2(t – s)α

[
J

α
s+T

(
F(t)

)
+ J

α
t–T

(
F(s)

)] ⊆ F
(

s + t
2

)

. (4.4)
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Proof Since F ∈ CXT ([s, t],Kc), we have

θT
(
F(s)

)
+ (1 – θ )T

(
F(t)

) ⊆ F
(
θs + (1 – θ )t

)

and

(1 – θ )T
(
F(s)

)
+ θT

(
F(t)

) ⊆ F
(
(1 – θ )s + θ t

)
,

where θ ∈ [0, 1]. Adding the above two inequalities, we obtain

T
(
F(s)

)
+ T

(
F(t)

) ⊆ F
(
θs + (1 – θ )t

)
+ F

(
(1 – θ )s + θ t

)
.

Multiplying by θα–1, with α > 0 and integrating θ over [0, 1], then

∫ 1

0
θα–1[T

(
F(s)

)
+ T

(
F(t)

)]
dθ

⊆
∫ 1

0
θα–1[F

(
θs + (1 – θ )t

)
+ F

(
(1 – θ )s + θ t

)]
dθ .

For the left-hand side,

∫ 1

0
θα–1[T

(
F(s)

)
+ T

(
F(t)

)]
dθ =

1
α

[
T

(
F(s)

)
+ T

(
F(t)

)]
.

For the right-hand side, taking x = θs+(1–θ )t in the first integral and taking y = (1–θ )s+θ t
in the second integral, we get

∫ 1

0
θα–1F

(
θs + (1 – θ )t

)
dθ +

∫ 1

0
θα–1F

(
(1 – θ )s + θ t

)
dθ

=
1

(t – s)α

∫ t

s
(t – x)α–1F(x) dx +

1
(t – s)α

∫ t

s
(y – s)α–1F(y) dy

=
�(α)

(t – s)α
[
J

α
s+F(t) + J

α
t–F(s)

]
.

Combining the both parts, we obtain the first inequality.
Next, since

s + t
2

=
θs + (1 – θ )t

2
+

(1 – θ )s + θ t
2

,

we have

F
(

s + t
2

)

⊇ T (F(θs + (1 – θ )t)) + T (F((1 – θ )s + θ t))
2

.

Multiplying by θα–1, with α > 0 and integrating θ over [0, 1], then

∫ 1

0
θα–1F

(
s + t

2

)

dθ

⊇ 1
2

[∫ 1

0
θα–1T

(
F
(
θs + (1 – θ )t

))
dθ +

∫ 1

0
θα–1T

(
F
(
(1 – θ )s + θ t

))
dθ

]

.
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Same as before, for the left-hand side,

∫ 1

0
θα–1F

(
s + t

2

)

dθ =
1
α

F
(

s + t
2

)

.

For the right-hand side,

∫ 1

0
θα–1T

(
F
(
θs + (1 – θ )t

))
dθ +

∫ 1

0
θα–1T

(
F
(
(1 – θ )s + θ t

))
dθ

=
�(α)

(t – s)α
[
J

α
s+T

(
F(t)

)
+ J

α
t–T

(
F(s)

)]
.

Combining the both parts, we obtain the second inequality. �

Theorem 4.2 Let T ∈ T and F ∈ CXT ([s, t],Kc). If T ◦ F ∈ L1([s, t],Kc) ∩ CXT ([s, t],Kc),
then

T 2(F(s)) + T 2(F(t))
2

⊆ �(α + 1)
2(t – s)α

[
J

α
s+T

(
F(t)

)
+ J

α
t–T

(
F(s)

)] ⊆ F
(

s + t
2

)

.
(4.5)

Proof Since T ◦ F is T -convex, we easily obtain that

θT 2(F(s)
)

+ (1 – θ )T 2(F(t)
) ⊆ T

(
F
(
θs + (1 – θ )t

))
.

Similarly, we get

(1 – θ )T 2(F(s)
)

+ θT 2(F(t)
) ⊆ T

(
F
(
(1 – θ )s + θ t

))
.

By adding the above two inequalities, we have

T 2(F(s)
)

+ T 2(F(t)
) ⊆ T

(
F
(
θs + (1 – θ )t

))
+ T

(
F
(
(1 – θ )s + θ t

))
.

Multiplying by θα–1, with α > 0 and integrating θ over [0, 1], then

∫ 1

0
θα–1[T 2(F(s)

)
+ T 2(F(t)

)]
dθ

⊆
∫ 1

0
θα–1T

(
F
(
θs + (1 – θ )t

))
dθ +

∫ 1

0
θα–1T

(
F
(
(1 – θ )s + θ t

))
dθ .

For the left-hand side,

∫ 1

0
θα–1T 2(F(s)

)
+ T 2(F(t)

)
dθ =

1
α

[
T 2(F(s)

)
+ T 2(F(t)

)]
.
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For the right-hand side,

∫ 1

0
θα–1T

(
F
(
θs + (1 – θ )t

))
dθ +

∫ 1

0
θα–1T

(
F
(
(1 – θ )s + θ t

))
dθ

=
�(α)

(t – s)α
[
J

α
s+T

(
F(t)

)
+ J

α
t–T

(
F(s)

)]
.

Thus, we obtain

T 2(F(s)) + T 2(F(t))
2

⊆ �(α + 1)
2(t – s)α

[
J

α
s+T

(
F(t)

)
+ J

α
t–T

(
F(s)

)]
.

Combining with (4.4), we finish the proof. �

Example 4.3 Let F : [1, 2] →Kc be given by F(x) = [
√

x, 6], and let

T (A) =

⎧
⎨

⎩

[(a–)2, (a+) – 1] if (a–)2 + 1 ≤ a+,

{ a++a–

2 } otherwise,

for any A ∈ Kc. First, we remark that F ∈ CXT ([1, 2],Kc) and T ◦ F ∈ L1([1, 2],Kc) ∩
CXT ([1, 2],Kc). Then we have

J
1
2
1+T

(
F(2)

)
=

1
�(1/2)

∫ 2

1
(2 – τ )– 1

2 T
(
F(τ )

)
dτ =

1√
π

[
10
3

, 10
]

,

J
1
2
2–T

(
F(1)

)
=

1
�(1/2)

∫ 2

1
(τ – 1)– 1

2 T
(
F(τ )

)
dτ =

1√
π

[
8
3

, 10
]

,

and

�(3/2)
2(2 – 1)1/2

[
J

1
2
1+T

(
F(2)

)
+ J

1
2
2–T

(
F(1)

)]
=

[
3
2

, 5
]

.

Meanwhile, we have

F
(

s + t
2

)

= F
(

1 + 2
2

)

=
[√

6
2

, 6
]

and

T 2(F(s)) + T 2(F(t))
2

=
T 2(F(1)) + T 2(F(2))

2
=

[
5
2

, 4
]

.

Since
[

5
2

, 4
]

⊆
[

3
2

, 5
]

⊆
[√

6
2

, 6
]

,

which illustrates

T 2(F(1)) + T 2(F(2))
2

⊆ �(3/2)
2(2 – 1)1/2

[
J

1
2
1+T

(
F(2)

)
+ J

1
2
2–T

(
F(1)

)] ⊆ F
(

1 + 2
2

)

.

Consequently, Theorem 4.2 is verified.
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Corollary 4.4 Let T ∈ T and F ∈ CXT ([s, t],Kc). If T n ◦ F ,T n–1 ◦ F ∈ L1([s, t],Kc) ∩
CXT ([s, t],Kc), then

T n+1(F(s)) + T n+1(F(t))
2

⊆ �(α + 1)
2(t – s)α

[
J

α
s+T n(F(t)

)
+ J

α
t–T n(F(s)

)]

⊆ T n–1
(

F
(

s + t
2

))

, n = 1, 2, . . . .
(4.6)

Remark 4.5 Let n = 1 in Corollary 4.4, we obtain Theorem 4.2. Also, for the case T ≡ ID,
we obtain the classic fractional Hermite–Hadamard inequality.

Next, we give the Ostrowski type inequality for interval-valued function.

Lemma 4.6 Let T ∈ T and F : [s, t] → Kc. If T ◦ F is �-monotone and differentiable on
[s, t] with (T ◦ F)′ ∈ C([s, t],Kc), then

∥
∥T

(
F(t)

) �g T
(
F(s)

)∥
∥ ≤ ∥

∥(T ◦ F)′
∥
∥

c(t – s). (4.7)

Theorem 4.7 Let T ∈ T and F : [s, t] → Kc. If T ◦ F is �-monotone and differentiable on
[s, t] with (T ◦ F)′ ∈ C([s, t],Kc), then for any x ∈ [s, t],

∥
∥
∥
∥
�(α + 1)
2(t – s)α

[
J

α
s+T

(
F(t)

)
+ J

α
t–T

(
F(s)

)] �g T
(
F(x)

)
∥
∥
∥
∥

≤ ∥
∥(T ◦ F)′

∥
∥

c

(
(α – 1)(t – s)α+1 + 2(x – s)α+1 + 2(t – x)α+1

2(α + 1)(t – s)α

)

.
(4.8)

Proof Since we have

�(α + 1)
2(t – s)α

[
J

α
s+T

(
F(t)

)
+ J

α
t–T

(
F(s)

)]

=
α

2(t – s)α

(∫ t

s
(t – τ )α–1T

(
F(τ )

)
dτ +

∫ t

s
(τ – s)α–1T

(
F(τ )

)
dτ

)

and

T
(
F(x)

)
=

α

2(t – s)α

(∫ t

s
(t – τ )α–1T

(
F(x)

)
dτ +

∫ t

s
(τ – s)α–1T

(
F(x)

)
dτ

)

.

Then
∥
∥
∥
∥
�(α + 1)
2(t – s)α

[
J

α
s+T

(
F(t)

)
+ J

α
t–T

(
F(s)

)] �g F(x)
∥
∥
∥
∥

=
α

2(t – s)α

∥
∥
∥
∥

(∫ t

s
(t – τ )α–1T

(
F(τ )

)
dτ +

∫ t

s
(τ – s)α–1T

(
F(τ )

)
dτ

)

�g

(∫ t

s
(t – τ )α–1T

(
F(x)

)
dτ +

∫ t

s
(τ – s)α–1T

(
F(x)

)
dτ

)∥
∥
∥
∥

≤ α

2(t – s)α

(∥
∥
∥
∥

∫ t

s
(t – τ )α–1T

(
F(τ )

)
dτ �g

∫ t

s
(t – τ )α–1T

(
F(x)

)
dτ

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t

s
(τ – s)α–1T

(
F(τ )

)
dτ �g

∫ t

s
(τ – s)α–1T

(
F(x)

)
dτ

∥
∥
∥
∥

)

.
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By Corollary 2.5 and Lemma 4.6, we obtain

∥
∥
∥
∥

∫ t

s
(t – τ )α–1T

(
F(τ )

)
dτ �g

∫ t

s
(t – τ )α–1T

(
F(x)

)
dτ

∥
∥
∥
∥

≤
∫ t

s
(t – τ )α–1∥∥T

(
F(τ )

) �g T
(
F(x)

)∥
∥dτ

≤ ∥
∥(T ◦ F)′

∥
∥

c

∫ t

s
(t – τ )α–1|τ – x|dτ

and
∥
∥
∥
∥

∫ t

s
(τ – s)α–1T

(
F(τ )

)
dτ �g

∫ t

s
(τ – s)α–1T

(
F(x)

)
dτ

∥
∥
∥
∥

≤
∫ t

s
(τ – s)α–1∥∥T

(
F(τ )

) �g T
(
F(x)

)∥
∥dτ

≤ ∥
∥(T ◦ F)′

∥
∥

c

∫ t

s
(τ – s)α–1|τ – x|dτ .

Combining the above results, then

∥
∥
∥
∥
�(α + 1)
2(t – s)α

[
J

α
s+T

(
F(t)

)
+ J

α
t–T

(
F(s)

)] �g T
(
F(x)

)
∥
∥
∥
∥

≤ α‖(T ◦ F)′‖c

2(t – s)α

(∫ t

s
(t – τ )α–1|τ – x|dτ +

∫ t

s
(τ – s)α–1|τ – x|dτ

)

=
∥
∥(T ◦ F)′

∥
∥

c

(
(α – 1)(t – s)α+1 + 2(x – s)α+1 + 2(t – x)α+1

2(α + 1)(t – s)α

)

. �

Remark 4.8 If we take T = ID and α = 1 in (4.8), then we get Theorem 4.1 in [4].

Example 4.9 Consider F : [1, 2] → Kc and T ∈ T in Example 4.3. For the left, we check
that

∥
∥
∥
∥

�(3/2)
2(2 – 1)1/2

[
J

1
2
1+T

(
F(2)

)
+ J

1
2
2–T

(
F(1)

)] �g T
(
F(x)

)
∥
∥
∥
∥ =

∣
∣
∣
∣x –

3
2

∣
∣
∣
∣

for any x ∈ [1, 2]. Also, we have

∥
∥(T ◦ F)′

∥
∥

c

(
(–1/2)(2 – 1)3/2 + 2(x – 1)3/2 + 2(2 – x)3/2

3

)

=
4(x – 1) 3

2 + 4(2 – x) 3
2 – 1

6
.

Obviously, for any x ∈ [1, 2], we have

∣
∣
∣
∣x –

3
2

∣
∣
∣
∣ ≤ 4(x – 1) 3

2 + 4(2 – x) 3
2 – 1

6
.

Consequently, Theorem 4.7 is verified (see Fig. 2).
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Figure 2 The graph of the result in Example 4.9

Corollary 4.10 Let T ∈ T and F : [s, t] →Kc. If T ◦ F is �-monotone and differentiable on
[s, t] with (T ◦ F)′ ∈ C([s, t],Kc), then

∥
∥
∥
∥
�(α + 1)
2(t – s)α

[
J

α
s+T

(
F(t)

)
+ J

α
t–T

(
F(s)

)] �g T
(

F
(

s + t
2

))∥
∥
∥
∥

≤ ∥
∥(T ◦ F)′

∥
∥

c

(
α(t – s)α+1

2α(α + 1)(t – s)α

)

.
(4.9)

Remark 4.11 If we take T = ID and α = 1, then we can estimate the gap between two
intervals and construct a suitable map T such that F ∈ CXT ([s, t],Kc).

5 Conclusions
This article presents a new map T on Kc and studies some basic properties of T -convex
interval-valued functions. Meanwhile, some new Hermite–Hadamard type inequalities
and Ostrowski type inequality based on these concepts are established. In the field of
mathematical optimization, comparing convex optimization with other methods, its merit
is to make every local minimum a global minimum. A good deal of problem classes, such
as least squares, linear programming, geometric programming, are all convex optimiza-
tion problems, or can be switched to convex optimization problems via simple transfor-
mations. The research results of this paper can expand the application range of convex
function. Thereby, in the field of interval convex optimizations, our results are more ap-
plicable than ever. Next, we intend to study fuzzy-valued functions and some applications
in interval and fuzzy convex optimizations by using T -convex. Also, we may research
more details about the map T and discuss other maps on Kc in the future.
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