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Abstract
This research uses the extended exp-(–ϕ(ϑ ))-expansion and the Jacobi elliptical
function methods to obtain a fashionable explicit format for solutions to the
fragmented biological population and the same width models that depict popular
logistics because of deaths or births. In mathematical terminology, the linear,
hyperbolic, and trigonometric equation solutions that have been found describe
several innovative aspects from the two models. Sketching these solutions in different
types is used to give themmore details. The accuracy and performance of the
method adopted show their ability to be applied to various nonlinear developmental
equations.
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1 Introduction
Previously, a system of nonlinear evolutionary equations has been used to formulate a
fraction of a population in specific fields [1–5]. In numerous distinct branches of science
such as mathematics, chemistry, biology, ecology, chaos syncing, mechanics engineering,
physics and anomalous spreads, and so on [6–8], many researchers have investigated an-
alytical, semiautomatic, and numerical solutions of fractional models. Such phenomena
have been modeled by the fractional mathematical models based on experimental results
to demonstrate their nonlocal properties, where this form of property [9–13] cannot be
expressed by nonlinear partial differential equations with an integer order.

Based on the ability to form multiple complex phenomena in diverse fields such as biol-
ogy, plasma physics, hydrodynamics, fluid mechanics, optics, and so forth, several precise
and computational schemes such as [14–23] have been developed. In the treatment to
these problems, electronic and technical developments are known to be of essential value
across derivative structures. These systems have been recently considered to be basic tools
in the development of various waveform travel formulas such as [24–30]. These are com-
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plex phenomena. In the nonlinear partial differential equation (NLPDE), several scientists
have struggled to extract and formulate several complicated anomalies in an integer or-
der [31, 32]. Therefore, fractional is assumed to be an effective solution for this question
when a nonlocal property is found that is not NLPDE dependent with [33, 34] an integer
order. This makes many fractional models and definitions of derivatives represented and
formulated as in [35–47].

In this research, we study two primary models in biological science. These models are
named with the fractional BP model, and fractional EW equation is given by

• Fractional BP model [48–51]:
This paradigm illustrates community dynamics and is given by

Dκ
t H = D2κ

xxH2 + D2κ
yyH2 + υ

(
H2 – s

)
, (1)

where H is the function of the population density, while υ(H2 – s) represents the
population logistics according to deaths and births. Additionally, v, s, κ (0 < κ ≤ 1) are
arbitrary constants.

The population model describes the number of organisms of the same species
(human, animal, and plant) living simultaneously in a particular geographic area with
interbreeding capacity.

• Fractional EW equation [52–55]:
It is an alternative form of nonlinear dispersive waves first introduced by Morrison

et al. and formulated as follows:

Dκ
t � + 2h�Dκ

x� – rD3κ
xxt� = 0, (2)

where h, r, κ (0 < κ ≤ 1) are arbitrary constants. Without deformation, waves may
spread in a wave medium that is non-dispersive. Electromagnetic waves with
unbounded free space are both non-dispersive and non-dissipative, thus can spread
over astronomical distances. Sound waves in air are also virtually non-dispersive in
the ultrasound range. If not, if high-frequency notes (e.g. piccolo) and low-frequency
notes (e.g. basis) spread at different speeds, they could reach the ears at different
times. However, the majority of the waves in material media are scattering, and
initially established wave forms will change so that wave power can spread or disperse
more spatially.

Implementation of the following conformable derivative definitions (for further defi-
nition and properties of the conformable fractional derivatives, see the Appendix) on
Eqs. (1) and (2) with the following respective order H(x, y, t) = H(ϑ), ϑ = � xκ

κ
+ i� yκ

κ
+ ctκ

κ
,

�(x, t) = �(ϑ), ϑ = xκ

κ
+ ctκ

κ
, where �, c, κ are arbitrary constants, transforms the fractional

PDE into integer order ODE which are given by

cH′ – υH2 + υs = 0, (3)

c� + h�2 – rc�′′ = 0. (4)

The remaining sections in our research paper are ordered as follows: Sect. 2 manipulates
the extended exp-(–ϕ(ϑ))-expansion method [56–60] and the Jacobi elliptical function
method [61–63] to procure novel solitary solutions of both suggested models. Section 5
gives the conclusion of this research.
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2 Applications
This section applies the extended exp-(–ϕ(ϑ))-expansion and the Jacobi elliptical function
techniques on the considered fractional models.

Balancing the terms in Eqs. (3), (4) to get the balance value of each of them leads to
respectively n + 1 = m & n + 2 = m, where n, m are arbitrary constants. Supposing the
value of n = 1 and according to the general solution that is suggested by the extended exp-
(–ϕ(ϑ))-expansion method and the Jacobi elliptical function method, the general solution
of Eqs. (3) is given respectively by

H(ϑ) =
∑m

i=0 aie–iϕ(ϑ)
∑n

j=0 bje–jϕ(ϑ) =
a1e–ϕ(ϑ) + a2e–2ϕ(ϑ) + a0

b1e–ϕ(ϑ) + b0
, (5)

H(ϑ) =
n∑

i=1

aiφ(ϑ)i +
n∑

i=1

biφ(ϑ)–i + a0 = a1φ(ϑ) + a0 +
b1

φ(ϑ)
, (6)

while the general solution of Eqs. (4) is given by

�(ϑ) =
∑m

i=0 aie–iϕ(ϑ)
∑n

j=0 bje–jϕ(ϑ) =
a1e–ϕ(ϑ) + a2e–2ϕ(ϑ) + a3e–3ϕ(ϑ) + a0

b1e–ϕ(ϑ) + b0
, (7)

�(ϑ) =
n∑

i=1

aiφ(ϑ)i +
n∑

i=1

biφ(ϑ)–i + a0

= a2φ(ϑ)2 + a1φ(ϑ) + a0 +
b2

φ(ϑ)2 +
b1

φ(ϑ)
, (8)

where ai, bj (i, j = 0, 1, 2, . . .). Additionally, ϕ(ϑ) is the solution function of [ϕ′(ϑ) = χ +
γ eϕ(ϑ) + 1

eϕ(ϑ) & φ′(ϑ) =
√

pφ(ϑ)2 + qφ(ϑ)4 + ρ], where χ , γ , r, p, q are arbitrary constants.

2.1 Fractional BP model
2.1.1 Extended exp-(–ϕ(ϑ))-expansion method
Employing Eqs. (5) and (3) in the framework of the extended exp-(–ϕ(ϑ))-expansion
method to solve Eq. (3) yields the following.

Family I

[
a0 → b0χ

√
s

√
χ2 – 4γ

, a1 → 2b0
√

s
√

χ2 – 4γ
+

b1χ
√

s
√

χ2 – 4γ
, a2 → 2b1

√
s

√
χ2 – 4γ

, c → –
2
√

sv
√

χ2 – 4γ

]
.

Consequently, the explicit wave solutions of Eq. (1) are given by:
In case of [χ2 – 4γ > 0 & γ �= 0],

H1(x, y, t) =
√

s(χ2 – 4γ + χ
√

χ2 – 4γ tanh( –2
√

svtκ +
√

χ2–4γ (ηκ+�xκ +i�yκ )
2κ

))
√

χ2 – 4γ (χ +
√

χ2 – 4γ tanh( –2
√

svtκ +
√

χ2–4γ (ηκ+�xκ +i�yκ )
2κ

))
, (9)

H2(x, y, t) =
√

s(χ2 – 4γ + χ
√

χ2 – 4γ coth( –2
√

svtκ +
√

χ2–4γ (ηκ+�xκ +i�yκ )
2κ

))
√

χ2 – 4γ (χ +
√

χ2 – 4γ coth( –2
√

svtκ +
√

χ2–4γ (ηκ+�xκ +i�yκ )
2κ

))
. (10)
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In case of [χ2 – 4γ > 0 & γ = 0 & χ �= 0],

H3(x, y, t) =
χ

√
s coth(

χ (ηκ– 2
√

svtκ√
χ2

+�(xκ +iyκ ))

2κ
)

√
χ2

. (11)

In case of [χ2 – 4γ = 0 & γ �= 0 & χ �= 0],

H4(x, y, t) = –
2κχ

√
s

2χ
√

svtκ –
√

χ2 – 4γ (κ(ηχ + 2) + χ�(xκ + iyκ ))
. (12)

In case of [χ2 – 4γ < 0 & γ �= 0],

H5(x, y, t) =
√

s(χ2 – 4γ – χ
√

4γ – χ2 tan(

√
4γ –χ2(ηκ– 2

√
svtκ√

χ2–4γ

+�xκ +i�yκ )

2κ
))

√
χ2 – 4γ (χ –

√
4γ – χ2 tan(

√
4γ –χ2(ηκ– 2

√
svtκ√

χ2–4γ

+�xκ +i�yκ )

2κ
))

, (13)

H6(x, y, t) =
√

s(χ2 – 4γ – χ
√

4γ – χ2 cot(

√
4γ –χ2(ηκ– 2

√
svtκ√

χ2–4γ

+�xκ +i�yκ )

2κ
))

√
χ2 – 4γ (χ –

√
4γ – χ2 cot(

√
4γ –χ2(ηκ– 2

√
svtκ√

χ2–4γ

+�xκ +i�yκ )

2κ
))

. (14)

Family II

[
a0 → b1χ

2√s
2
√

χ2 – 4γ
, a1 → 2b1χ

√
s

√
χ2 – 4γ

, a2 → 2b1
√

s
√

χ2 – 4γ
, b0 → b1χ

2
, c → –

2
√

sv
√

χ2 – 4γ

]
.

Consequently, the explicit wave solutions of Eq. (1) are given by:
In case of [χ2 – 4γ > 0 & γ �= 0],

H7(x, y, t) =
√

s(χ2 – 4γ + χ
√

χ2 – 4γ tanh( –2
√

svtκ +
√

χ2–4γ (ηκ+�xκ +i�yκ )
2κ

))
√

χ2 – 4γ (χ +
√

χ2 – 4γ tanh( –2
√

svtκ +
√

χ2–4γ (ηκ+�xκ +i�yκ )
2κ

))
, (15)

H8(x, y, t) =
√

s(χ2 – 4γ + χ
√

χ2 – 4γ coth( –2
√

svtκ +
√

χ2–4γ (ηκ+�xκ +i�yκ )
2κ

))
√

χ2 – 4γ (χ +
√

χ2 – 4γ coth( –2
√

svtκ +
√

χ2–4γ (ηκ+�xκ +i�yκ )
2κ

))
. (16)

In case of [χ2 – 4γ > 0 & γ = 0 & χ �= 0],

H9(x, y, t) =
χ

√
s coth(

χ (ηκ– 2
√

svtκ√
χ2

+�(xκ +iyκ ))

2κ
)

√
χ2

. (17)

In case of [χ2 – 4γ = 0 & γ �= 0 & χ �= 0],

H10(x, y, t) = –
2κχ

√
s

2χ
√

svtκ –
√

χ2 – 4γ (κ(ηχ + 2) + χ�(xκ + iyκ ))
. (18)
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In case of [χ2 – 4γ < 0 & γ �= 0],

H11(x, y, t) =
√

s(χ2 – 4γ – χ
√

4γ – χ2 tan(

√
4γ –χ2(ηκ– 2

√
svtκ√

χ2–4γ

+�xκ +i�yκ )

2κ
))

√
χ2 – 4γ (χ –

√
4γ – χ2 tan(

√
4γ –χ2(ηκ– 2

√
svtκ√

χ2–4γ

+�xκ +i�yκ )

2κ
))

, (19)

H12(x, y, t) =
√

s(χ2 – 4γ – χ
√

4γ – χ2 cot(

√
4γ –χ2(ηκ– 2

√
svtκ√

χ2–4γ

+�xκ +i�yκ )

2κ
))

√
χ2 – 4γ (χ –

√
4γ – χ2 cot(

√
4γ –χ2(ηκ– 2

√
svtκ√

χ2–4γ

+�xκ +i�yκ )

2κ
))

. (20)

2.1.2 Jacobi elliptical function method
Substituting Eq. (6) and its derivative into Eq. (3) leads to a system of equations. Solving
them yields

[a0 → –
√

s, a1 → 0, b1 → 0]

and

[a0 → √
s, a1 → 0, b1 → 0].

This result shows the failure of the Jacobi elliptical function method which is considered
as a proof of the fact that there exists no unified computational method that can be used
on all nonlinear evolution equation.

2.2 Fractional EW model
2.2.1 Extended exp-(–ϕ(ϑ))-expansion method
Replacing Eq. (7) into Eq. (4) and collecting all terms with the same power for [e–εϕ(ϑ), ε =
0, 1, 2, . . .] lead to a system of algebraic equation. Solving this system yields the following.

Family I

[
a0 → a3b0(–

√
(χ2 – 4γ )2 + χ2 + 8γ )

12b1
,

a1 → 1
12

a3

(
12b0χ

b1
–

√(
χ2 – 4γ

)2 + χ2 + 8γ

)
, a2 → a3(b1χ + b0)

b1
,

r → 1
√

χ4 – 8χ2γ + 16γ 2
, h → 6b1c

a3
√

(χ2 – 4γ )2

]
.

Consequently, the explicit wave solutions of Eq. (2) are given by:
In case of [χ2 – 4γ > 0 & γ �= 0],

�1(x, y, t) =
1

12b1(
√

χ2 – 4γ tanh(
√

χ2–4γ (ctκ +ηκ+xκ )
2κ

) + χ )2

×
[

a3 sech2
(√

χ2 – 4γ (ctκ + ηκ + xκ )
2κ

)

×
(

–
(√(

χ2 – 4γ
)2 – χ2 + 4γ

)
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×
(

χ
√

χ2 – 4γ sinh

(√
χ2 – 4γ (ctκ + ηκ + xκ )

κ

)

+
(
χ2 – 2γ

)
cosh

(√
χ2 – 4γ (ctκ + ηκ + xκ )

κ

))

– 2γ
(√(

χ2 – 4γ
)2 + 5χ2 – 20γ

))]
, (21)

�2(x, y, t) =
1

12b1(
√

χ2 – 4γ coth(
√

χ2–4γ (ctκ +ηκ+xκ )
2κ

) + χ )2

×
[

a3 csch2
(√

χ2 – 4γ (ctκ + ηκ + xκ )
2κ

)

×
(

2γ
(√(

χ2 – 4γ
)2 + 5χ2 – 20γ

)

–
(√(

χ2 – 4γ
)2 – χ2 + 4γ

)
(

χ
√

χ2 – 4γ

× sinh

(√
χ2 – 4γ (ctκ + ηκ + xκ )

κ

)

+
(
χ2 – 2γ

)
cosh

(√
χ2 – 4γ (ctκ + ηκ + xκ )

κ

)))]
. (22)

In case of [χ2 – 4γ > 0 & γ = 0 & χ �= 0],

�3(x, y, t) =
a3(3χ2 csch2( χ (ctκ +ηκ+xκ )

2κ
) –

√
χ4 + χ2)

12b1
. (23)

In case of [χ2 – 4γ = 0 & γ �= 0 & χ �= 0],

�4(x, y, t) =
a3(χ2( 12κ2

(cχ tκ +ηκχ+2κ+χxκ )2 – 2) –
√

(χ2 – 4γ )2 + 8γ )
12b1

. (24)

In case of [χ2 – 4γ = 0 & γ = 0 & χ = 0],

�5(x, y, t) =
a3κ

2

b1(ctκ + ηκ + xκ )2 . (25)

In case of [χ2 – 4γ < 0 & γ �= 0],

�6(x, y, t) =
1

12b1(χ –
√

4γ – χ2 tan(
√

4γ –χ2(ctκ +ηκ+xκ )
2κ

))2

×
[

a3 sec2
(√

4γ – χ2(ctκ + ηκ + xκ )
2κ

)

×
(

–
(√(

χ2 – 4γ
)2 – χ2 + 4γ

)

×
((

χ2 – 2γ
)

cos

(√
4γ – χ2(ctκ + ηκ + xκ )

κ

)
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– χ
√

4γ – χ2 sin

(√
4γ – χ2(ctκ + ηκ + xκ )

κ

))

– 2γ
(√(

χ2 – 4γ
)2 + 5χ2 – 20γ

))]
, (26)

�7(x, y, t) =
1

12b1(χ –
√

4γ – χ2 cot(
√

4γ –χ2(ctκ +ηκ+xκ )
2κ

))2

×
[

a3 csc2
(√

4γ – χ2(ctκ + ηκ + xκ )
2κ

)

×
(

(√(
χ2 – 4γ

)2 – χ2 + 4γ
)

×
(

χ
√

4γ – χ2 sin

(√
4γ – χ2(ctκ + ηκ + xκ )

κ

)

+
(
χ2 – 2γ

)
cos

(√
4γ – χ2(ctκ + ηκ + xκ )

κ

))

– 2γ
(√(

χ2 – 4γ
)2 + 5χ2 – 20γ

)
)]

. (27)

Family II

[
b1 → 2b0

χ
, a0 → 1

24
a3χ

(√(
χ2 – 4γ

)2 + χ2 + 8γ
)
,

a1 → 1
12

a3
(√(

χ2 – 4γ
)2 + 7χ2 + 8γ

)
,

a2 → 3a3χ

2
, r → –

1
√

χ4 – 8χ2γ + 16γ 2
, h → –

12b0c
a3χ

√
(χ2 – 4γ )2

]
.

Consequently, the explicit wave solutions of Eq. (2) are given by:
In case of [χ2 – 4γ > 0 & γ �= 0],

�8(x, y, t) =
1

24b0(
√

χ2 – 4γ tanh(
√

χ2–4γ (ctκ +ηκ+xκ )
2κ

) + χ )2

×
[

a3χ sech2
(√

χ2 – 4γ (ctκ + ηκ + xκ )
2κ

)

×
(

(√(
χ2 – 4γ

)2 + χ2 – 4γ
)

×
(

χ
√

χ2 – 4γ sinh

(√
χ2 – 4γ (ctκ + ηκ + xκ )

κ

)

+
(
χ2 – 2γ

)
cosh

(√
χ2 – 4γ (ctκ + ηκ + xκ )

κ

))

+ 2γ
(√(

χ2 – 4γ
)2 – 5χ2 + 20γ

))]
, (28)
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�9(x, y, t) =
1

24b0(
√

χ2 – 4γ coth(
√

χ2–4γ (ctκ +ηκ+xκ )
2κ

) + χ )2

×
[

a3χ csch2
(√

χ2 – 4γ (ctκ + ηκ + xκ )
2κ

)

×
(

(√(
χ2 – 4γ

)2 + χ2 – 4γ
)

×
(

χ
√

χ2 – 4γ sinh

(√
χ2 – 4γ (ctκ + ηκ + xκ )

κ

)

+
(
χ2 – 2γ

)
cosh

(√
χ2 – 4γ (ctκ + ηκ + xκ )

κ

))

– 2γ
(√(

χ2 – 4γ
)2 – 5χ2 + 20γ

)
)]

. (29)

In case of [χ2 – 4γ > 0 & γ = 0 & χ �= 0],

�10(x, y, t) =
a3χ (3χ2 csch2( χ (ctκ +ηκ+xκ )

2κ
) +

√
χ4 + χ2)

24b0
. (30)

In case of [χ2 – 4γ = 0 & γ �= 0 & χ �= 0],

�11(x, y, t) =
a3χ (χ2( 12κ2

(cχ tκ +ηκχ+2κ+χxκ )2 – 2) +
√

(χ2 – 4γ )2 + 8γ )
24b0

. (31)

In case of [χ2 – 4γ < 0 & γ �= 0],

�12(x, y, t) =
1

24b0(χ –
√

4γ – χ2 tan(
√

4γ –χ2(ctκ +ηκ+xκ )
2κ

))2

×
[

a3χ sec2
(√

4γ – χ2(ctκ + ηκ + xκ )
2κ

)

×
((√(

χ2 – 4γ
)2 + χ2 – 4γ

)

×
((

χ2 – 2γ
)

cos

(√
4γ – χ2(ctκ + ηκ + xκ )

κ

)

– χ
√

4γ – χ2 sin

(√
4γ – χ2(ctκ + ηκ + xκ )

κ

))

× γ
(√(

χ2 – 4γ
)2 – 5χ2 + 20γ

)
)]

, (32)

�13(x, y, t) =
–1

24b0(χ –
√

4γ – χ2 cot(
√

4γ –χ2(ctκ +ηκ+xκ )
2κ

))2

×
[

a3χ csc2
(√

4γ – χ2(ctκ + ηκ + xκ )
2κ

)

×
((√(

χ2 – 4γ
)2 + χ2 – 4γ

)
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Table 1 Some solutions of auxiliary equation of Eq. 8

ρ p q φ(ϑ )

1 –(1 +m2) m2 sn(ϑ )
1 –m2 2m2 – 1 –m2 cn(ϑ )
m2 – 1 2 –m2 -1 dn(ϑ )
1
4

1–2m2
2

1
4 ns(ϑ )± cs(ϑ ) or sn(ϑ )

1±cn(ϑ )
1–m2
4

1+m2
2

1–m2
4 nc(ϑ )± sc(ϑ ) or cn(ϑ )

1±sn(ϑ )
1 2 –m2 1 –m2 sc(ϑ )
1 –m2 2 –m2 1 cs(ϑ )

×
(

χ
√

4γ – χ2 sin

(√
4γ – χ2(ctκ + ηκ + xκ )

κ

)

+
(
χ2 – 2γ

)
cos

(√
4γ – χ2(ctκ + ηκ + xκ )

κ

))

– 2γ
(√(

χ2 – 4γ
)2 – 5χ2 + 20γ

))]
. (33)

2.2.2 Jacobi elliptical function method
Substituting Eq. (8) and its derivative into Eq. (4) leads to a system of equations. Solving
them yields

[
a0 → 1

2

(
cp

h
√

p2 – 3qρ
–

c
h

)
, a1 → 0, a2 → 6cq

h
√

16p2 – 48qρ
,

b1 → 0, b2 → 0, r → 1
√

16p2 – 48qρ

]
.

Using these values and Table 1 leads to formulating the explicit wave solutions of Eq. (2)
in the following formats:

�14(x, y, t)|ρ→1,p→–2,q→1 = –
3c sech2( ctκ +xκ

κ
)

2h
, (34)

�15(x, y, t)|ρ→ 1
4 ,p→– 1

2 ,q→ 1
4

=
3c((coth( ctκ +xκ

κ
) ± csch( ctκ +xκ

κ
))2 – 1)

2h
, (35)

�16(x, y, t)|ρ→0,p→1,q→1 =
3c csch2( ctκ +xκ

κ
)

2h
, (36)

�16(x, y, t)|ρ→ 1
4 ,p→ 1

2 ,q→ 1
4

=
c(3(csc( ctκ +xκ

κ
) ± cot( ctκ +xκ

κ
))2 + 1)

2h
, (37)

�18(x, y, t)|ρ→ 1
4 ,p→ 1

2 ,q→ 1
4

=
c(3(sec( ctκ +xκ

κ
) ± tan( ctκ +xκ

κ
))2 + 1)

2h
, (38)

�19(x, y, t)|ρ→1,p→2,q→1 =
c(3(sec( ctκ +xκ

κ
) ± tan( ctκ +xκ

κ
))2 + 1)

2h
, (39)

�20(x, y, t)|ρ→1,p→2,q→1 =
c(3 cot2( ctκ +xκ

κ
) + 1)

2h
. (40)
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Figure 1 Cone wave solution for the absolute, real, and imaginary parts of (9) in three dimensions

3 Figures representation
This section explains the shown figures in our paper. All these plots depend on individual
values of the indicated parameters in the obtained solution. Now, we discuss the repre-
sentation of the shown figures with their settings as follows:

• Fig. 1 represents a cone wave solution of Eq. (9) when η = 1, κ = 0.5, λ = 3, μ = 2, s = 4,
v = 6, y = 7, � = 5 in a three-dimensional sketch.

• Fig. 2 shows a contour plot of Eq. (9) when η = 1, κ = 0.5, λ = 3, μ = 0, s = 4, v = 6,
y = 7, � = 5 that explains the surface is symmetric and peaks in the center.

• Fig. 3 represents a dark wave solution of Eq. (21) when (a3 = 3); b1 = 2, c = 5, η = 1,
κ = 0.5, λ = 3, μ = 2, s = 4 in three distinct types of plots.

• Fig. 4 shows dark wave solution of Eq. (23) when a3 = 3, b1 = 2, c = 5, η = 1, κ = 0.5,
λ = 3, μ = 2, s = 4 in three different plots.

• Fig. 5 shows dark wave solution of Eq. (34) when a3 = 3, b1 = 2, c = 5, η = 1, κ = 0.5,
λ = 3, μ = 0, s = 4 in three various kind of plots.

• Fig. 6 shows bright wave solution of Eq. (35) when c = 3, h = 2, κ = 0.5 in three
different forms of sketches.

4 Results and discussion
This segment displays our approaches and their latest functions. Check out how close we
are and how the ideas we have found can be contrasted with the previously published
papers. The key elements of our debate are the methodological approach employed and
the approaches produced.
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Figure 2 Cone wave solution for the absolute, real, and imaginary parts of (9) in the contour plot

1. The computational schemes used:
We used two computational methods (the extended exp-(–ϕ(ϑ))-expansion

method and the Jacobi elliptical function method) for the fractional BP model and
the EW model for constructing the exact traveling and solitary wave solutions.
A compliant fractional operator was employed to transform fractional aspects of
the equation to a nonlinear ordinary differential equation. This fractional operator
enables the classification schemes to be extended to the transformed shape. All
systems have the desired approach.

H(ϑ) = �(ϑ)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑m
i=0 aie–iφ(ϑ)

∑n
i=0 bie–iφ(ϑ) ,

φ′(ϑ) → λ + μeφ(ϑ) + 1
eφ(ϑ) ,

∑n
i=1 aiφ(ϑ)i +

∑n
i=1 biφ(ϑ)–i + a0,

φ′(ϑ) → √
pφ(ϑ)2 + qφ(ϑ)4 + ρ,

(41)
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Figure 3 Dark wave solution of (21) in three (a), two-dimensional (b), and contour plots (c)

where [n, m] are arbitrary constants to be determined by using the homogeneous
balance rule, while [λ,μ, p, q,ρ] are arbitrary constants to be determined by solving
the obtained algebraic system of equations. Moreover, applying two different
schemes on one model shows its ability to be used for other various schemes where
there is no unified method that is applied for all nonlinear evolution equations, and
that is well demonstrated in our paper.

2. The obtained solutions:
This part gives a comparison between our obtained solutions and those obtained

in previously published papers. In [64], Mostafa M. A. Khater, Raghda A. M. Attia,
and Dianchen Lu applied the modified Khater method to a fractional biological
population model, fractional equal width model, and fractional modified equal
width equation. They got many distinct types of solutions for these fractional
biological models.

• Eq. (27, [64]) is equal to Eq. (17) when [χ = 2, λ = ν , nκ = 0, � = μ
√

–ασ ].
• All other obtained solutions of the fractional BP model are different from those

obtained in [64].
• All our obtained solutions of the fractional EW model are new and different

from those obtained in [64].
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Figure 4 Dark wave solution of (23) in three (a), two-dimensional (b), and contour plots (c)

5 Conclusion
This paper examined two nonlinear BP and EW fractional models via exp-(–ϕ(ϑ))-
expansion and the Jacobi elliptical function method. The conformable fractional derivative
has been employed to convert the nonlinear partial differential equations to an ordinary
differential equation with an integer order. Many distinct wave solutions have been ob-
tained and have been represented in three-, two-dimensional, and contour plots. These
solutions were explained by different illustrations which clarify the new features of the
fractional models in question. Our solutions have been explained in terms of precision
and innovation. The novelty of our solutions is shown by comparing our solution with
that obtained in previous research papers. The powerful and effective application of the
used method is examined and tested to show its ability to be applied to other nonlinear
evolution equations.

Appendix
Given function f : [0,∞) → R. Then the (conformable fractional derivative) of f of order
α is defined by

Tα(f )(t) = lim
ε→0

f (t + εt1–α) – f (t)
ε

. (42)
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Figure 5 Dark wave solution of (34) in three (a), two-dimensional (b), and contour plots (c)

For all t > 0, α ∈ (0, 1) if f is α-differentiable in some (0,α). α > 0 and limt→0 f α(t) exists,
then define f α(0) = limt→0 f α(t).

We sometimes write f α(t) for Tα(f )(t) to denote the conformable fractional derivatives of
f of order α. In addition, if the conformable fractional derivative of f of order α exists, then
we say f is α-differentiable. We should take into consideration that Tα(tp) = ptp–α . Further,
this definition coincides with the same of traditional definition of Riemann–Liouville and
of Caputo on polynomials (up to a constant multiple).

The conformable fractional properties:
• Tα(ect) = ct1–αect .
• Tα(sin(at)) = at1–α cos(at).
• Tα sin(at) = –at1–α sin(at).
• Tα(tan(at)) = at1–α sec2(at).
• Tα(cot(at)) = –at1–α csc2(at).
• Tα(sec(at)) = at1–α sec(at) tan(at).
• Tα(csc(at)) = –at1–α csc(at) cot(at).
• Tα( tα

α
) = 1.
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Figure 6 Bright wave solution of (35) in three (a), two-dimensional (b), and contour plots (c)
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