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Abstract
In this paper, we employ some algebraic equations due to Hardy and Littlewood to
establish some conditions on weights in dynamic inequalities of Hardy and Copson
type. For illustrations, we derive some dynamic inequalities of Wirtinger, Copson and
Hardy types and formulate the classical integral and discrete inequalities with sharp
constants as particular cases. The results improve some results obtained in the
literature.
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1 Introduction
Hardy in [12] proved the discrete inequality

∞∑

s=1

(
1
s

s∑

i=1

a(i)

)q

≤
(

q
q – 1

)q ∞∑

s=1

aq(s), for q > 1, s ≥ 1, (1)

where a(s) is a positive sequence for s ≥ 1. In [13] Hardy proved the integral form

∫ ∞

0

(
1
y

∫ y

0
f (s) ds

)q

dy ≤
(

q
q – 1

)q ∫ ∞

0
f q(y) dy, for q > 1, (2)

where f is a positive function. In [10] Copson considered a new type of inequalities of the
form

∫ ∞

0

(∫ ∞

x
f (y) dy

)q

dx ≤ qq
∫ ∞

0
yqf q(y) dy, (3)
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where f is a positive function and q > 1. In [11] Copson (see also [14, Theorem 344]) proved
the discrete version of (3), which is given by

∞∑

s=0

( ∞∑

k=s

a(k)

)q

≤ qq
∞∑

s=0

kqaq(s), (4)

where q > 1 and a(s) > 0 for s ≥ 0. In [4] Beesack proved an inequality of the form

∫ b

a
ω(y)

(∫ y

a
f (τ ) dτ

)q

dy ≤
∫ b

a
γ (y)f q(y) dy, (5)

where γ and ω satisfy the differential equation of Euler–Lagrange type

(
γ (y)

(
z′(y)

)q–1)′ + ω(y)zq–1(y) = 0. (6)

The method of the proofs in [4] depends on the solution of (6) when the first derivative
z′ > 0 on the interval (a, b). The approach of Beesack extended to generalized Hardy’s type
inequalities; see, e.g., Beesack [5] and Shum [23]. Some of the conditions on z, γ and ω

were removed by Tomaselli [26]. In particular Tomaselli followed up the papers by Talenti
[24] and [25] and proved some inequalities with some special weighted functions.

The discrete analogues for the continuous results have been considered by some au-
thors, we refer to the articles by Chen [8, 9] and Liao [15]. It is worth to mention here that
some parts of the proofs of Liao’s results are based on the technique used in [7] and [14],
which are based on the application of the variational principle which is not an easy task
to apply on time scales and then we did not consider in our proofs of characterizations of
weights of the inequalities that we will consider in our paper. There is thus an urgent need
of a new technique that helps us in studying such problems on time scales, which is our
main aim in this paper.

The dynamic equations and inequalities have been introduced by Hilger in 1988 and
considered by a lot of authors, we refer to Refs. [1–3, 16–20, 27]. One of the applications
of Hardy-type inequalities in dynamic equations was demonstrated in [19]. In particular,
in [19] the author established a time-scale version of the Hardy inequality, which unifies
and extends well-known Hardy inequalities in the continuous and in the discrete setting,
and presented an application in the oscillation theory of half-linear dynamic equations to
obtain sharp oscillation results. Recently, in [21] the authors established some conditions
on the weights of dynamic inequalities of Hardy’s type to be hold. More precisely it has
been proved that, if 1 < p ≤ q < ∞,

∫ ∞

c
v– 1

p–1 (y)�y = ∞,
∫ x

c
v1–p∗

(y)�y < ∞, for y ∈ [c, d]T, (7)

where p∗ is the conjugate of p > 1, then

(∫ d

c
w(x)

(∫ y

c
g(s) ds

)q

�y
) 1

q
≤ C

(∫ d

c
v(y)gp(y)�y

) 1
p

, (8)

where w is a positive function, if and only if there is a number η > 0, such that the equation

η
(
v

q
p (s)

(
u�(s)

) q
p∗ )� + w(s)u

q
p∗ (

σ (s)
)

= 0 (9)
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has a solution u(s) that satisfies

u(s), u�(s) > 0 and u��(s) < 0, for s ∈ [c, d]T. (10)

In this paper, we establish some relations between the weights in generalized inequalities
of Hardy and Copson type by using the solutions of dynamic equations of half-linear types.
The technique in our paper allows us to cover the inequalities with tails of Copson’s type
with weights and improve the above results, since our results do not need the restrictive
condition (7). In Sect. 2, we are concerned with the presentation of some basic definitions
and preliminaries regarding the time-scale calculus. The dynamic Hardy-type inequality
of the form

∫ β

α

ω(t)
(∫ σ (t)

α


(τ )�τ

)q

�t ≤
∫ β

α

γ (t)
q(t)�t, (11)

will be proved in Sect. 3, where the method reduces the proofs to the solvability of dynamic
equation

(
γ (y)

(
u�(y)

)q–1))� + ω(y)
(
uσ (y)

)q–1 = 0, y ∈ [α,β]T, (12)

where u > 0, u� > 0. Next, we prove new conditions on weights in the dynamic Copson-
type inequality with tail of the form

∫ β

α

ω(t)
(∫ ∞

σ (t)

(y)�y

)q

�t ≤
∫ β

α

γ (y)
q(y)�y, (13)

and we prove that the conditions on the weights reduces to the solvability of the dynamic
equation

(
γ (s)

(
–u�(s)

)q–1)� – ω(s)
(
uσ (s)

)q–1 = 0, s ∈ [α,β]T, (14)

where u > 0, u� < 0. To the best of the authors’ knowledge the results in this case are es-
sentially new. For illustration, we derive some dynamic inequalities as special cases and
from them we formulate some classical and discrete inequalities.

2 Preliminaries
In this section, we present some basic definitions that will be used in the sequel and for
more details see [6]. The derivative on time scales of 
ϒ and 
/ϒ of two functions 
 and
ϒ are given by

(
ϒ)� = 
ϒ� + 
�ϒσ and
(




ϒ

)�

=

�ϒ – 
ϒ�

ϒϒσ
. (15)

The forward jump operator σ (t) on a time scale T is defined by σ (t) := inf{s ∈ T : s > t} and
the graininess function μ is defined by μ(t) := σ (t) – t, and for any function 
 : T →R the
notation 
σ (t) denotes 
(σ (t)). The Cauchy (delta)-integral is defined by

∫ t
a 
�(ω)�ω =
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(t) – 
(a). The integration formula on a discrete time scale reads

∫ b

a

(t)�t =

∑

t∈[a,b)

μ(t)
(t),

while the infinite integral is defined as
∫ ∞

a 
(t)�t = limb→∞
∫ b

a 
(t)�t. The chain rule for
functions � : R →R, which is continuously differentiable, and ϒ : T →R, which is delta-
differentiable, is given by

(� ◦ ϒ)�(t) = �′(ϒ(c)
)
ϒ�(t), for c ∈ [

t,σ (t)
]
,

this rule leads to the useful form

(
ϒq(t)

)� = qϒq–1(c)ϒ�(t), for c ∈ [
t,σ (t)

]
. (16)

Another formula pertaining to the chain rule states that

(� ◦ ϒ)�(t) =
∫ 1

0
�′(ϒ(t) + sμ(t)ϒ�(t)

)
dsϒ�(t),

which provides us with the following useful form:

(
ϒq(t)

)� = q
∫ 1

0

(
sϒσ (t) + (1 – s)ϒ(t)

)q–1 dsϒ�(t). (17)

For a, b ∈ T and 
,� ∈ Crd(T), the integration by parts formula is given by

∫ b

a

σ (t)��(t)�t = 
�(b) – 
�(a) –

∫ b

a

�(t)�(t)�t. (18)

The Hölder inequality on time scales is given by

∫ b

a

∣∣
(t)�(t)
∣∣�t ≤

(∫ b

a

∣∣
(t)
∣∣q

�t
) 1

q
(∫ b

a

∣∣�(t)
∣∣q

�t
) 1

q
,

where q > 1 and 1/q + 1/q = 1. We define the time-scale interval [a,∞)T by [a,∞)T :=
[a,∞) ∩T.

3 Main results
In this section, we will prove the main results and we begin with inequalities of Hardy’s
type with heads. In what follows, all functions in the statements of the theorems are
assumed to be rd-continuous, and positive functions (see [6]). The set of all such
rd–continuous functions is denoted by Crd(T). Let γ ,ω ∈ Crd([α,β]T,R+), and S ∈
C1

rd([α,β]T,R+). Suppose that γ (t) and ω(t) satisfy the half-linear dynamic equation of
Euler–Lagrange type

(
γ (t)

(
S�(t)

)θ–1)� + ω(t)
(
Sσ (t)

)θ–1 = 0, for t ∈ [α,β]T, (19)
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for any real number θ > 1, and S(t) > 0,S�(t) > 0 for t ∈ [α,β]T, and define

v :=
γ (S�)θ–1

Sθ–1 . (20)

Definition 3.1 Suppose that z ∈ Crd([α,β]T,R+). The function z is said to be in the class
Ĥ1 if

∫ β

α

ω(s)
(
zσ (s)

)θ
�s > –∞,

∫ β

α

γ (s)
(
z�(s)

)θ
�s < ∞, (21)

and

lim
t→α

inf
(
vzθ

)
(t) < ∞, lim

t→β
sup

(
vzθ

)
(t) > –∞. (22)

For convenience sometimes in the computations we skip the argument t.

Lemma 3.1 Assume that α, β ∈ T and suppose that S(t) and ϒ(t) are nondecreasing. If
z ∈ Ĥ1, and γ and ω satisfy Eq. (19), then

(
vzθ

)� = –ω
(
zσ

)θ + γ
(
ϒσS�

)θ + γS
(
S�

)θ–1(
ϒθ

)�. (23)

Proof From the definition of v and by using the rules of derivative on time scales (15), we
have, for t ≥ α,

v� =
(
γ
(
S�

)θ–1)�(
Sσ

)1–θ + γ
(
S�

)θ–1(S1–θ
)�. (24)

Since

(
S1–θ

)� =
(
S · S–θ

)� = S�
(
Sσ

)–θ + S
(
S–θ

)�, (25)

we have from (19) and (25)

v� =
(
γ
(
S�

)θ–1)�(
Sσ

)1–θ + γ
(
S�

)θ–1(S1–θ
)�

=
(
γ
(
S�

)θ–1)�(
Sσ

)1–θ + γ
(
S�

)θ–1(SS–θ
)�

= –ω + γ
(
S�

)θ–1(S�
(
Sσ

)–θ + S
(
S–θ

)�)

= –ω + γ
(
S�

)θ(Sσ
)–θ + γS

(
S�

)θ–1(S–θ
)�. (26)

Let z = Sϒ , then we have by employing the product rule of derivative

(
zθ

)� =
(
Sθϒθ

)� =
(
Sθ

)�(
ϒσ

)θ + Sθ
(
ϒθ

)�. (27)

Also by the product rule of derivative, we have

(
vzθ

)� = v�
(
zσ

)θ + v
(
zθ

)�. (28)
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Substituting (26) and (27) into (28), we obtain

(
vzθ

)� =
(
–ω + γ

(
S�

)θ (Sσ
)–θ + γS

(
S�

)θ–1(S–θ
)�)(

zσ
)θ

+
(
γ
(
S�

)θ–1S1–θ
)((

Sθ
)�(

ϒσ
)θ + Sθ

(
ϒθ

)�)

= –ω
(
zσ

)θ + γ
(
ϒσS�

)θ + γSϒσ
(
ϒσS�

)θ–1(S–θ
)�(

Sσ
)θ

+ γSϒσ
(
ϒσS�

)θ–1S–θ
(
Sθ

)� + γS
(
S�

)θ–1(
ϒθ

)�

= –ω
(
zσ

)θ + γ
(
ϒσS�

)θ + γS
(
S�

)θ–1(
ϒθ

)�

+ γSϒσ
(
ϒσS�

)θ–1((S–θ
)�(

Sσ
)θ + S–θ

(
Sθ

)�)
. (29)

The product rule of derivative now yields

(
S–θ

)�(
Sθ

)σ + S–θ
(
Sθ

)� =
(
S–θ · Sθ

)� = (1)� = 0. (30)

Substituting (30) into (29), we have

(
vzθ

)� = –ω
(
zσ

)θ + γ
(
ϒσS�

)θ + γS
(
S�

)θ–1(
ϒθ

)�,

which is the desired equation, Eq. (23). The proof is complete. �

Lemma 3.2 Let α, β ∈ T and suppose that S(t) and ϒ(t) are nondecreasing. Ifz ∈ Ĥ1, and
γ and ω satisfy Eq. (19), then

γ
(
z�

)θ = ω
(
zσ

)θ + G +
(
vzθ

)�, (31)

with G ≥ 0. Furthermore, G = 0 if and only if z = cS with c = const ≥ 0.

Proof From (31), we see that

G = γ
(
z�

)θ – ω
(
zσ

)θ –
(
vzθ

)�. (32)

Let z = Sϒ , then z� = S�ϒσ + Sϒ� ≥ 0, and

γ
(
z�

)θ = γ
(
S�ϒσ + Sϒ�

)θ . (33)

By using Lemma 3.1, we get

(
vzθ

)� + ω
(
zσ

)θ = γ
(
ϒσS�

)θ + γS
(
S�

)θ–1(
ϒθ

)�. (34)

Substituting (33) and (34) into (32), we obtain

G = γ
(
z�

)θ – ω
(
zσ

)θ –
(
vzθ

)�

= γ
(
S�ϒσ + Sϒ�

)θ – γ
(
ϒσS�

)θ – γS
(
S�

)θ–1(
ϒθ

)�. (35)
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Since S and ϒ are nondecreasing for t ∈ [α,β]T, then S� ≥ 0, and by (17), we get

(
ϒθ (t)

)� = θ

{∫ 1

0

(
sϒσ (t) + (1 – s)ϒ(t)

)θ–1 ds
}
ϒ�(t) ≤ θ

(
ϒσ (t)

)θ–1
ϒ�(t),

and then

–γS
(
S�

)θ–1(
ϒθ

)� ≥ –γ θS
(
ϒσS�

)θ–1
ϒ�. (36)

Substituting (36) into (35), we obtain

G = γ
(
S�ϒσ + Sϒ�

)θ – γ
(
ϒσS�

)θ – γS
(
S�

)θ–1(
ϒθ

)�

≥ γ
(
S�ϒσ + Sϒ�

)θ – γ
(
ϒσS�

)θ – γ θS
(
ϒσS�

)θ–1
ϒ�

= γ
((
S�ϒσ + Sϒ�

)θ –
(
ϒσS�

)θ – θS
(
ϒσS�

)θ–1
ϒ�

)
. (37)

By employing the inequality (see [14])

aθ – bθ ≥ θaθ–1(a – b), for a > b > 0 and θ > 1, (38)

we have

(
S�ϒσ + Sϒ�

)θ –
(
ϒσS�

)θ ≥ θ
(
S�ϒσ + Sϒ�

)θ–1Sϒ� ≥ θ
(
S�ϒσ

)θ–1Sϒ�.

This and (37) imply that G ≥ 0 where γ > 0 on [α,β]T. Furthermore G = 0 if and only if
ϒ� = 0, where ϒ = zS–1. This in fact gives us that ϒ� = (zS–1)� = 0, and then z = cS with
c = const ≥ 0. The proof is complete. �

Theorem 3.1 Let α, β ∈ T and S(t) and ϒ(t) are nondecreasing. If z ∈ Ĥ1, and γ and ω

satisfy Eq. (19), then

∫ β

α

ω(t)
(
zσ (s)

)θ
�s + lim

s→β
vzθ (s) – lim

s→α
vzθ (s) ≤

∫ β

α

γ (s)
(
z�(s)

)θ
�s. (39)

Furthermore the inequality (39) becomes an equality if and only if z = cS with c = const ≥ 0.

Proof From Lemma 3.2, we have

ω
(
zσ

)θ + G(s) +
(
vzθ

)� = γ
(
z�

)θ .

Then

∫ β

α

ω
(
zσ

)θ
�s +

∫ β

α

G(s)�s +
∫ β

α

(
vzθ

)�
�s =

∫ β

α

γ
(
z�

)θ
�s.

Since G(s) ≥ 0, on [α,β]T, we get from the last equation

∫ β

α

ω
(
zσ

)θ
�s + lim

s→β
vzθ (s) – lim

s→α
vzθ (s) ≤

∫ β

α

γ
(
z�

)θ
�s,
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which is the desired inequality (39). Furthermore the inequality (39) becomes equality if
and only if G(s) = 0, this implies that ϒ�(s) = 0, where ϒ = zS–1. This in fact gives ϒ� =
(zS–1)� = 0, and then z = cS with c = const ≥ 0. The proof is complete. �

Definition 3.2 Let z ∈ Crd([α,β]T,R) such that z ≥ 0 on [α,β]T. The function z belongs
to the class H1 if

∫ β

α

ω(s)
(
zσ (s)

)θ
�s > –∞,

∫ β

α

γ (s)
(
z�(s)

)θ
�s < ∞, (40)

and

lim
s→α

(
vzθ

)
(s) ≤ 0, lim

s→β

(
vzθ

)
(s) ≥ 0. (41)

Remark 3.1 Obviously H1 ⊂ Ĥ1.

Theorem 3.2 Suppose that γ and ω satisfy Eq. (19) and S(t) and ϒ(t) are nondecreasing
for t ∈ [α,β]T. If z ∈H1 then

∫ β

α

ω(t)
(
zσ (t)

)θ
�t ≤

∫ β

α

γ (t)
(
z�(t)

)θ
�t. (42)

If z 
= 0, then inequality (42) becomes equality if and only if zS–1 = const 
= 0, S ∈ Ĥ1, and

lim
t→α

(
γ
(
S�

)θ–1S
)
(t) ≤ 0 and lim

t→β

(
γ
(
S�

)θ–1S
)
(t) ≥ 0. (43)

Proof From (41), we have limt→β vzθ (t) – limt→α vzθ (t) ≥ 0. From Theorem 3.1, we see that

∫ β

α

ω
(
zσ

)θ
�t ≤

∫ β

α

γ
(
z�

)θ
�t,

which is the desired inequality (42). Furthermore inequality (42) becomes an equality if
and only if G(t) = 0, this implies that ϒ� = 0, where ϒ = zS–1. This leads to ϒ� = (zS–1)� =
0, and then z = cS with c = const ≥ 0. Since v = γ (S�)θ–1S1–θ , and z = cS with c = const ≥
0, we have

lim
t→β

γ
(
S�

)θ–1S = lim
t→β

γ
(
S�

)θ–1S1–θ (cS)θ = lim
t→β

vzθ (t), (44)

and

lim
t→α

γ
(
S�

)θ–1S = lim
t→α

γ
(
S�

)θ–1S1–θ (cS)θ = lim
t→α

vzθ (t). (45)

Now by using (41), and (44) and (45), we have

lim
t→α

γ
(
S�

)θ–1S ≤ 0 and lim
t→β

γ
(
S�

)θ–1S ≥ 0,

and hence S ∈ Ĥ1. The proof is complete. �

When ϒ = 1, we have from Theorem 3.2 the result.
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Theorem 3.3 Let γ and ω satisfy

(
γ (y)

(
S�(y)

)θ–1)� + ω(y)
(
Sσ (y)

)θ–1 = 0, for y ∈ [α,β]T, (46)

such that S(y) > 0,S�(y) > 0. If z ∈ ϒ1, then

∫ β

α

ω(s)
(
zσ (s)

)θ
�ts ≤

∫ β

α

γ (s)
(
z�(s)

)θ
�s. (47)

Remark 3.2 If T = R, then we obtain from Theorem 3.3

∫ β

α

ω(t)
(∫ t

0
u(τ ) dτ

)θ

dt ≤
∫ β

α

γ (t)uθ (t) dt,

where γ and ω verify the differential equation

(
γ (t)

(
S ′(t)

)θ–1)′ + ω(t)
(
S(t)

)θ–1 = 0, for t ∈ [α,β]R, (48)

where S(t) > 0,S ′(t) > 0.

Remark 3.3 For the differential form, we get from Remark 3.2 the Wirtinger inequality

∫ β

α

ω(s)
(
u(s)

)θ ds ≤
∫ β

α

γ (s)
(
u′(s)

)θ ds,

where γ and ω satisfy the differential equation (48) and u(0) = 0.

Now, we give some examples for illustration.

Example 3.1 Let T = R and α, β ∈R, such that 0 ≤ α < β . Assume that γ (s) = 1, and S(s) =
s

θ–1
θ for s ∈ [α,β] where θ > 1. It is clear that γ , S > 0, and

S ′(s) =
θ – 1

θ
s

–1
θ ≥ 0.

From (48), we have

ω(s) = –
(
γ (s)

(
S ′(s)

)θ–1)′S1–θ = –
((

θ – 1
θ

s
–1
θ

)θ–1)′(
s

θ–1
θ

)1–θ

= –
(

θ – 1
θ

)θ–1(
s

–(θ–1)
θ

)′(s
θ–1
θ

)1–θ =
(

θ – 1
θ

)θ

s
1–2θ

θ
(
s

θ–1
θ

)1–θ

=
(

θ – 1
θ

)θ

s
1–2θ+2θ–1–θ2

θ =
(

θ – 1
θ

)θ

s–θ .

Now, by applying Theorem 3.2 when T =R, we have

∫ β

α

(
1
s

∫ s

0
u(τ ) dτ

)θ

ds ≤
(

θ

θ – 1

)θ ∫ β

α

uθ (s) ds,

which is the Hardy inequality (5) with a sharp constant (θ/(θ – 1))θ .
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Example 3.2 Let T = R and α, β ∈ R, such that 0 ≤ α < β . Assume that γ (s) = sθ–η , and
S = s

η–1
θ for s ∈ [η,β] where η > 1 is an arbitrary constant. Then γ , S > 0, and

S ′ =
η – 1

θ
s

η–1–θ
θ ≥ 0, for θ > 1 and s > 0.

From (48), we have

ω(s) = –
(
γ (s)

(
S ′(s)

)θ–1)′S1–θ

= –
(

sθ–η

(
η – 1

θ
s

η–1–θ
θ

)θ–1)′(
s

η–1
θ

)1–θ

= –
(

η – 1
θ

)θ–1(
s

–(η–1)
θ

)′(s
η–1
θ

)1–θ

=
(

η – 1
θ

)θ

s
1–η–θ

θ
(
s

η–1
θ

)1–θ =
(

η – 1
θ

)θ

s–η.

By applying Theorem 3.2 when T = R, we see that

∫ β

η

1
sη

(∫ s

0
u(τ ) dτ

)θ

ds ≤
(

θ

η – 1

)θ ∫ β

η

sθ–ηuθ (s) ds,

which is the Hardy–Littlewood inequality with a sharp constant (θ/(η – 1))θ (see [22]).

Remark 3.4 When T = N, we obtain from Theorem 3.3 the following inequality:

N∑

n=0

ω(n)

( n∑

ω=0

u(ω)

)θ

≤
N∑

n=0

γ (n)uθ (n),

where u is a positive summable sequence, and the sequences γ and ω satisfy the difference
equation

�
(
γ (n)

(
�S(n)

)θ–1) + ω(n)
(
S(n + 1)

)θ–1 = 0, for n ∈ [1, N]N, (49)

where S(n) > 0,�S(n) > 0.

Example 3.3 Let T = N with [1, N] ⊂ N such that 1 ≤ N < ∞. Assume that γ (k) = 1, and
S(k) = k

η–1
η for k ∈ [1, k] where η > 1. It is clear that γ , S > 0, and by using the inequality

γ yγ –1(y – z) ≤ yγ – zγ ≤ γ zγ –1(y – z), for y ≥ z > 0 and 0 < γ < 1, (50)

with γ = (η – 1)/η < 1, we have

�S(k) = (k + 1)
η–1
η – k

η–1
η ≤ η – 1

η
k

–1
η , for η > 1 and k > 0.

From (49), we have

ω(k) = –�
[
γ (k)

(
�S(k)

)η–1]S1–η(k + 1)
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≥ –
(

η – 1
η

)η–1

�
(
k

–(η–1)
η

)(
(k + 1)

η–1
η

)1–η. (51)

By applying the inequality

γ zγ –1(y – z) ≤ yγ – zγ ≤ γ yγ –1(y – z), for y ≥ z > 0,γ ≥ 1 or γ < 0, (52)

with γ = –(η – 1)/η < 0, we get

�
(
k

–(η–1)
η

) ≤ –(η – 1)
η

k
–(2η–1)

η .

Substituting the last inequality into (51), we get

ω(k) = –�
(
γ (k)

(
�S(k)

)η–1)S1–η(k + 1)

≥
(

η – 1
η

)η

k
–(2η–1)

η
(
(k + 1)

η–1
η

)1–η ≥
(

η – 1
η

)η

(k + 1)–η.

Now, by applying Remark 3.4, we have

N∑

k=1

(
η – 1

η

)η

(k + 1)–η

( k+1∑

ω=1

u(ω)

)η

≤
N∑

k=1

uη(k),

That is,

N∑

k=1

1
(k + 1)η

( k+1∑

ω=1

u(ω)

)η

≤
(

η

η – 1

)η N∑

k=1

uη(k),

which is the Hardy inequality (1) with a best constant (η/(η – 1))η .

Example 3.4 Let T = N with k ∈ N, and 1 ≤ k < ∞. Assume that γ (k) = kη–α , and S(k) =
k

α–1
η for k ∈ [1, N] where α > 1 is an arbitrary constant. Then γ , S > 0 and

�S(k) ≤ α – 1
η

k
α–1–η

η ≥ 0.

As in Example 3.3, we have from (48)

ω(k) ≥
(

α – 1
η

)η

(k + 1)–α .

By applying Remark 3.4, we see that

N∑

k=1

1
(k + 1)α

( k+1∑

ω=1

u(ω)

)η

≤
(

η

α – 1

)η N∑

k=1

(k + 1)η–αuη(k),

which is the discrete Hardy–Littlewood inequality with a best constant (η/(α – 1))η (see
[3]).
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Now, we will prove some characterizations of the weights of the inequalities of Copson’s
type with tails on time scales. Let T be a time scale with α,β ∈ T. Assume that γ ,ω ∈
Crd([α,β]T,R+), and S ∈ C1

rd([α,β]T,R+). Let θ be any real number such that θ > 1, and let
γ and ω satisfy dynamic equation of the Euler–Lagrange type

(
γ (t)

(
–S�(t)

)θ–1)� – ω(t)
(
Sσ (t)

)θ–1 = 0, for t ∈ [α,β]T, (53)

where S(t) > 0,S�(t) < 0 for t ∈ [α,β]T, and define

v :=
–γ (–S�)θ–1

Sθ–1 . (54)

Definition 3.3 Assume that z ∈ Crd([α,β]T,R) such that z ≥ 0 on [α,β]T. We say that
z ∈ Ĥ2 if

∫ β

α

ω(t)
(
zσ (t)

)θ
�t > –∞,

∫ β

α

γ (t)
∣∣z�(t)

∣∣θ�t < ∞, (55)

and

lim
t→α

inf
(
vzθ

)
(t) < ∞, lim

t→β
sup

(
vzθ

)
(t) > –∞. (56)

Lemma 3.3 Suppose that α, β ∈ T and S(t) and ϒ(t) are nonincreasing. If z ∈ Ĥ2, and γ

and ω satisfy the dynamic equation (53) then

(
vzθ

)� = –ω
(
zσ

)θ + γ
∣∣ϒσS�

∣∣θ – γS
∣∣S�

∣∣θ–1(
ϒθ

)�. (57)

Proof From the definition of v and by using the rules (15) for t ≥ α, we have

v� = –
(
γ
(
–S�

)θ–1)�(
Sσ

)1–θ – γ
(
–S�

)θ–1(S1–θ
)�. (58)

Since

(
S1–θ

)� =
(
S · S–θ

)� = S�
(
Sσ

)–θ + S
(
S–θ

)�, (59)

from (53) and (59), we see that (note S� < 0)

v� = –
(
γ
(
–S�

)θ–1)�(
Sσ

)1–θ – γ
(
–S�

)θ–1(S1–θ
)�

= –ω – γ
(
–S�

)θ–1(S�
(
Sσ

)–θ + S
(
S–θ

)�)

= –ω + γ
(
–S�

)θ(Sσ
)–θ – γS

(
–S�

)θ–1(S–θ
)�. (60)

Let z = Sϒ , then we have

(
zθ

)� =
(
Sθϒθ

)� =
(
Sθ

)�(
ϒσ

)θ + Sθ
(
ϒθ

)�. (61)

Substituting (60) and (61) into

(
vzθ

)� = v�
(
zσ

)θ + v
(
zθ

)�,
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we obtain

(
vzθ

)� =
(
–ω + γ

(
–S�

)θ (Sσ
)–θ – γS

(
–S�

)θ–1(S–θ
)�)(

zσ
)θ

+
(
–γ

(
–S�

)θ–1S1–θ
)((

Sθ
)�(

ϒσ
)θ + Sθ

(
ϒθ

)�)

= –ω
(
zσ

)θ + γ
(
–ϒσS�

)θ – γS
(
ϒσ

)θ (–S�
)θ–1(S–θ

)�(
Sσ

)θ

– γS
(
ϒσ

)θ (–S�
)θ–1S–θ

(
Sθ

)� – γS
(
–S�

)θ–1(
ϒθ

)�

= –ω
(
zσ

)θ + γ
(
–ϒσS�

)θ

– γS
(
ϒσ

)θ (–S�
)θ–1((S–θ

)�(
Sθ

)σ + S–θ
(
Sθ

)�)

– γS
(
–S�

)θ–1(
ϒθ

)�. (62)

By using the product rule, we see that

((
S–θ

)�(
Sθ

)σ + S–θ
(
Sθ

)�)
=

(
S–θ · Sθ

)� = (1)� = 0. (63)

Substituting (63) into (62), we have

(
vzθ

)� = –ω
(
zσ

)θ + γ
(
–ϒσS�

)θ – γS
(
–S�

)θ–1(
ϒθ

)�.

Since z = Sϒ ≥ 0, we get (note that |S�| = –S�)

(
vzθ

)� = –ω
(
zσ

)θ + γ
∣∣ϒσS�

∣∣θ – γS
∣∣S�

∣∣θ–1(
ϒθ

)�,

which is the desired equation, Eq. (57). The proof is complete. �

Lemma 3.4 Suppose that α, β ∈ T and S(t) and ϒ(t) are nonincreasing. If z ∈ Ĥ2, and γ

and ω satisfy the dynamic equation (53) then

γ
∣∣z�

∣∣θ = ω
(
zσ

)θ + G +
(
vzθ

)�, (64)

with G ≥ 0. Furthermore, G = 0 if and only if z = cS with c = const ≥ 0.

Proof From (64), we see that

G = γ
∣∣z�

∣∣θ – ω
(
zσ

)θ –
(
vzθ

)�. (65)

Let z = Sϒ , then z� = S�ϒσ + Sϒ� ≤ 0, we have

γ
(
–z�

)θ = γ
(
–
(
S�ϒσ + Sϒ�

))θ . (66)

By using Lemma 3.3, we get

(
vzθ

)� + ω
(
zσ

)θ = γ
∣∣ϒσS�

∣∣θ – γS
∣∣S�

∣∣θ–1(
ϒθ

)�. (67)
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Substituting (66) and (67) into (65), we obtain

G = γ
∣∣z�

∣∣θ – ω
(
zσ

)θ –
(
vzθ

)�

= γ
(
–
(
S�ϒσ + Sϒ�

))θ – γ
(
–ϒσS�

)θ + γS
(
–S�

)θ–1(
ϒθ

)�. (68)

Since S and ϒ are nonincreasing for t ∈ [α,β]T, then, by using the chain rule (17), we see
that

(
ϒθ

)� = θ

{∫ 1

0

(
sϒσ (t) + (1 – s)ϒ(t)

)θ–1 ds
}
ϒ� ≥ θ

(
ϒσ (t)

)θ–1
ϒ�. (69)

Substituting (69) into (68), we obtain

G = γ
(
–
(
S�ϒσ + Sϒ�

))θ – γ
(
–ϒσS�

)θ + γS
(
–S�

)θ–1(
ϒθ

)�

≥ γ
(
–
(
S�ϒσ + Sϒ�

))θ – γ
(
–ϒσS�

)θ + γS
(
–S�

)θ–1
θ
(
ϒσ

)θ–1
ϒ�

= γ
((

–
(
S�ϒσ + Sϒ�

))θ –
(
–ϒσS�

)θ – θ
(
–Sϒ�

)(
–ϒσS�

)θ–1).

By using the inequality (38) and proceeding as in the proof of Lemma 3.2 we can prove
that G ≥ 0, since γ > 0 on [α,β]T. Furthermore, G = 0 if and only if ϒ� = 0, where ϒ =
zS–1. This implies that ϒ� = (zS–1)� = 0, and then z = cS with c = const ≥ 0. The proof is
complete. �

Theorem 3.4 Suppose that α, β ∈ T and S(t) and ϒ(t) are nonincreasing. If z ∈ Ĥ2, and
γ and ω satisfy the dynamic equation (53) then

∫ β

α

ω(t)
(
zσ (t)

)θ
�t + lim

t→β

(
vzθ

)
(t) – lim

t→α

(
vzθ

)
(t) ≤

∫ β

α

γ (t)
∣∣z�(t)

∣∣θ�t (70)

holds on [α,β]T. Furthermore, inequality (70) becomes an equality if and only if z = cS
with c = const ≥ 0.

Proof From Lemma 3.4, we see that

ω
(
zσ

)θ + G(t) +
(
vzθ

)� = γ
∣∣z�

∣∣θ .

Then

∫ β

α

ω
(
zσ

)θ
�t +

∫ β

α

G(t)�t +
∫ β

α

(
vzθ

)�
�t =

∫ β

α

γ
∣∣z�

∣∣θ�t.

Since G ≥ 0, on [α,β]T,

∫ β

α

ω(t)
(
zσ (t)

)θ
�t + lim

t→β
vzθ (t) – lim

t→α
vzθ (t) ≤

∫ β

α

γ (t)
∣∣z�(t)

∣∣θ�t,

which is the desired inequality (70). Furthermore, the inequality (70) becomes an equality
if and only if G(t) = 0, this implies that ϒ� = 0, where ϒ = zS–1. This yields ϒ� = (zS–1)� =
0, and then z = cS with c = const ≥ 0. The proof is complete. �
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Definition 3.4 Let z ∈ Crd([α,β]T,R) such that z ≥ 0 on [α,β]T. We say that z ∈H2 if

∫ β

α

ω(s)
(
zσ (s)

)θ
�s > –∞,

∫ β

α

γ (s)
∣∣z�(s)

∣∣θ�s < ∞, (71)

and

lim
t→α

(
vzθ

)
(t) ≤ 0, lim

t→β

(
vzθ

)
(t) ≥ 0. (72)

Remark 3.5 Obviously H2 ⊂ Ĥ2.

Theorem 3.5 Suppose that α, β ∈ T and S(t) and ϒ(t) are nonincreasing. If z ∈H2, then

∫ β

α

ω(s)
(
zσ (s)

)θ
�s ≤

∫ β

α

γ (s)
∣∣z�(s)

∣∣θ�s. (73)

If z 
= 0, then inequality (73) becomes an equality if and only if zS–1 = const 
= 0, S ∈ Ĥ2,
and

lim
t→α

(
γ
(
–S�

)θ–1S
)
(t) ≤ 0 and lim

t→β

(
γ
(
–S�

)θ–1S
)
(t) ≥ 0. (74)

Proof From (72), we have limt→β (vzθ )(t) – limt→α(vzθ )(t) ≥ 0. By applying Theorem (3.4),
we obtain

∫ β

α

ω(t)
(
zσ (t)

)θ
�t ≤

∫ β

α

γ (t)
∣∣z�(t)

∣∣θ�t,

which is the desired inequality (73). Furthermore, inequality (73) reduces to an equality if
and only if G(t) = 0, this implies that ϒ� = 0, where ϒ = zS–1. Thus ϒ� = (zS–1)� = 0, and
then z = cS with c = const ≥ 0. Since v = –γ (–S�)θ–1S1–θ , and z = cS with c = const ≥ 0,
this implies that

lim
t→β

vzθ (t) = lim
t→β

(
–γ

(
–S�

)θ–1S1–θ (cS)
)θ (t) = c lim

t→β

(
γ
(
–S�

)θ–1S
)
(t)

and

lim
t→α

vzθ (t) = lim
t→α

(
–γ

(
–S�

)θ–1S1–θ (cS)θ
)
(t) = c lim

t→α

(
γ
(
–S�

)θ–1S
)
(t).

Now, by using (72), we have

lim
t→α

(
γ
(
–S�

)θ–1S
)
(t) ≤ 0 and lim

t→β

(
γ
(
–S�

)θ–1S
)
(t) ≥ 0,

and then S ∈ Ĥ . The proof is complete. �

Remark 3.6 When T = R, we have from Theorem 3.5

∫ β

α

ω(t)
(∫ β

t
u(τ ) dτ

)θ

dt ≤
∫ β

α

γ (t)
∣∣u(t)

∣∣θ dt, (75)
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where γ and ω satisfy

(
γ (t)

(
–x′(t)

)θ–1)′ – ω(t)xθ–1(t) = 0 for t ∈ [α,β], (76)

where x(t) > 0, x′(t) < 0.

Remark 3.7 As a special case of (75), we get the Wirtinger type inequality

∫ β

α

ω(t)
(
u(t)

)θ dt ≤
∫ β

α

γ (t)
∣∣u′(t)

∣∣θ dt,

where γ and ω satisfy the differential equation (76) and u(β) = 0.

We give some examples for illustration.

Example 3.5 Let T = R with α, β ∈ R, and 0 ≤ α < β ≤ ∞ and assume that γ (s) = sθ–γ ,
and S = s

γ –1
θ , where 0 ≤ γ < 1 < θ is an arbitrary constant. Then γ , S > 0 for s ∈ [α,β], and

S ′ =
γ – 1

θ
s

γ –1–θ
θ ≤ 0.

From (76), we have

ω(s) =
(
γ (s)

(
–S ′(s)

)θ–1)′S1–θ

=
(

sθ–γ

(
1 – γ

θ
s

γ –1–θ
θ

)θ–1)′(
s

γ –1
θ

)1–θ

=
(

1 – γ

θ

)θ–1(
s

–(γ –1)
θ

)′(s
γ –1
θ

)1–θ

=
(

1 – γ

θ

)θ

s
1–γ –θ

θ
(
s

γ –1
θ

)1–θ =
(

1 – γ

θ

)θ

s–γ .

By applying Remark 3.6, we see that

∫ β

α

1
sγ

(∫ β

s
u(τ ) dτ

)θ

�s ≤
(

θ

1 – γ

)θ ∫ β

α

sθ–γ uθ (s)�s,

which is the Hardy–Littlewood inequality with a sharp constant (θ/(1 – γ ))θ (see [22]).

Example 3.6 Let T = R with α, β ∈ R, and 0 ≤ α < β ≤ ∞ and assume that γ (s) = sθ , and
S(s) = s

–1
θ where θ > 1. It is clear that γ , S > 0, and

S ′(s) =
–1
θ

s
–1
θ

–1 =
–1
θ

s
–(1+θ )

θ ≤ 0.

From (76), we have

ω(s) =
(
γ (s)

(
–S ′(s)

)θ–1)′S1–θ =
(

sθ

(
1
θ

s
–(1+θ )

θ

)θ–1)′(
s

–1
θ

)1–θ
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=
(

1
θ

)θ–1(
s

1
θ
)′(s

–1
θ

)1–θ =
(

1
θ

)θ

s
1–θ
θ

(
s

–1
θ

)1–θ

=
(

1
θ

)θ

s
1–θ+θ–1

θ =
(

1
θ

)θ

.

Now, by applying Remark 3.6, we have

∫ β

α

(∫ β

s
u(τ ) dτ

)θ

ds ≤ θθ

∫ β

α

(
su(s)

)θ ds,

which is the Hardy inequality (6) with a best constant θθ .

Remark 3.8 When T = N, we have from Theorem 3.5 the inequality

N∑

k=1

ω(k)

( N∑

i=k

u(i)

)θ

≤
N∑

k=1

γ (k)uθ (k),

where u is a positive summable sequence over any finite interval (1, k),and the sequences
γ and ω satisfy the difference equation

�
(
γ (n)

(
–�S(n)

)θ–1) – ω(n)
(
S(n + 1)

)θ–1 = 0, for n ∈ [1, N]N, (77)

where S(n) > 0,�S(n) < 0.

Example 3.7 Let T = N with N ∈ N, and 1 < N ≤ ∞ and assume that γ (�) = (� + 1)θ–γ ,
and S(�) = �

γ –1
θ , where θ > 1, and 1 > γ ≥ 0 is an arbitrary constant. Then γ , S > 0, and

by using the inequality

xα – yα ≤ αxα–1(x – y), for x ≥ y > 0 (α ≥ 1 or α < 0),

with α = (γ – 1)/θ < 0, we have

�S(�) = (� + 1)
γ –1
θ – �

γ –1
θ ≤ γ – 1

θ
(� + 1)

γ –1–θ
θ ≤ 0.

This implies that

γ (�)
(
–�S(�)

)θ–1 ≥ (� + 1)θ–γ

(
1 – γ

θ
(� + 1)

γ –1–θ
θ

)θ–1

=
(

1 – γ

θ

)θ–1

(� + 1)θ–γ
(
(� + 1)

γ –1–θ
θ

)θ–1

=
(

1 – γ

θ

)θ–1

(� + 1)
1–γ
θ

and

�
[
γ (�)

(
–�S(�)

)θ–1] ≥ �

(
1 – γ

θ

)θ–1

(� + 1)
1–γ
θ
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=
(

1 – γ

θ

)θ–1

�(� + 1)
1–γ
θ .

By using the inequality

xα – yα ≥ αxα–1(x – y), for x ≥ y > 0 and (0 < α < 1),

with α = (1 – γ )/θ < 1, we have

�
[
γ (�)

(
–�S(�)

)θ–1] ≥
(

1 – γ

θ

)θ–1

�(� + 1)
1–γ
θ

=
(

1 – γ

θ

)θ–1(
(� + 2)

1–γ
θ – (� + 1)

1–γ
θ

)

≥
(

1 – γ

θ

)θ

(� + 2)
1–γ –θ

θ .

From (77), we have

ω(�) = �
[
γ (�)

(
–�S(�)

)θ–1]S1–θ (� + 1)

≥
(

1 – γ

θ

)θ

(� + 2)
1–γ –θ

θ
(
(� + 1)

γ –1
θ

)1–θ

=
(

1 – γ

θ

)θ

(� + 2)
1–γ –θ

θ (� + 1)
γ –1–θγ +θ

θ

=
(

1 – γ

θ

)θ

(� + 2)
1–γ –θ

θ (� + 1)
–(1–γ –θ )

θ (� + 1)–γ

= A(�)
(

1 – γ

θ

)θ

(� + 1)–γ ,

where

A(�) =
(

� + 2
� + 1

) 1–γ –θ
θ

< 1.

Now, by applying Remark 3.8, we have

N∑

�=0

A(�)
(

1 – γ

θ

)θ

(� + 1)–γ

( N∑

i=�

u(i)

)θ

≤
N∑

�=0

(� + 1)θ–γ uθ (�),

That is,

N∑

�=0

A(�)
(� + 1)γ

( N∑

i=�

u(i)

)θ

≤
(

θ

1 – γ

)θ N∑

�=0

(� + 1)θ–γ uθ (�),

which is the discrete Hardy–Littlewood inequality with a sharp constant (θ/(1 – γ ))θ .
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20. Řehák, P.: Peculiarities in power type comparison results for half-linear dynamic equations. Rocky Mt. J. Math. 42,

1995–2013 (2012)
21. Saker, S.H., Mahmoud, R.R.: A connection between weighted Hardy’s inequality and half-linear dynamic equations.

Adv. Differ. Equ. 2019(1), 129 (2019)
22. Shum, D.T.: On integral inequalities related to Hardy’s. Can. Math. Bull. 14, 225–230 (1971)
23. Shum, D.T.: On a class of new inequalities. Trans. Am. Math. Soc. 204, 299–341 (1975)
24. Talenti, G.: Una diseguaglianza integrale. Boll. Unione Mat. Ital. (3) 21, 25–34 (1966)
25. Talenti, G.: Sopra una diseguaglianza integrale. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3) 21, 167–188 (1967)
26. Tomaselli, G.: A class of inequalities. Boll. Unione Mat. Ital. (4) 2, 622–631 (1969)
27. Xiaohong, L., Zhang, L., Agarwal, P., Wang, G.: On some new integral inequalities of Gronwall–Bellman–Bihari type

with delay for discontinuous functions and their applications. Indag. Math. 27(1), 1–10 (2016)


	Half-linear dynamic equations and investigating weighted Hardy and Copson inequalities
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


