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Abstract
In this paper, we develop two efficient fully discrete schemes for solving the
time-fractional Cattaneo equation, where the fractional derivative is in the Caputo
sense with order in (1, 2]. The schemes are based on the Galerkin finite element
method in space and convolution quadrature in time generated by the backward
Euler and the second-order backward difference methods. Error estimates are
established with respect to data regularity. We further compare our schemes with the
L2-1σ scheme. Numerical examples are provided to show the efficiency of the
schemes.
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1 Introduction
Let � ⊂ R

2 be a bounded convex domain with a boundary ∂�, and T > 0 be a fixed time.
The time-fractional Cattaneo equation considered in this paper is described as

∂tu(x, t) + κCDα
0,tu(x, t) = μ�u(x, t) + f (x, t), in � × (0, T) (1.1)

with a homogeneous Dirichlet boundary condition u(x, t) = 0 on ∂� × (0, T], and initial
conditions u(x, 0) = v(x), ∂tu(x, 0) = b(x) in �. Here, the parameter κ is some fixed positive
constant related to the relaxation time and μ is a diffusion constant. The source term f
and the initial conditions v and b are given functions. The fractional order α belongs to
(1, 2] and the fractional derivative CDα

0,t is in the Caputo sense defined by

CDα
0,tu(·, t) = RLD–(2–α)

0,t
∂2

∂t2 u(·, t),

where the Riemann–Liouville (R–L) integral RLD–ν
0,t with ν > 0 is given by

RLD–ν
0,t u(·, t) =

1
	(ν)

∫ t

0
(t – s)ν–1u(·, s) ds.

Here, 	(·) is the Gamma function.
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The time-fractional problem (1.1) has attracted considerable attention in recent decades
due to its capacity of modeling the anomalous dynamics of physical diffusion processes.
The Caputo derivative CDα

0,t in (1.1) may capture the anomalous diffusion processes. One
can refer to [1, 2] for derivation details. Equation (1.1) becomes a special case of the time-
fractional partial differential equation with damping by choosing suitable κ [3]. It is well
known that the classical Cattaneo model is introduced to address the insufficiency of the
Fickian law in modeling the necessary finite velocity of propagation in heat and signal
transport. When α = 2, the time-fractional Cattaneo equation (1.1) recovers the classi-
cal one. So the model (1.1) provides a flexible way to model some more general dynamic
crossover behaviors [4].

The theoretical studies for the fractional Cattaneo equation have appeared in some liter-
ature; see [1, 2, 4, 5], just to name a few. In most of this work, the solution of the fractional
Cattaneo equation is obtained in the series form in terms of the H-functions by employ-
ing the Laplace and Fourier transform methods. It is very complicated and may not be
applicable for numerical simulation. So, we need to resort to the numerical solution.

The numerical schemes for various fractional models have received a lot of attention in
recent years; see [6–11] for finite difference methods, [12–14] for finite element methods,
and [15–20] for spectral methods [21, 22]. However, it seems that the numerical studies
for the fractional model (1.1) are still limited. In [23], Ren and Gao presented a compact
alternating direction implicit (ADI) difference scheme for solving a two-dimensional Cat-
taneo equation with the time-fractional derivative. Zhao and Sun proposed a compact
difference scheme by applying the Crank–Nicolson discretization in time [24]. Wei devel-
oped a fully discrete local discontinuous Galerkin scheme and studied the corresponding
stability and convergence [25]. In [3], Chen and Li proposed an ADI Galerkin method for
a time-fractional partial differential equation with damping based on the L2-1σ method
in time. We remark that the discretization of Caputo derivative in the above-mentioned
numerical schemes are based on the difference method. Recently, Li et al. presented a
space-time spectral method for the one-dimensional time-fractional Cattaneo equation
[26]. One can see that the error estimates in this work were derived based on the assump-
tion that the solution is sufficiently smooth. However, such assumptions are somewhat
restrictive, and in some cases only the regularity of the source term f and the initial data v
and b is available [27]. This motivates us to further develop some more reliable numerical
schemes for solving (1.1).

In this paper, we aim to develop the robust and efficient Galerkin finite element method
for the fractional model (1.1) by employing the convolution quadrature method in time
and derive error estimates that are expressed by problem data. With these considerations
in mind, we present the semidiscrete Galerkin scheme for (1.1) based on the Galerkin
finite element method in space. However, the numerical schemes are only first-order time
accurate if one uses convolution quadrature method directly even high-order backward
differentiation formulas are employed, since the required compatibility of the problem
data is usually not satisfied. In order to restore the desired convergent rate for any tn > 0,
we add a few of corrections to the first time step when constructing the second-order
backward difference method, which is based on the prevailing treatment [28]. Therefore,
stimulated by the idea in [29], we reformulate the semidiscrete Galerkin scheme using the
relationship between Caputo derivative and Riemann–Liouville derivatives, and we obtain
two fully discrete schemes by employing the convolution quadrature in time generated by
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backward Euler and second-order backward difference methods. The error estimates are
derived with respect to data regularity which involves both smooth and nonsmooth data.
We further compare our schemes with the L2-1σ scheme to show the robustness of the
schemes.

The paper is organized as follows. In Sect. 2, we introduce the preliminaries about the
notations and lemmas used in this paper. In Sect. 3, we present two fully discrete schemes
based on the Galerkin finite element method in space and convolution quadrature in time.
The error estimates are established in Sect. 4. In Sect. 5, we compare our schemes with
the L2-1σ scheme. Extensive numerical examples with two-dimensional cases are demon-
strated in Sect. 6. Finally, we draw our conclusions in Sect. 7.

2 Preliminary
We first list some useful notations in this part.

The Laplace transform of the function g(t) is denoted by

ĝ(z) = L
{

g(t); z
}

:=
∫ ∞

0
e–ztg(t) dt.

Let g ∈ Cn[0, T], one can readily derive that

L
{

CDα
0,tg(t); z

}
= zα ĝ(z) –

n–1∑
k=0

zα–k–1g(k)(0)

with n – 1 < α ≤ n.
Denote (·, ·) as the inner product on L2(�) and the L2-norm is ‖ · ‖. For r ≥ 0, let Ḣr(�)

be the subspace of L2(�) induced by the norm [30]

‖v‖2
Ḣr (�) =

∥∥(–�)r/2v
∥∥2 =

∞∑
j=1

λr
j (v,φj)2,

where {λj}∞j=1 and {φj}∞j=1 are the Dirichlet eigenvalues and eigenfunctions of A := –�, re-
spectively. Here, {φj}∞j=1 is an orthonormal basis in L2(�). Hence, ‖v‖Ḣ0(�) = ‖v‖ is the
norm on L2(�), ‖v‖Ḣ1(�) = ‖∇v‖ is also the norm on H1

0 (�), and ‖v‖Ḣ2(�) = ‖Av‖ is the
equivalent norm in H2(�) ∩ H1

0 (�).
It is well known that the operator A is selfadjoint and positive definite, so the resolvent

estimate

∥∥(zI + A)–1∥∥ ≤ M|z|–1, ∀z ∈ �θ ,

holds [30]. Here, the sector �θ = {z ∈C, z �= 0, | arg z| < θ} with θ ∈ (π/2,π ) and M depends
on θ . The notation ‖ · ‖ denotes the operator norm from L2(�) → L2(�), which has the
same form with the L2-norm.

Next, we introduce the notations from the operational calculus [31].
Let K(z) be a complex valued or operator valued function that is analytic in a sector �θ

where θ ∈ ( π
2 ,π ). Besides, the function K(z) is bounded by

∥∥K(z)
∥∥ ≤ M|z|–λ, ∀z ∈ �θ , (2.1)
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for some real numbers λ and M. Then K(z) is the Laplace transform of a distribution k
on the real line, which vanishes for t < 0, has its singular support empty or concentrated
at t = 0, and which is an analytic function for t > 0 (see [31, 32] for more details). By the
inversion Laplace transform for K(z) with t > 0, we get

k(t) =
1

2π i

∫
	

K(z)ezt dz, t > 0.

Here the contour 	 lies in �θ , and parallel to its boundary and oriented with increasing
imaginary part. We denote that 	θ ,δ = {z ∈ C : |z| = δ, | arg z| ≤ θ} ∪ {z ∈ C : z = ρe±iθ ,ρ ≥
δ}.

We define K(∂t) as the operator of convolution with the kernel k: K(∂t)g = k ∗ g . Here ∂t

is the time differentiation and g is suitably smooth. We divide the time interval [0, T] into
a uniform grid with a grid point tk = kτ . Here the time step size τ = T/N with a positive
integer N . The convolution quadrature K(∂τ )g of K(∂t)g at t = tn is given by

K(∂τ )g(tn) =
n∑

k=0

ωk(τ )g(tn–k),

where the quadrature weights ωk(τ ) are determined by the generating function

∞∑
k=0

ωk(τ )ζ k = K
(

ϑ(ζ )
τ

)
. (2.2)

Here ϑ is the quotient of the generating polynomials of linear multistep method [32].
In this paper, we focus on the two cases: the backward Euler (BE) and the second-order
backward difference methods (SBD). The convolution quadrature has the following error
estimates [33]. In the following, we use c to denote a constant that may vary at different
occurrences but is always independent of the grid size h and the time step size τ .

Lemma 2.1 Let K(z) be analytic in �θ and (2.1) hold. Then, for g(t) = ctσ–1, the convolu-
tion quadrature based on BE (p = 1) or SBD (p = 2) satisfies

∥∥(
K(∂t) – K(∂τ )

)
g(t)

∥∥ ≤
⎧⎨
⎩

ctλ–1τσ , 0 < σ ≤ p,

ctλ–1+σ–pτ p, σ ≥ p.

Finally, we state some fundamental properties for the functions

h(z) =
1

z + κzα
and g(z) =

z + κzα

μ
(2.3)

with z ∈ �θ by the following lemma.

Lemma 2.2 Let θ ∈ (π/2,π/α) be fixed. Then, for any z ∈ �θ , we have g(z) ∈ �θ̄ , where
θ̄ = αθ < π ,

∣∣g(z)
∣∣ ≤ c

1
μ

(|z| + κ|z|α)
and

∣∣h(z)
∣∣ ≤ c min

{
|z|–1,

1
κ

|z|–α

}
.
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Proof The proof is trivial and one can complete the proof by a similar idea to that pre-
sented in Lemma 2.1 of Ref. [34]. So we omit the details here. �

3 Fully discrete schemes
In this section, we develop two fully discrete schemes by using the standard Galerkin finite
element method in space and convolution quadrature in time.

3.1 Semidiscrete Galerkin scheme in space
A partition of the domain � is denoted by Th in which h is the maximal length of the sides
of the triangulation Th. We denote the continuous piecewise linear finite element space
Vh as

Vh =
{

vh ∈ H1
0 (�) : vh|T is a linear function and ∀T ∈ Th

}
.

The L2(�) orthogonal projection Ph : L2(�) → Vh is defined by

(Phϕ,χ ) = (ϕ,χ ), ∀χ ∈ Vh,

and the Ritz projection Rh : H1
0 (�) → Vh is given by

(Rhϕ,χ ) = (∇ϕ,∇χ ), ∀χ ∈ Vh.

From the definitions of Ph and Rh, one can see that they are stable in L2 and H1
0 , respec-

tively. These properties would be used frequently and may not be mentioned explicitly
in the error estimates. We also need the following approximation properties of these two
operators Ph and Rh [30].

Lemma 3.1 The following approximation properties of the operators Ph and Rh hold:

‖Phϕ – ϕ‖ + h
∥∥∇(Phϕ – ϕ)

∥∥ ≤ ch2‖ϕ‖Ḣ2(�), ∀ϕ ∈ Ḣ2(�),

‖Rhϕ – ϕ‖ + h
∥∥∇(Rhϕ – ϕ)

∥∥ ≤ ch2‖ϕ‖Ḣ2(�), ∀ϕ ∈ Ḣ2(�).

The semidiscrete Galerkin scheme for (1.1) reads: Find uh(t) = uh(·, t) ∈ Vh such that

(∂tuh,χ ) +
(
κCDα

0,tuh,χ
)

+ μa(uh,χ ) = (f ,χ ), ∀χ ∈ Vh, (3.1)

with the initial value conditions uh(0) = vh ∈ Vh and ∂tuh(0) = bh ∈ Vh. Here vh and bh are
proper approximations to the functions v and b, respectively. The bilinear form a(u, v) is
given by (∇uh,∇χ ).

By introducing the discrete Laplacian �h : Vh → Vh with the definition:

–(�hϕ,χ ) = (∇ϕ,∇χ ), ∀ϕ,χ ∈ Vh,

and letting Ah = –�h, we can rewrite the semidiscrete scheme (3.1) as follows:

∂tuh(t) + κCDα
0,tuh(t) + μAhuh(t) = fh(t), t > 0, (3.2)

where fh(t) = Phf (t).
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3.2 Fully discrete schemes with convolution quadrature in time
In this part we apply convolution quadrature based on BE and SBD methods in time to
obtain two fully discrete schemes.

Using the relationship between Caputo and R–L derivatives:

CDα
0,tϕ(t) = RLDα

0,t
(
ϕ(t) – ϕ(0) – tϕ′(0)

)
,

we derive from the semidiscrete scheme (3.2) that

(
∂t + κRLDα

0,t + μAh
)
uh(t) = κRLDα

0,t(vh + tbh) + fh(t). (3.3)

Operating K(∂t) = (∂t + κRLDα
0,t + μAh)–1 on both sides of the semidiscrete scheme (3.3),

we obtain

uh(t) = K(∂t)
(
κRLDα

0,t(vh + tbh) + fh(t)
)
, (3.4)

with t > 0. Combining the convolution quadrature with the associativity of convolution,
we have the approximation of uh(t) at t = nτ with Un

h by

Un
h = K(∂τ )

(
κ∂α

τ (vh + tbh) + Fn
h
)
, (3.5)

where n = 1, 2, . . . , N , U0
h = vh, and Fn

h = Phf (tn). Here, K(∂τ ) and ∂α
τ are the convolution

quadratures with ϑ(ζ ) = 1 – ζ for BE scheme, or ϑ(ζ ) = 3
2 – 2ζ + 1

2ζ 2 for SBD scheme in
(2.2).

Thus, the BE scheme for (3.5) is stated thus: Find Un
h for n ≥ 1 such that

(
∂τ + κ∂α

τ

)
Un

h + μAhUn
h = κ∂α

τ (vh + tbh) + Fn
h . (3.6)

Next, we consider a robust numerical scheme which can maintain the second-order
accuracy for the scheme (3.5). Since

κK(∂t) = RLD–α
0,t – K(∂t)RLD–α

0,t (∂t + μAh),

the semidiscrete scheme (3.4) can be recast as

uh(t) = vh + K(∂t)
(
–
(
∂t + ∂tRLD–1

0,t(μAh)
)
vh + κRLDα

0,ttbh

+ ∂tRLD–1
0,t fh(0) + f̃h(t)

)
, (3.7)

where t > 0 and f̃h(t) = fh(t) – fh(0). By dropping the zero term –∂tvh, one has

Un
h = vh + K(∂τ )

(
–∂τ RLD–1

0,t(μAh)vh + κ∂α
τ tbh + ∂τ RLD–1

0,t fh(0) + F̃n
h
)
. (3.8)

Set 1τ = (0, 3/2, 1, 1, . . .). Using the identity 1τ = ∂τ RLD–1
0,t , we obtain the SBD scheme as

follows: Find Un
h for n ≥ 1 such that

(
∂τ + κ∂α

τ + μAh
)(

Un
h – vh

)
= –1τ (μAh)vh + κ∂α

τ tbh + 1τ fh(0) + F̃n
h . (3.9)
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That is,

∂τ Un
h + κ∂α

τ Un
h + μUn

h = ∂τ U0
h + κ∂α

τ U0
h + κ∂α

τ tbh + Fn
h,

with F1
h = – 1

2 (μAh)U0
h + 1

2 F0
h + F1

h for n = 1, and Fn
h = Fn

h when n ≥ 2.

4 Error estimates
In this section, we establish the error estimates for the proposed numerical schemes by
using the operator theoretic approach presented in [29] and originating from [31].

4.1 Error estimates for the semidiscrete scheme
We first consider the integral representation of the solution for the homogeneous problem
with f = 0.

Employing the Laplace transform to (1.1), one has

ẑu(z) – v + κ
(
zαû(z) – zα–1v – zα–2b

)
+ μAû(z) = 0,

which yields

û(z) = Ê(z)
((

1 + κzα–1)v + κzα–2b
)
, (4.1)

where

Ê(z) = h(z)g(z)
(
g(z)I + A

)–1,

and the functions h(z) and g(z) are given by (2.3).
It follows that the solution u(t) is represented by

u(t) =
1

2π i

∫
	θ ,δ

eztÊ(z)
((

1 + κzα–1)v + κzα–2b
)

dz. (4.2)

Similarly, the solution uh(t) to (3.2) can be represented by the following:

uh(t) =
1

2π i

∫
	θ ,δ

eztÊh(z)
((

1 + κzα–1)vh + κzα–2bh
)

dz, (4.3)

where

Êh(z) = h(z)g(z)
(
g(z)I + Ah

)–1.

From the structures of Ê(z) and Êh(z), we let Fh(z) = (g(z)I + A)–1 – (g(z)I + Ah)–1Ph for
notation convenience. The operator Fh(z) has the following property, which plays a key
role in the error estimate [34].

Lemma 4.1 Let ϕ ∈ L2(�), then we have

∥∥Fh(z)ϕ
∥∥ + h

∥∥∇Fh(z)ϕ
∥∥ ≤ ch2‖ϕ‖.
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Now we are ready to state the error estimates for the semidiscrete problem. Unless oth-
erwise noted, we will always choose δ = 1/t for contour 	θ ,δ when deriving the error bound
in what follows.

Theorem 4.1 Let u be the solution of problem (1.1) with f = 0, and set uh be the solution
of (3.2). Then the following estimates hold:

(a) If v, b ∈ Ḣ2(�) and vh = Rhv, bh = Rhb, then

∥∥eh(t)
∥∥ + h

∥∥∇eh(t)
∥∥ ≤ ch2

((
1 +

1
κ

tα–1
)

‖v‖Ḣ2(�) + t‖b‖Ḣ2(�)

)
.

(b) If v, b ∈ L2(�) and vh = Ph, bh = Phb, then

∥∥eh(t)
∥∥ + h

∥∥∇eh(t)
∥∥ ≤ ch2((t–1 + κt–α

)‖v‖ + κt1–α‖b‖).

Proof We first consider the second case (b). Subtracting (4.3) from (4.2), we have

eh(t) =
1

2π i

∫
	θ ,δ

ezth(z)g(z)
((

1 + κzα–1)Fh(z)v + κzα–2Fh(z)b
)

dz.

By Lemma 4.1 and choosing δ = 1/t, we derive that

∥∥eh(t)
∥∥ ≤ ch2

(
‖v‖

∫
	θ ,1/t

(
1 + κ|z|α–1)|dz| + ‖b‖

∫
	θ ,1/t

κ|z|α–2|dz|
)

≤ ch2((t–1 + κt–α
)‖v‖ + κt1–α‖b‖),

which yields the L2-error estimates for the case (b). Next for the first case (a), by (4.3) and
(4.2), we have

eh(t) =
1

2π i

∫
	θ ,δ

ezth(z)
(
1 + κzα–1)(g(z)

(
g(z)I + A

)–1 – g(z)
(
g(z)I + Ah

)–1Rh
)
v dz

+
1

2π i

∫
	θ ,δ

ezth(z)κzα–2(g(z)
(
g(z)I + A

)–1 – g(z)
(
g(z)I + Ah

)–1Rh
)
b dz = I + II.

It follows from the identity g(z)(g(z)I – A)–1 = I – (g(z)I – A)–1A that

I =
1

2π i

∫
	θ ,δ

ezth(z)
(
1 + κzα–1)((v – Rhv) – Fh(z)Phv

)
dz

and

II =
1

2π i

∫
	θ ,δ

ezth(z)κzα–2Fh(z)Ab dz.

By Lemmas 4.1, 3.1, and 2.2, respectively, we derive that

I ≤ ch2‖Av‖
∫

	θ ,1/t

eRe(z)t∣∣h(z)
∣∣(1 + κ|z|α–1)∣∣dz

∣∣
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≤ ch2‖Av‖
∫

	θ ,1/t

eRe(z)t(1 + κ|z|α–1)min

{
|z|–1,

1
κ

|z|–α

}
|dz|

≤ ch2‖Av‖(t–1 + κt–α
)

min

{
t,

1
κ

tα

}
≤ ch2

(
1 +

1
κ

tα–1
)

‖Av‖

and

‖II‖ ≤ ch2‖Ab‖
∫

	θ ,1/t

eRe(z)t∣∣h(z)
∣∣κ|z|α–2∣∣dz

∣∣ ≤ ch2t‖Ab‖.

Putting the bounds of I and II together yield the L2-error estimates of case (a). A similar
argument yields the H1-error estimates. So the proof is completed. �

Now we consider the inhomogeneous problem with f �= 0. By applying the Laplace trans-
form, the solution u(t) can be represented by

u(t) =
∫ t

0
G(t – s)f (s) ds, (4.4)

where

G(t) =
1

2π i

∫
	θ ,δ

eztÊ(z) dz.

By a similar argument, the solution uh(t) to (3.7) is represented by

uh(t) =
∫ t

0
Gh(t – s)Phf (s) ds, (4.5)

where

Gh(t) =
1

2π i

∫
	θ ,δ

eztÊh(z) dz.

Subtracting (4.4) from (4.5), we get

eh(t) := uh(t) – u(t) =
∫ t

0

(
Gh(t – s)Ph – G(t – s)

)
f (s) ds =

∫ t

0
G̃h(t – s)f (s) ds.

The operator G̃h has the following error estimate.

Lemma 4.2 Let ϕ ∈ L2(�), then

∥∥G̃h(t)ϕ
∥∥ + h

∥∥∇G̃h(t)ϕ
∥∥ ≤ ch2t–1‖ϕ‖.

Proof By Lemma 4.1, we derive that

∥∥G̃h(t)ϕ
∥∥ =

∥∥∥∥ 1
2π i

∫
	θ ,δ

ezth(z)g(z)
((

g(z)I + Ah
)–1Ph –

(
g(z)I + A

)–1)
ϕdz

∥∥∥∥

≤ ch2‖ϕ‖
∫

	θ ,1/t

eRe(z)t∣∣h(z)g(z)
∣∣|dz| ≤ ch2t–1‖ϕ‖.

A similar argument also yields the H1-estimates. The proof is thus completed. �
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We are in a position to state the error estimate for the inhomogeneous problem.

Theorem 4.2 Let u and uh be the solutions of problems (1.1) with f ∈ L∞(0, T ; L2(�)) and
v = b = 0, and (3.2) with vh = bh = 0 and fh = Phf , respectively. Then we have

∥∥eh(t)
∥∥ + h

∥∥∇eh(t)
∥∥ ≤ ch2∣∣ln(

tα/h2)∣∣‖f ‖L∞(0,T ;L2(�)),

with t > 0.

Proof Using the idea of the proof in Theorem 4.4 in [35], we consider the two cases: t ≤
h2/α and t > h2/α for the error estimate of eh(t).

For the first case: t ≤ h2/α , we have

∥∥G(t)
∥∥ =

∥∥∥∥ 1
2π i

∫
	θ ,δ

eztÊ(z) dz
∥∥∥∥ ≤ c

∫
	θ ,δ

eRe(z)t∣∣h(z)
∣∣|dz|

≤ c
∫

	θ ,δ

eRe(z)t
(

min

(
|z|–1,

1
κ

|z|–α

))
|dz|

≤ c min

(
1,

1
κ

tα–1
)

≤ c
1
κ

tα–1.

So,

∥∥eh(t)
∥∥ ≤ c

∫ t

0

∥∥(
Gh(t – s)Ph – G(t – s)

)
f (s)

∥∥ds

≤
∫ h2/α

0

∥∥Gh(t – s)Phf (s)
∥∥ds +

∫ h2/α

0

∥∥G(t – s)f (s)
∥∥ds

≤ c
∫ h2/α

0

1
κ

(t – s)α–1 ds‖f ‖L∞(0,T ;L2(�)) ≤ c
1
κ

h2‖f ‖L∞(0,T ;L2(�)).

Next we consider the second case: t > h2/α . By Lemma 4.2, we have

∥∥eh(t)
∥∥ ≤

(∫ t–h2/α

0
+

∫ t

t–h2/α

)∥∥G̃h(t – s)f (s)
∥∥dt

≤ ch2
(∫ t–h2/α

0
(t – s)–1 ds +

1
κ

)
‖f ‖L∞(0,T ;L2(�))

≤ ch2 ln
(
tα/h2)‖f ‖L∞(0,T ;L2(�)).

Hence, for t ∈ (0, T], we get the desired results with L2-estimate for eh(t) by taking the
absolute value of ln(tα/h2). A similar argument yields the same estimate for h‖∇eh(t)‖. �

Remark 4.1 For t ∈ (0, T], we may simplify the error bound in Theorem 4.2 as ‖eh(t)‖ ≤
ch2| ln h|‖f ‖L∞(0,T ;L2(�)), which is an improved version of that in [29] by involving | ln h|
instead of | ln h|2. Note that the factor | ln h| reflects the limited smoothing property in
space.

4.2 Error estimates for the fully discrete schemes
In this part, we derive the L2-error estimates for the fully discrete schemes (3.6) and (3.9).
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4.2.1 Error estimates for the BE method
We first consider the homogeneous problem with f = 0.

Using the pervading strategy for the error analysis, we split the error u(tn) – Un
h of (3.6)

as a sum of two terms u(tn) – uh(tn) and uh(tn) – Un
h . Since the spatial error u(t) – uh(t) has

been discussed in the previous part, we focus on the temporal error uh(tn) – Un
h . We state

the error estimates as below.

Lemma 4.3 Let uh and Un
h be the solutions of (3.2) with f = 0 and (3.6) with fh = 0, respec-

tively. Then the following error estimate holds:
(a) If v, b ∈ Ḣ2(�) and vh = Rhv, bh = Rhb, then

∥∥uh(tn) – Un
h
∥∥ ≤ cτ

(
t–1
n ‖Av‖ + ‖Ab‖).

(b) If v, b ∈ L2(�) and vh = Phv, bh = Phb, then

∥∥uh(tn) – Un
h
∥∥ ≤ cτ

(
t–1
n ‖v‖ + ‖b‖).

Proof By (3.4) and (3.5), we have

uh(tn) – Un
h =

(
F(∂t) – F(∂τ )

)
(vh + tbh),

where F(z) = h(z)g(z)(g(z)I + Ah)–1κzα .
Since

∥∥F(z)
∥∥ ≤ c|z|α min

{
|z|–1,

1
κ

|z|–α

}
,

it follows from Lemma 2.1 (let σ = 1,σ = 2 with p = 1 and the suitable chosen parameters
λ) that

∥∥uh(tn) – Un
h
∥∥ ≤ cτ

(
min

{
t–α
n , t–1

n
}‖Rhv‖ + min

{
t1–α
n , 1

}‖Rhb‖)

≤ cτ
(
t–1
n ‖Av‖ + ‖Ab‖),

which leads to the desired result. The case (a) can be derived similarly, so the proof is
completed. �

Remark 4.2 When proving the error estimate in terms of smooth data in Ḣ2(�), we only
can obtain the terms with ‖vh‖ and ‖bh‖. One may wonder whether this result can be
improved to ‖Ahvh‖ and ‖Ahbh‖ where the identity AhRh = PhA and the L2-stability of
Ph can be applied. However, it seems that this situation may not happen unless the term
∂tu in (1.1) vanishes. In such situation, the fractional model (1.1) reduces to the fractional
diffusion-wave equation which has been discussed in [29]. So in this sense, we further
extend the results presented in [29] to some extent.

We now summarize the results for the error estimates of the fully discrete BE scheme
(3.6) in the next theorem.
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Theorem 4.3 Let u and Un
h be the solutions of (1.1) with f = 0 and (3.6) with f n

h = 0,
respectively. Then the following error estimates hold:

(a) If v, b ∈ Ḣ2(�) and vh = Rhv, bh = Rhb, then

∥∥Un
h – u(tn)

∥∥ ≤ c
((

t–1
n τ + h2

(
1 +

1
κ

tα–1
n

))
‖v‖Ḣ2(�) +

(
τ + h2tn

)‖b‖Ḣ2(�)

)
.

(b) If v, b ∈ L2(�) and vh = Phv, bh = Phb, then

∥∥Un
h – u(tn)

∥∥ ≤ c(
(
t–1
n τ + h2(t–1

n + κt–α
n

)‖v‖ +
(
τ + h2κt1–α

n
)‖b‖).

Next we state the error estimates for the inhomogeneous problem with f �= 0 but v = b =
0.

Theorem 4.4 Let u be the solution of the problem (1.1) with v = b = 0 and f ∈ L∞(0, T ;
L2(�)), and set Un

h be the solution of (3.6) with fh = Phf . If
∫ t

0 (t – s)α–1‖f ′(s)‖ds < ∞ with
t > 0, then we have

∥∥Un
h – u(tn)

∥∥

≤ c
(

τ tα–1
n

∥∥f (0)
∥∥ + τ

∫ tn

0
(tn – s)α–1∥∥f ′(s)

∥∥ds + ch2∣∣ln(
tα/h2)∣∣‖f ‖L∞(0,T ;L2(�))

)
.

Proof It suffices to bound ‖Un
h – uh(tn)‖. From (3.4) and (3.5), we have

Un
h – uh(tn) =

(
F(∂τ ) – F(∂t)

)
fh,

where F(z) = Êh(z).
By the Taylor expansion fh(t) = fh(0) + 1 ∗ f ′

h, we have

Un
h – uh(tn) =

(
F(∂τ ) – F(∂t)

)
fh(0) +

((
F(∂τ ) – F(∂t)

)
1
) ∗ f ′

h = I + II.

For the first term I , note that ‖F(z)‖ ≤ c|h(z)|, we apply Lemma 2.2 and Lemma 2.1 (with
σ = 1, p = 1, and some suitable parameters λ) to derive that

‖I‖ =
∥∥(

F(∂τ ) – F(∂t)
)
fh(0)

∥∥

≤ cτ min

{
1,

1
κ

tα–1
n

}∥∥fh(0)
∥∥ ≤ cτ

1
κ

tα–1
n

∥∥f (0)
∥∥.

The second term II has the following estimate:

‖II‖ ≤
∫ tn

0

∥∥((
F(∂τ ) – F(∂t)

)
1
)
(tn – s)f ′

h(s)
∥∥ds

≤ cτ
1
κ

∫ tn

0
(tn – s)α–1∥∥f ′(s)

∥∥ds.

Combining the above estimates I and II with Theorem 4.2, we complete the proof. �
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4.2.2 Error estimate for the SBD method
We now present the error estimates for the homogeneous problem in the next lemma.

Lemma 4.4 Let uh and Un
h be the solutions of (3.2) with f = 0 and (3.9), respectively. Then

the following error estimates hold:
(a) If v, b ∈ Ḣ2(�) and vh = Rhv, bh = Rhb, then

∥∥uh(tn) – Un
h
∥∥ ≤ cτ 2(tα–2

n ‖v‖Ḣ2(�) + t–1
n ‖b‖Ḣ2(�)

)
.

(b) If v, b ∈ L2(�) and vh = Phv, bh = Phb, then

∥∥uh(tn) – Un
h
∥∥ ≤ cτ 2(t–2

n ‖v‖ + t–1
n ‖b‖).

Proof Let F1(z) = Êh(z)z and F2(z) = Êh(z)zα . From (3.7) and (3.8), one has

uh(tn) – Un
h = –

(
F1(∂t) – F1(∂τ )

)
RLD–1

0,t(μAh)vh +
(
F2(∂t) – F2(∂τ )

)
κtbh = I + II.

We first consider the second case: v, b ∈ L2(�). By the identity (g(z)I + Ah)–1Ah = I –
g(z)(g(z)I + Ah)–1 and Lemma 2.2, we, respectively, get ‖F1(z)Ah‖ ≤ c|z| and

∥∥F2(z)
∥∥ =

∥∥Êh(z)zα
∥∥ ≤ c|z|α min

{
|z|–1,

1
κ

|z|–α

}
, ∀z ∈ �θ .

So employing Lemma 2.1 (with σ = 2, p = 2, and the suitable chosen parameters λ), we
derive that

∥∥uh(tn) – Un
h
∥∥ ≤ ‖I‖ + ‖II‖ ≤ cτ 2(t–2

n ‖v‖ + min
{

t–α
n , t–1

n
}‖b‖)

≤ cτ 2(t–2
n ‖v‖ + t–1

n ‖b‖).

Now we turn back to the first case: v, b ∈ Ḣ2(�). By noting that

∥∥F1(z)
∥∥ =

∥∥Êh(z)z
∥∥ ≤ c|z|min

{
|z|–1,

1
κ

|z|–α

}
, ∀z ∈ �θ ,

use of Lemma 2.1 again yields

‖I‖ ≤ cτ 2 min
{

t–1
n , tα–2

n
}‖v‖Ḣ2(�) ≤ cτ 2tα–2

n ‖v‖Ḣ2(�).

The error estimates for the term II when b ∈ Ḣ2(�) and bh = Rhv is similar to that in (b),
so the proof is completed. �

Remark 4.3 It seems that the error estimates for the smooth data in Ḣ2(�) in the proof of
Lemma 4.4 may not be sharp due to the appearance of the factor t–1

n in ‖b‖Ḣ2(�). One can
refer to Remark 4.2 for similar discussions.

Now we summarize the error estimate of the SBD scheme (3.9) for the homogeneous
problem.
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Theorem 4.5 Let u and Un
h be the solutions of (1.1) with f = 0 and (3.9), respectively.

Then the following error estimates holds:
(a) If v, b ∈ Ḣ2(�) and vh = Rhv, bh = Rhb, then

∥∥Un
h – u(tn)

∥∥ ≤ c
(
h2 + τ 2tα–2

n
)‖v‖Ḣ2(�) + c

(
h2tn + τ 2t–1

n
)‖b‖Ḣ2(�).

(b) If v, b ∈ L2(�), and vh = Phv, bh = Phb, then

∥∥Un
h – u(tn)

∥∥ ≤ c
(
h2(t–1 + κt–α

n
)

+ τ 2t–2
n

)‖v‖ + c
(
h2κt1–α

n + τ 2t–1
n

)‖b‖.

Finally, we present the following error estimate for the inhomogeneous problem with
v = b = 0.

Theorem 4.6 Let u be the solution of the problem (1.1) with v = b = 0 and f ∈ L∞(0, T ;
L2(�)), and let Un

h be the solution of (3.9) with vh = bh = 0. If
∫ t

0 (t – s)α–1‖f ′′(s)‖ds < ∞ for
t > 0, then we have

∥∥u(tn) – Un
h
∥∥ ≤ c

(
h2∣∣ln(

tα
n /h2)∣∣‖f ‖L∞(0,T ;L2(�)) + τ 2tα–2

n
∥∥f (0)

∥∥

+ τ 2tα–1
n

∥∥f ′(0)
∥∥ + τ 2

∫ tn

0
(tn – s)α–1∥∥f ′′(s)

∥∥ds
)

.

Proof It suffices to bound en
h = uh(tn) – Un

h . By the expansion fh(t) = fh(0) + tf ′
h(0) + t ∗ f ′′

h ,
we rewrite the expressions of uh(tn) and Un

h in (3.7) and (3.8), respectively, as

uh(tn) = F(∂t)
(
∂tRLD–1

0,t fh(0) + tf ′
h(0) + t ∗ f ′′

h
)
,

Un
h = F(∂τ )

(
∂τ RLD–1

0,t fh(0) + tf ′
h(0) + t ∗ f ′′

h
)
,

where F(z) = Êh(z). So,

∥∥en
h
∥∥ ≤ ∥∥(

F(∂t)∂t – F(∂τ )∂τ

)
RLD–1

0,t fh(0)
∥∥

+ ‖(F(∂t) – F(∂τ )
)
tf ′

h(0)‖ +
∥∥((

F(∂t) – F(∂τ )
)
t
) ∗ f ′′

h )
∥∥

:= I + II + III.

For ∀z ∈ �θ , one has ‖F(z)‖ = ‖Êh(z)‖ ≤ c min{|z|–1, |z|–α/κ}. By Lemma 2.1 (with σ =
2, p = 2, and the suitable chosen parameters λ), we obtain

‖I + II‖ ≤ cτ 2(min
{

t–1
n , tα–2

n
}∥∥f (0)

∥∥ + min
{

1, tα–1
n

}∥∥f ′(0)
∥∥)

≤ cτ 2(tα–2
n

∥∥f (0)
∥∥ + tα–1

n
∥∥f ′(0)

∥∥)
.

For the third term III , we similarly have

‖III‖ ≤
∫ tn

0

∥∥((
F(∂t) – F(∂τ )

)
t
)
(t – s)f ′′

h (s))
∥∥ds ≤ cτ 2

∫ tn

0
(tn – s)α–1∥∥f ′′(s)

∥∥ds.

Putting the bounds I, II , and III together, we thus finish the proof. �
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5 Comparison with the L2-1σ scheme
The L2-1σ method which approximates the Caputo derivative at t = tn+σ with a proper
chosen parameter σ is described as follows. If g(t) ∈ C3[0, T], then

CDβ
0,tg(t)|t=tn+σ ≈ Dβ

τ gn+σ =
n∑

k=0

w(n+1)
n–k

(
g(tk+1) – g(tk)

)
,

where β ∈ (0, 1),σ = 1 – β/2, and for n = 0, w(1)
0 = a0τ

–β/	(2 – β), for n ≥ 1,

w(n+1)
k =

τ–β

	(2 – β)

⎧⎪⎪⎨
⎪⎪⎩

a0 + b1, k = 0,

ak + bk+1 – bk , k = 1, 2, . . . , n – 1,

an – bn, k = n.

Here, a0 = σ 1–β , ak = (k + σ )1–β – (k – 1 + σ )1–β , k ≥ 1, and bk = ((k + σ )2–β – (k – 1 +
σ )2–β)/(2 – β) – ((k + σ )1–β – (k – 1 + σ )1–β)/2, k ≥ 1.

We also need the following notations of difference operators: δtgn+1/2 = (g(tn+1)–g(tn))/τ ,
gn+1/2 = (g(tn+1) + g(tn))/2, gn+σ = σ g(tn+1) + (1 – σ )g(tn), and

δ̂tgn =
1

2τ

(
(2σ + 1)g(tn+1) – 4σ g(tn) + (2σ – 1)g(tn–1)

)
.

By setting φh = ∂tuh, we may rewrite the semidiscrete equation (3.2) as the following
first-order system:

⎧⎨
⎩

φh + κCDα–1
0,t φh + μAhuh = fh(t),

∂tuh = φh.

Applying the L2-1σ method for the above equation on time level tn+σ for n ≥ 0, we obtain
the fully discrete scheme (denoted as the L2-1σ scheme) for solving (1.1): Find φn

h , n ≥ 1,
such that

⎧⎪⎪⎨
⎪⎪⎩

φn+σ
h + κDα–1

τ φn+σ
h + μAhUn+σ

h = Fn+σ
h ,

δtU1/2
h = φ1/2

h ,

δ̂tUn
h = φn+σ

h ,

(5.1)

from which we obtain the numerical solution Un
h to (1.1): U1

h = U0
h + τ (φ1

h + φ0
h)/2 and for

n ≥ 1,

Un+1
h =

2τ

2σ + 1
(
σφn+1

h + (1 – σ )φn
h
)

+
1

2σ + 1
(
4σUn

h – (2σ – 1)Un–1
h

)
.

Similar to the strategy of the proof for Theorem 4.1 and 4.2 in [3], one can readily see that
the above numerical scheme (5.1) is stable and accurate with order O(τ 2 + h2), under the
assumption that u ∈ C3([0, T]; Ḣ2(�)). The assumption may be too strong which would
lead to the limitation of the application for this scheme (5.1). Note that from Theorems
4.3, 4.4, 4.5, and 4.6, one can see that the error estimates of BE and SBD schemes depend
only on the regularity of the problem data rather than the regularity of the solution. In
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Table 1 The L2 norm errors in time for Example 6.1 with h = 1/512

Scheme N α = 1.1 α = 1.5 α = 1.9

L2 error Rate L2 error Rate L2 error Rate

BE 4 4.55E–02 – 6.43E–02 – 9.01E–02 –
8 2.43E–02 0.91 3.46E–02 0.89 4.96E–02 0.86
16 1.25E–02 0.95 1.80E–02 0.95 2.62E–02 0.92
32 6.37E–03 0.98 9.16E–03 0.97 1.35E–02 0.96

SBD 4 1.25E–02 – 1.65E–02 – 2.17E–02 –
8 3.31E–03 1.92 4.08E–03 2.02 4.53E–03 2.26
16 8.41E–04 1.98 9.99E–04 2.03 8.78E–04 2.37
32 2.07E–04 2.02 2.44E–04 2.03 1.86E–04 2.24

L2-1σ 4 5.83E–03 – 1.38E–02 – 2.81E–02 –
8 1.50E–03 1.96 3.77E–03 1.87 7.40E–03 1.93
16 3.75E–04 2.00 9.75E–04 1.95 1.88E–03 1.98
32 8.86E–05 2.08 2.52E–04 1.95 4.77E–04 1.98

addition, the problem data can be incompatible or nonsmooth. From this point of view, the
proposed numerical schemes (BE and SBD) are more competitive than the L2-1σ scheme
(5.1).

6 Numerical experiments
The numerical tests are demonstrated to verify the convergence theory in this part. Two
sets of the numerical examples with known solution and unknown solution are consid-
ered. The first example with known solution is to confirm whether the error estimates of
the three numerical schemes (BE, SBD, and L2-1σ schemes) are correct when the problem
data satisfy certain compatibility condition, i.e., when the solution is sufficiently smooth;
while the second example with unknown solution is to test whether the convergences of
the two numerical schemes (BE and SBD) are robust and superior to the L2-1σ scheme
for different regularity of the source term f and the initial condition v and b, which can
be incompatible and nonsmooth. We test the temporal and spatial convergence rates at
a fixed final time T with the L2 norm errors defined by ‖en‖ = ‖Un

h – u(tn)‖. The domain
� = (0, 1)2 is divided by means of the linear Lagrange triangle finite element. All the tests
are done with fixed κ = μ = 1.

Example 6.1 (The solution is known) Consider the problem with the following source
term:

f (x, y, t) = sin(πx) sin(πy)
(
κg(γ ,α) + γ tγ –1 + 2π2μ

(
1 + tγ

))
,

where g(x, y) = 	(x + 1)tx–y/	(x – y + 1). The corresponding solution is given by u(x, y, t) =
sin(πx) sin(πy)(1 + tγ ).

In this example, we let γ = 3.5 and test the temporal and spatial convergence rates by
employing the proposed schemes (3.6), (3.9), and (5.1), respectively. The numerical results
are shown in Tables 1–2. Since the regularity of the solution meet the requirement of
all three numerical schemes (3.6), (3.9), and (5.1), one can see that temporal and spatial
convergence rates are agree well with the theoretical results.

Example 6.2 (The solution is unknown) Consider problem (1.1) with the following data:
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Table 2 The L2 norm errors in space for Example 6.1 with N = 4096

Scheme 1/h α = 1.1 α = 1.5 α = 1.9

L2 error Rate L2 error Rate L2 error Rate

BE 4 1.35E–01 – 1.31E–01 – 1.20E–01 –
8 3.58E–02 1.92 3.46E–02 1.92 3.32E–02 1.85
16 9.04E–03 1.98 8.74E–03 1.99 8.53E–03 1.96
32 2.23E–03 2.02 2.14E–03 2.03 2.08E–03 2.04

SBD 4 1.35E–01 – 1.32E–01 – 1.20E–01 –
8 3.58E–02 1.92 3.47E–02 1.92 3.33E–02 1.84
16 9.09E–03 1.98 8.80E–03 1.98 8.62E–03 1.95
32 2.28E–03 1.99 2.21E–03 1.99 2.17E–03 1.99

L2-1σ 4 1.35E–01 – 1.32E–01 – 1.20E–01 –
8 3.58E–02 1.92 3.47E–02 1.92 3.33E–02 1.84
16 9.09E–03 1.98 8.80E–03 1.98 8.62E–03 1.95
32 2.28E–03 1.99 2.21E–03 1.99 2.17E–03 1.99

Table 3 The L2 norm errors in time for case (a) in Example 6.2 with h = 1/10

Scheme N α = 1.1 α = 1.5 α = 1.9

L2 error Rate L2 error Rate L2 error Rate

BE 16 3.43E–04 – 8.09E–05 – 1.79E–04 –
32 1.74E–04 0.98 4.18E–05 0.95 9.11E–05 0.98
64 8.74E–05 0.99 2.13E–05 0.97 4.59E–05 0.99
128 4.39E–05 1.00 1.07E–05 0.99 2.30E–05 0.99

SBD 16 3.53E–06 – 1.25E–05 – 5.30E–06 –
32 7.64E–07 2.21 3.16E–06 1.99 1.38E–06 1.94
64 1.78E–07 2.10 7.90E–07 2.00 3.52E–07 1.98
128 4.32E–08 2.05 1.98E–07 2.00 8.86E–08 1.99

L2-1σ 16 5.46E–04 – 2.42E–04 – 2.25E–05 –
32 2.63E–04 1.06 1.15E–04 1.07 1.08E–05 1.05
64 1.28E–04 1.04 5.58E–05 1.05 5.32E–06 1.03
128 6.29E–05 1.03 2.73E–05 1.03 2.63E–06 1.01

(a) v = x(1 – x)y(1 – y), b = 0, and f = 0,
(b) v = χ(0,1/2]×(0,1)(x, y), b = 0, and f = 0,
(c) v = 0, b = x(1 – x)y(1 – y), and f = 0,
(d) v = 0, b = χ(0,1/2]×(0,1)(x, y), and f = 0,
(e) v = 0, b = 0, and f = (1 + t1.2)χ(0,1/2]×(0,1)(x, y).

In this example, we examine the temporal convergence rates for the proposed BE and
SBD schemes with the final time T = 0.1. The spatial mesh size is chosen as h = 1/10 which
is sufficient to observe the convergence rate in time for the semidiscrete scheme (3.2).
Since it is difficult to obtain the exact solution, we compute the reference solution instead.
The reference solution uh(tn) is obtained by using the SBD scheme (3.9) with h = 1/10 and
τ = 4096. The numerical results are demonstrated in Tables 3–7. From these tables, we
can see that the BE and SBD schemes exhibit a steady convergence for both smooth and
nonsmooth data, which coincide with the theoretical results. In addition, one can observe
from the numerical results that the L2-1σ scheme achieves less than the expected con-
vergence rate O(τ 2) even for smooth data; see Tables 3 and 5. The possible reason is that
the solution in such situation does not satisfy the requirement for a sufficiently smooth
assumption in (5.1). This shows our schemes are more robust than the L2-1σ scheme.
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Table 4 The L2 norm errors in time for case (b) in Example 6.2 with h = 1/10

Scheme N α = 1.1 α = 1.5 α = 1.9

L2 error Rate L2 error Rate L2 error Rate

BE 16 8.96E–03 – 1.42E–02 – 2.84E–02 –
32 4.52E–03 0.99 7.50E–03 0.92 1.52E–02 0.90
64 2.27E–03 0.99 3.87E–03 0.96 7.87E–03 0.95
128 1.14E–03 1.00 1.97E–03 0.98 4.01E–03 0.97

SBD 16 5.75E–04 – 1.93E–03 – 2.91E–03 –
32 1.40E–04 2.04 4.63E–04 2.06 7.75E–04 1.91
64 3.46E–05 2.02 1.13E–04 2.04 1.98E–04 1.97
128 8.60E–06 2.01 2.77E–05 2.02 4.99E–05 1.99

L2-1σ 16 7.78E–03 – 6.39E–03 – 1.88E–03 –
32 3.74E–03 1.06 2.92E–03 1.13 7.39E–04 1.35
64 1.83E–03 1.03 1.39E–03 1.07 3.23E–04 1.19
128 8.97E–04 1.03 6.78E–04 1.04 1.51E–04 1.10

Table 5 The L2 norm errors in time for case (c) in Example 6.2 with h = 1/10

Scheme N α = 1.1 α = 1.5 α = 1.9

L2 error Rate L2 error Rate L2 error Rate

BE 16 2.36E–05 – 4.38E–05 – 3.40E–05 –
32 1.20E–05 0.98 2.21E–05 0.99 1.69E–05 1.01
64 6.02E–06 0.99 1.11E–05 0.99 8.45E–06 1.00
128 3.02E–06 1.00 5.55E–06 1.00 4.22E–06 1.00

SBD 16 1.65E–07 – 8.88E–07 – 1.55E–06 –
32 4.81E–08 1.78 2.15E–07 2.05 3.92E–07 1.98
64 1.28E–08 1.91 5.27E–08 2.03 9.85E–08 1.99
128 3.30E–09 1.96 1.30E–08 2.01 2.47E–08 2.00

L2-1σ 16 2.80E–05 – 1.13E–05 – 7.59E–07 –
32 1.32E–05 1.08 5.53E–06 1.03 4.39E–07 0.79
64 6.40E–06 1.05 2.71E–06 1.03 2.35E–07 0.90
128 3.13E–06 1.03 1.34E–06 1.02 1.21E–07 0.95

Table 6 The L2 norm errors in time for case (d) in Example 6.2 with h = 1/10

Scheme N α = 1.1 α = 1.5 α = 1.9

L2 error Rate L2 error Rate L2 error Rate

BE 16 3.35E–04 – 9.46E–04 – 1.33E–03 –
32 1.69E–04 0.98 4.83E–04 0.97 6.83E–04 0.96
64 8.51E–05 0.99 2.44E–04 0.98 3.46E–04 0.98
128 4.27E–05 1.00 1.23E–04 0.99 1.74E–04 0.99

SBD 16 1.47E–05 – 4.88E–05 – 1.24E–04 –
32 3.63E–06 2.01 1.25E–05 1.97 3.29E–05 1.91
64 9.02E–07 2.01 3.12E–06 2.00 8.40E–06 1.97
128 2.25E–07 2.00 7.81E–07 2.00 2.12E–06 1.99

L2-1σ 16 3.57E–04 – 1.73E–04 – 4.21E–05 –
32 1.67E–04 1.09 8.18E–05 1.08 1.27E–05 1.73
64 8.04E–05 1.06 3.96E–05 1.05 4.80E–06 1.40
128 3.92E–05 1.04 1.94E–05 1.03 2.20E–06 1.13

Finally, we perform numerical simulation on the fractional model (1.1) using certain
data. We consider the following data: f = 0, b = 0, and

v =
1

2πσ 2 exp

(
–

x2 + y2

2σ 2

)
,
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Table 7 The L2 norm errors in time for case (e) in Example 6.2 with h = 1/10

Scheme N α = 1.1 α = 1.5 α = 1.9

L2 error Rate L2 error Rate L2 error Rate

BE 16 2.38E–04 – 1.47E–04 – 1.50E–04 –
32 1.21E–04 0.98 7.55E–05 0.97 7.66E–05 0.97
64 6.07E–05 0.99 3.82E–05 0.98 3.87E–05 0.98
128 3.05E–05 1.00 1.92E–05 0.99 1.94E–05 0.99

SBD 16 9.34E–06 – 1.22E–05 – 6.45E–06 –
32 2.33E–06 2.00 3.02E–06 2.02 1.66E–06 1.96
64 5.81E–07 2.00 7.48E–07 2.01 4.18E–07 1.99
128 1.45E–07 2.00 1.86E–07 2.01 1.05E–07 2.00

L2-1σ 16 3.38E–04 – 1.74E–04 – 1.95E–05 –
32 1.63E–04 1.06 8.23E–05 1.08 9.25E–06 1.07
64 7.93E–05 1.04 3.98E–05 1.05 4.50E–06 1.04
128 3.89E–05 1.03 1.94E–05 1.03 2.22E–06 1.02

Figure 1 Comparison behavior of u(x, y, 0.01),u(x, y, 0.1) and u(x, y, 1) for (1.1) with fixed α = 1.5 and different
κ , computed by SBD scheme with h = 0.05,N = 512

with the domain � = {(x, y)|x2 + y2 = 1} and μ = 1. Here, the parameter σ = 0.18 denotes
the impact level of the initial condition. We are interested in the effect of parameters κ and
α on the time-fractional Cattaneo equation (1.1) at a different fixed time. The numerical
results are shown in Figs. 1 and 2.

From Fig. 1, we observe that the numerical solutions with κ = 1 decay slower than these
with κ = 0.01 at the time t = 0.01, and behave more like waves as time evolves. So the pa-
rameter κ may reflect the propagation velocity of the particle transport [1]. Note that one
recovers Fick’s second law with an infinite velocity when κ → 0. For the fixed parameter
κ = 1 in Fig. 2, it seems that wave feature with α = 1.9 are more obvious than the case with
α = 1.1. So the fractional order α essentially indicates the anomalous nature of diffusive
transport processes.
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Figure 2 Comparison behavior of u(x, y, 0.01),u(x, y, 0.1) and u(x, y, 1) for (1.1) with fixed κ = 1 and different α ,
computed by SBD scheme with h = 0.05,N = 512

7 Conclusions
In this paper, two efficient and robust fully discrete schemes for solving the time-fractional
Cattaneo equation (1.1) are proposed. The schemes are based on the Galerkin finite ele-
ment method in space and convolution quadrature generated by the backward Euler and
second-order backward difference methods in time. Error estimates are established with
respect to data regularity, which includes both smooth and nonsmooth initial data. We
further compare the proposed BE and SBD schemes with the L2-1σ scheme and numeri-
cally verify the robustness of our schemes. The effects of parameter κ and fractional order
α are numerically studied which may provide us a deep insight on the dynamics behaviors
of the time-fractional Cattaneo model (1.1) [1, 4].
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