
Ben Chikh et al. Advances in Difference Equations        (2020) 2020:547 
https://doi.org/10.1186/s13662-020-03012-1

R E S E A R C H Open Access

On Hyers–Ulam stability of a multi-order
boundary value problems via
Riemann–Liouville derivatives and integrals
Salim Ben Chikh1, Abdelkader Amara1, Sina Etemad2 and Shahram Rezapour3,4,5*

*Correspondence:
shahramrezapour@duytan.edu.vn;
sh.rezapour@mail.cmuh.org.tw;
sh.rezapour@azaruniv.ac.ir;
rezapourshahram@yahoo.ca
3Institute of Research and
Development, Duy Tan University,
Da Nang 550000, Vietnam
4Faculty of Natural Sciences, Duy
Tan University, Da Nang 550000,
Vietnam
Full list of author information is
available at the end of the article

Abstract
In this research paper, we introduce a general structure of a fractional boundary value
problem in which a 2-term fractional differential equation has a fractional bi-order
setting of Riemann–Liouville type. Moreover, we consider the boundary conditions of
the proposed problem as mixed Riemann–Liouville integro-derivative conditions
with four different orders which cover many special cases studied before. In the first
step, we investigate the existence and uniqueness of solutions for the given
multi-order boundary value problem, and then the Hyers–Ulam stability is another
notion in this regard which we study. Finally, we provide two illustrative examples to
support our theoretical findings.
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1 Introduction and preliminaries
Fractional differential problems have drawn much interest in recent years owing to their
extensive utilization in different branches of science such as engineering, mechanics, po-
tential theory, biology, chemistry, etc. (see [1–11]). Many researchers helped in develop-
ments on the existence and uniqueness results of fractional differential equations [12–26].
Stability is a notion in physics, and most phenomena include the concept. In fact, stability
of physical phenomena has an old history, and one can find a lot of works in the literature
not only in the last century but also before it [27–36]. During recent decades, considerable
attention has been given to the study of the Hyers–Ulam stability of functional differential
and integral equations [37–54].

In 2016, Niyom et al. studied the boundary value problem via four-order fractional
Riemann–Liouville derivatives

⎧
⎨

⎩

λDk(u(t)) + (1 – λ)Dθ (u(t)) = ϒ̂(t, u(t)) (t ∈ [0, T], k ∈ (1, 2]),

u(0) = 0, μ1Dγ1 u(T) + (1 – μ1)Dγ2 u(T) = δ1,
(1)
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under some conditions [55]. In 2017, Ntouyas et al. reviewed a boundary value problem
via multiple orders of fractional derivatives and integrals

⎧
⎨

⎩

λDk(u(t)) + (1 – λ)Dθ (u(t)) = ϒ̂(t, u(t)) (t ∈ [0, T], k ∈ (1, 2]),

u(0) = 0, μ2Iq1 u(T) + (1 – μ2)Iq2 u(T) = δ2,
(2)

under some conditions [15]. In 2018, Xu et al. investigated the existence of solutions and
Hyers–Ulam stability for the fractional differential equations

⎧
⎨

⎩

λDk(u(t)) + Dθ (u(t)) = ϒ̂(t, u(t)) (t ∈ [0, T], k ∈ (1, 2]),

u(0) = 0, μ1Dγ1 u(T) + Iq2 u(ν) = δ2,
(3)

under some conditions [39]. They considered two-term class of three-point boundary
value problems with Riemann–Liouville fractional derivatives and integrals [39].

Now, by using and mixing the idea of the above-mentioned works, we consider a new
category of boundary value problem including multi-order Riemann–Liouville fractional
equation supplemented with different linear integro-derivative boundary conditions as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

λDk(u(t)) + (1 – λ)Dθ (u(t)) = ϒ̂(t, u(t)) (t ∈ [0, T], k ∈ [2, 3)),

u(0) = 0, μ1Dγ1 u(T) + (1 – μ1)Dγ2 u(T) = δ1,

μ2Iq1 u(T) + (1 – μ2)Iq2 u(T) = δ2,

(4)

where 2 < θ < k, 0 < λ, μ1,μ2 ≤ 1, 0 ≤ γ1, γ2 < k – θ , q1, q2 ∈ R
+, Dβ is the Riemann–

Liouville fractional derivative of order β ∈ {k, θ ,γ1,γ2}, Iη denotes the Riemann–Liouville
fractional integral of order η ∈ {q1, q2}, and the map ϒ̂ : [0, T] ×R →R is continuous.

As many researchers would like to investigate the stability notion of different boundary
value problems, this can be a motivation for us to study the stability of complicated sys-
tems supplemented with general boundary conditions. Hence more precisely, our main
goal in the present manuscript is to obtain some existence criteria of the solutions for
a new general boundary value problem including 2-term fractional differential equation
(4) which contains multi-order Riemann–Liouville fractional derivatives and integrals. To
fulfil this aim, we use the well-known standard fixed point theorems. Also, in the sequel,
we investigate the Hyers–Ulam stability of the proposed problem (4) in the special case
μ1 = 1 and μ2 = 1. Finally, we present two illustrative examples to show the validity of our
theoretical findings. We believe that such proposed boundary value problem is general,
and it involves many fractional dynamical systems as special cases in physics and other
applied sciences.

2 Preliminaries
Now, let us provide some basic notions. It is known that the Riemann–Liouville frac-
tional integral of order η of a real-valued function g : (0,∞) → R is defined by Iηg(t) =
∫ t

0
(t–s)η–1


(η) g(s) ds, provided the right-hand side is point-wise defined on (0,∞), where 
 is
the gamma function [1]. The Riemann–Liouville fractional derivative of order k of a func-
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tion g : (0,∞) → R is defined by Dβg(t) = 1

(n–β) ( d

dt )n ∫ t
0

g(s)
(t–s)β–n+1 ds, where n = [β] + 1, [β]

denotes the integer part of real number β provided the right-hand side is point-wise de-
fined on (0,∞) [1]. We need the next results.

Lemma 1 ([1, 5]) Let k > 0 and u ∈ C(0, 1), where C(0, 1) stands for the space of all con-
tinuous real-valued functions defined on (0, 1). Then the fractional differential equation
Dku(t) = 0 has a general solution u(t) = C1tk–1 + C1tk–2 + · · · + C1tk–n, where n – 1 ≤ k < n
and C1, . . . , Cn are some real constants.

Lemma 2 ([1]) Let k > 0 and u ∈ C(0, 1). Then we have

IkDku(t) = u(t) + C1tk–1 + C1tk–2 + · · · + C1tk–n,

where n – 1 ≤ k < n and C1, . . . , Cn are some real constants.

Theorem 3 (Krasnoselskii’s fixed point theorem, [56]) Let M be a closed, bounded, con-
vex, and nonempty subset of a Banach space X . Assume that A1 and A2 are two operators
on M such that

(a) A1u + A2w ∈M for all u, w ∈M,
(b) A1 is compact and continuous,
(c) A2 is a contraction.

Then there exists z ∈M such that z = A1z + A2z.

Theorem 4 (Leray–Schauder’s nonlinear alternative, [57]) Let X be a Banach space, B be
a closed, convex subset of X , U be an open subset of B, and 0 ∈ U . Assume that P : Ū → B
is a continuous and compact map. Then either

(a) P has a fixed point in Ū , or
(b) there is u ∈ ∂U (the boundary of U ) and τ ∈ (0, 1) with u = τP(u).

Lemma 5 ([39]) Let α > 0, a > 0, g(t, s) be a nonnegative continuous bounded function
defined on [0, T] × [0, T] and nondecreasing with respect to the first variable and nonin-
creasing with respect to the second variable. Assume that u(t) is nonnegative and integrable
on [0, T] with u(t) ≤ a +

∫ t
0 g(t, s)(t – s)α–1u(s) ds for t ∈ [0, T]. Then we have

u(t) ≤ a + a
∫ t

0

∞∑

n=1

(g(t, s)
(α))n


(nα)
(t – s)nα–1 ds.

Theorem 6 (Banach contraction principle, [57]) Let X be a Banach space and P : X →X
be a contraction. Then P has a unique fixed point.

3 Some existence results
Let T > 0, J = [0, T], and C = C(J ,R) be the Banach space of continuous mappings with the
sup norm ‖u‖ = supt∈J |u(t)|. We first provide our key result.



Ben Chikh et al. Advances in Difference Equations        (2020) 2020:547 Page 4 of 20

Lemma 7 A map u0 is a solution for boundary value problem (4) if and only if u0 is a
solution for the integral equation

u(t) =
λ – 1

λ
(k – θ )

∫ t

0
(t – s)k–θ–1u(s) ds +

1
λ
(k)

∫ t

0
(t – s)k–1ϒ̂

(
t, u(t)

)
ds

+
tk–1

�
×

[
μ1�4(λ – 1)

λ
Ik–θ–γ1 u(T) –

�2μ2(λ – 1)
λ

Ik–θ+q1 u(T)

+
�4(1 – μ1)(λ – 1)

λ
Ik–θ–γ2 u(T) –

�2(1 – μ2)(λ – 1)
λ

Ik–θ+q2 u(T)

+
�4μ1

λ
Ik–γ1ϒ̂

(
T , u(T)

)
–

�2μ2

λ
Ik+q1ϒ̂

(
T , u(T)

)
+ �2δ2 – �4δ1

+
�4(1 – μ1)

λ
Ik–γ2ϒ̂

(
T , u(T)

)
–

�2(1 – μ2)
λ

Ik+q2ϒ̂
(
T , u(T)

)
]

–
tk–2

�

[
μ1�3(λ – 1)

λ
Ik–θ–γ1 u(T) –

�1μ2(λ – 1)
λ

Ik–θ+q1 u(T)

+
�3(1 – μ1)(λ – 1)

λ
Ik–θ–γ2 u(T) –

�1(1 – μ2)(λ – 1)
λ

Ik–θ+q2 u(T)

+
�3μ1

λ
Ik–γ1ϒ̂

(
T , u(T)

)
–

�1μ2

λ
Ik+q1ϒ̂

(
T , u(T)

)
+ �1δ2 – �3δ1

+
�3(1 – μ1)

λ
Ik–γ2ϒ̂

(
T , u(T)

)
–

�1(1 – μ2)
λ

Ik+q2ϒ̂
(
T , u(T)

)
]

, (5)

where

�1 =
μ1
(k)


(k – γ1)
Tk–γ1–1 +

(1 – μ1)
(k)

(k – γ2)

Tk–γ2–1,

�2 =
μ1
(k – 1)


(k – γ1 – 1)
Tk–γ1–2 +

(1 – μ1)
(k – 1)

(k – γ2 – 1)

Tk–γ2–2,

�3 =
μ2
(k)


(k + q1)
Tk+q1–1 +

(1 – μ2)
(k)

(k + q2)

Tk+q2–1,

�4 =
μ2
(k – 1)


(k + q1 – 1)
Tk+q1–2 +

(1 – μ2)
(k – 1)

(k + q2 – 1)

Tk+q2–2,

� = �3�2 – �1�4. (6)

Proof First, assume that u0 is a solution for problem (4). Then we have

Dku0(t) =
λ – 1

λ
Dku0(t) +

1
λ

ϒ̂
(
t, u0(t)

)
. (7)

By taking the Riemann–Liouville fractional integral of order k from both sides of equation
(7), we obtain

u0(t) =
λ – 1

λ
(k – θ )

∫ t

0
(t – s)k–θ–1u0(s) ds +

1
λ
(k)

∫ t

0
(t – s)k–1ϒ̂

(
s, u0(s)

)
ds

+ C1tk–1 + C2tk–2 + C3tk–3
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for some real constants C1, C2, and C3. For 2 < k < 3, the first boundary condition of (4)
implies that C3 = 0. Hence,

u0(t) =
λ – 1

λ
Ik–θ u0(t) +

1
λ
Ikϒ̂

(
t, u0(t)

)
+ C1tk–1 + C2tk–2. (8)

By using the Riemann–Liouville fractional derivative and integral of order α and β respec-
tively with α ∈ {γ1,γ2}, β ∈ {q1, q1}, 0 < α < k – θ , and 2 < θ < k, we get

Dαu0(t) =
λ – 1

λ
(k – θ – α)

∫ t

0
(t – s)k–θ–α–1u0(s) ds + C1


(k)

(k – α)

tk–α–1

+
1

λ
(k – α)

∫ t

0
(t – s)k–α–1ϒ̂

(
s, u0(s)

)
ds + C2


(k – 1)

(k – α – 1)

tk–α–2

and

Iβu0(t) =
λ – 1

λ
(k – θ + β)

∫ t

0
(t – s)k–θ+β–1u0(s) ds + C1


(α)

(k + β)

tk+β–1

+
1

λ
(k + β)

∫ t

0
(t – s)k+β–1ϒ̂

(
s, u0(s)

)
ds + C2


(k – 1)

(k + β – 1)

tk+β–2.

By replacing the values α = γ1, α = γ2, β = q1, and β = q2 and using the second condition
of (4), we get

μ1(λ – 1)
λ
(k – θ – γ1)

∫ T

0
(T – s)k–θ–γ1–1u0(s) ds

+
(1 – μ1)(λ – 1)
λ
(k – θ – γ2)

∫ T

0
(T – s)k–θ–γ2–1u0(s) ds

+
μ1

λ
(k – γ1)

∫ T

0
(T – s)k–γ1–1ϒ̂

(
s, u0(s)

)
ds

+
(1 – μ1)

λ
(k – γ2)

∫ T

0
(T – s)k–γ2–1ϒ̂

(
s, u0(s)

)
ds

+ C1�1 + C2�2 = δ1,

and

μ2(λ – 1)
λ
(k – θ + q1)

∫ T

0
(T – s)k–θ+q1–1u0(s) ds

+
(1 – μ2)(λ – 1)
λ
(k – θ + q2)

∫ T

0
(T – s)k–θ+q2–1u0(s) ds

+
μ2

λ
(k + q1)

∫ T

0
(T – s)k+q1–1ϒ̂

(
s, u0(s)

)
ds

+
(1 – μ2)

λ
(k + q2)

∫ T

0
(T – s)k+q2–1ϒ̂

(
s, u0(s)

)
ds

+ C1�3 + C2�4 = δ2,
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which leads to

C1 =
μ1�4(λ – 1)

λ
Ik–θ–γ1 u0(T) –

�2μ2(λ – 1)
λ

Ik–θ+q1 u0(T)

+
�4(1 – μ1)(λ – 1)

λ
Ik–θ–γ2 u0(T) –

�2(1 – μ2)(λ – 1)
λ

Ik–θ+q2 u0(T)

+
�4μ1

λ
Ik–γ1ϒ̂

(
T , u0(T)

)
–

�2μ2

λ
Ik+q1ϒ̂

(
T , u0(T)

)
+ �2δ2 – �4δ1

+
�4(1 – μ1)

λ
Ik–γ2ϒ̂

(
T , u0(T)

)
–

�2(1 – μ2)
λ

Ik+q2ϒ̂
(
T , u0(T)

)

and

C2 =
μ1�3(λ – 1)

λ
Ik–θ–γ1 u0(T) –

�1μ2(λ – 1)
λ

Ik–θ+q1 u0(T)

+
�3(1 – μ1)(λ – 1)

λ
Ik–θ–γ2 u0(T) –

�1(1 – μ2)(λ – 1)
λ

Ik–θ+q2 u0(T)

+
�3μ1

λ
Ik–γ1ϒ̂

(
T , u0(T)

)
–

�1μ2

λ
Ik–q1ϒ̂

(
T , u0(T)

)
+ �1δ2 – �3δ1

+
�3(1 – μ1)

λ
Ik–γ2ϒ̂

(
T , u0(T)

)
–

�1(1 – μ2)
λ

Ik+q2ϒ̂
(
T , u0(T)

)
.

By inserting the values of constants C1 and C2 in (8), we find that u0 satisfies (5). Some
calculations show that the converse part holds. This completes the proof. �

Based on Lemma 7, define the operator F : C → C by

Fu(t) =
λ – 1

λ
(k – θ )

∫ t

0
(t – s)k–θ–1u(s) ds +

1
λ
(k)

∫ t

0
(t – s)k–1ϒ̂

(
t, u(t)

)
ds

+
tk–1

�
×

[
μ1�4(λ – 1)

λ
Ik–θ–γ1 u(T) –

�2μ2(λ – 1)
λ

Ik–θ+q1 u(T)

+
�2(1 – μ1)(λ – 1)

λ
Ik–θ–γ2 u(T) –

�2(1 – μ2)(λ – 1)
λ

Ik–θ+q2 u(T)

+
�2μ1

λ
Ik–γ1ϒ̂

(
T , u(T)

)
–

�2μ2

λ
Ik+q1ϒ̂

(
T , u(T)

)
+ �2δ2 – �4δ1

+
�4(1 – μ1)

λ
Ik–γ2ϒ̂

(
T , u(T)

)
–

�2(1 – μ2)
λ

Ik+q2ϒ̂
(
T , u(T)

)
]

–
tk–2

�

[
μ1�3(λ – 1)

λ
Ik–θ–γ1 u(T) –

�1μ2(λ – 1)
λ

Ik–θ+q1 u(T)

+
�3(1 – μ1)(λ – 1)

λ
Ik–θ–γ2 u(T) –

�1(1 – μ2)(λ – 1)
λ

Ik–θ+q2 u(T)

+
�3μ1

λ
Ik–γ1ϒ̂

(
T , u(T)

)
–

�1μ2

λ
Ik–q1ϒ̂

(
T , u(T)

)
+ �1δ2 – �3δ1

+
�3(1 – μ1)

λ
Ik–γ2ϒ̂

(
T , u(T)

)
–

�1(1 – μ2)
λ

Ik+q2ϒ̂
(
T , u(T)

)
]

. (9)
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Note that boundary value problem (4) has solution u0 if and only if u0 is a fixed point of
the operator Fu. To simplify calculations, we use the notations

W1 =
(|λ – 1|)(�4 + �3T–1)

|�|
(

μ1
T2k–θ–γ1–1

λ
(k – θ – γ1 + 1)
+

(1 – μ1)T2k–θ–γ2–1

λ
(k – θ – γ2 + 1)

)

+
(|λ – 1|)(�2 + �1T–1)

|�|
(

μ2
T2k–θ+q1–1

λ
(k – θ + q1 + 1)
+

(1 – μ2)T2k–θ+q2–1

λ
(k – θ + q2 + 1)

)

+
(|λ – 1|)Tk–θ

λ
(k – θ + 1)
(10)

and

W2 =
Tk

λ
(k + 1)
+

�4 + �3T–1

|�|
(

μ1
T2k–γ1–1

λ
(k – γ1 + 1)
+

(1 – μ1)T2k–γ2–1

λ
(k – γ2 + 1)

)

+
�2 + �1T–1

|�|
(

μ2
T2k+q1–1

λ
(k + q1 + 1)
+

(1 – μ2)T2k+q2–1

λ
(k + q2 + 1)

)

. (11)

Theorem 8 Suppose that ϒ̂ : J ×R → R is a continuous map and there exists a constant
L > 0 such that |ϒ̂(t, u) – ϒ̂(t, u′)| ≤ L|u – u′| for all t ∈ J and u, u′ ∈ R. If LW2 + W1 < 1,
then problem (4) has a unique solution, where W1 and W2 are defined by (10) and (11).

Proof Put supt∈J |ϒ̂(t, 0)| = N < ∞ and choose

|�|NR + Tk–1(|�2δ2| + |�4δ1|) + Tk–2(|�1δ2| + |�3δ1|)
|�|(1 – LW2 – W1)

≤R,

where �i i ∈ {1, 2, 3, 4} are defined by (7). Set BR = {u ∈ C : ‖u‖ ≤ R}. We show that
FBR ⊂ BR. For each u ∈ BR, we have

∣
∣Fu(t)

∣
∣ ≤ |λ – 1|

λ
(k – θ )

∫ t

0
(t – s)k–θ–1∣∣u(s)

∣
∣ds

+
1

λ
(k)

∫ t

0
(t – s)k–1∣∣ϒ̂

(
t, u(t)

)
– ϒ̂(t, 0)

∣
∣ +

∣
∣ϒ̂(t, 0)

∣
∣ds

+
Tk–1

|�| ×
[

μ1�4(|λ – 1|)
λ

Ik–θ–γ1
∣
∣u(T)

∣
∣ +

�2μ2(|λ – 1|)
λ

Ik–θ+q1
∣
∣u(T)

∣
∣

+
�4(1 – μ1)(|λ – 1|)

λ
Ik–θ–γ2

∣
∣u(T)

∣
∣ +

�2(1 – μ2)(|λ – 1|)
λ

Ik–θ+q2
∣
∣u(T)

∣
∣

+
�4μ1

λ
Ik–γ1

(∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂(T , 0)

∣
∣ +

∣
∣ϒ̂(T , 0)

∣
∣
)

+
�2μ2

λ
Ik+q1

(∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂(T , 0)

∣
∣ +

∣
∣ϒ̂(T , 0)

∣
∣
)

+ �2δ2 – �4δ1

+
�4(|1 – μ1|)

λ
Ik–γ2

(∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂(T , 0)

∣
∣ +

∣
∣ϒ̂(T , 0)

∣
∣
)

+
�2(|1 – μ2|)

λ
Ik+q2

(∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂(T , 0)

∣
∣ +

∣
∣ϒ̂(T , 0)

∣
∣
)
]

+
Tk–2

|�|
[

μ1�3(λ – 1)
λ

Ik–θ–γ1
∣
∣u(T)

∣
∣ +

�1μ2(|λ – 1|)
λ

Ik–θ+q1
∣
∣u(T)

∣
∣
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+
�3(1 – μ1)(|λ – 1|)

λ
Ik–θ–γ2

∣
∣u(T)

∣
∣ +

�1(1 – μ2)(|λ – 1|)
λ

Ik–θ+q2
∣
∣u(T)

∣
∣

+
�3μ1

λ
Ik–γ1

(∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂(T , 0)

∣
∣ +

∣
∣ϒ̂(T , 0)

∣
∣
)

+
�1μ2

λ
Ik–q1

∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂(T , 0)

∣
∣ +

∣
∣ϒ̂(T , 0)

∣
∣ + |�1δ2| + |�3δ1|

+
�3(1 – μ1)

λ
Ik–γ2

(∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂(T , 0)

∣
∣ +

∣
∣ϒ̂(T , 0)

∣
∣
)

+
�1(1 – μ2)

λ
Ik+q2

(∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂(T , 0)

∣
∣ +

∣
∣ϒ̂(T , 0)

∣
∣
)
]

≤ (
L‖u‖ + N

)
W2 + ‖u‖W1

+
1

|�|
[
Tk–1(|�2δ2| + |�4δ1|

)
+ Tk–2(|�1δ2| + |�3δ1|

)]

= (LW2 + W1)R + NW2

+
1

|�|
[
Tk–1(|�2δ2| + |�4δ1|

)
+ Tk–2(|�1δ2| + |�3δ1|

)]

≤R.

Thus, ‖Fu‖ ≤R and so FBR ⊂ BR. Let u, u′ ∈ C . For each t ∈ J , we have

∣
∣Fu(t) – Fu′(t)

∣
∣ ≤ |λ – 1|

λ
(k – θ )

∫ t

0
(t – s)k–θ–1∣∣u(s) – u′(s)

∣
∣ds

+
1

λ
(k)

∫ t

0
(t – s)k–1∣∣ϒ̂

(
t, u(t)

)
– ϒ̂

(
t, u′(s)

)∣
∣ds

+
Tk–1

|�| ×
[

μ1�4(|λ|)
λ

Ik–θ–γ1
∣
∣u(T) – u′(T)

∣
∣

+
�2μ2(|λ – 1|)

λ
Ik–θ+q1

∣
∣u(T) – u′(T)

∣
∣

+
�4(1 – μ1)(|λ – 1|)

λ
Ik–θ–γ2

∣
∣u(T) – u′(T)

∣
∣

+
�2(1 – μ2)(|λ – 1|)

λ
Ik–θ+q2

∣
∣u(T) – u′(T)

∣
∣

+
�4μ1

λ
Ik–γ1

(∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂

(
T , u′(T)

)∣
∣
)

+
�2μ2

λ
Ik+q1

(∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂

(
T , u′(T)

)∣
∣
)

+
�4(|1 – μ1|)

λ
× Ik–γ2

(∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂

(
T , u′(T)

)∣
∣
)

+
�2(|1 – μ2|)

λ
Ik+q2

(∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂

(
T , u′(T)

)∣
∣
)
]

+
Tk–2

|�|
[

μ1�3(λ – 1)
λ

Ik–θ–γ1
∣
∣u(T) – u′(T)

∣
∣

+
�1μ2(|λ – 1|)

λ
Ik–θ+q1

∣
∣u(T) – u′(T)

∣
∣
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+
�3(1 – μ1)(|λ – 1|)

λ
Ik–θ–γ2

∣
∣u(T) – u′(T)

∣
∣

+
�1(1 – μ2)(|λ – 1|)

λ
Ik–θ+q2

∣
∣u(T) – u′(T)

∣
∣

+
�3μ1

λ
Ik–γ1

(∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂

(
T , u′(T)

)∣
∣
)

+
�1μ2

λ
Ik–q1

∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂

(
T , u′(T)

)∣
∣

+
�3(1 – μ1)

λ
Ik–γ2

(∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂

(
T , u′(T)

)∣
∣
)

+
�1(1 – μ2)

λ
Ik+q2

(∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂

(
T , u′(T)

)∣
∣
)
]

≤ (
L

∥
∥u – u′∥∥)

W2 +
∥
∥u – u′∥∥W1

= (LW2 + W1)
∥
∥u – u′∥∥.

Hence, ‖Fu – Fu′‖ ≤ (LW2 + W1)‖u – u′‖ and so F is a contraction. By using the prin-
ciple of contraction, F has a unique fixed point which is the unique solution for problem
(4). �

Here, by using Krasnoselskii’s fixed point theorem, we provide our next existence re-
sult.

Theorem 9 Suppose that ϒ̂ : J ×R → R is a continuous map and there exists a constant
L > 0 such that |ϒ̂(t, u) – ϒ̂(t, u′)| ≤L|u – u′| for each t ∈ J and u, u′ ∈R. If there is V(t) ∈
C(J ,R+) such that ϒ̂(t, u) ≤ V(t) for all (t, u) ∈ J ×R and W1 < 1, then problem (4) has at
least one solution. Here, W1 is given by (10).

Proof Let ‖V‖ = supt∈J |V(t)|. Consider the set Br = {u ∈ C : ‖u‖ ≤ r}, where

|�|‖v‖W2 + Tk–1(|�2δ2| + |�4δ1|) + Tα–2(|�1δ2| + |�3δ1|)
|�|(1 – W1)

≤ r

and �1, �2, �3, �4, and W1 are given by (7) and (10), respectively. For each t ∈ J , define
the operators F1 and F2 on Br by

F1u(t) =
λ – 1

λ
(k – θ )

∫ t

0
(t – s)k–θ–1u(s) ds

+
tk–1

�
×

[
μ1�4(λ – 1)

λ
Ik–θ–γ1 u(T) –

�2μ2(λ – 1)
λ

Ik–θ+q1 u(T)

+
�4(1 – μ1)(λ – 1)

λ
Ik–θ–γ2 u(T) –

�2(1 – μ2)(λ – 1)
λ

Ik–θ+q2 u(T)
]

–
tk–2

�

[
μ1�3(λ – 1)

λ
Ik–θ–γ1 u(T) –

�1μ2(λ – 1)
λ

Ik–θ+q1 u(T)

+
�3(1 – μ1)(λ – 1)

λ
Ik–θ–γ2 u(T) –

�1(1 – μ2)(λ – 1)
λ

Ik–θ+q2 u(T)
]
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and

F2u(t) =
1

λ
(k)

∫ t

0
(t – s)k–1ϒ̂

(
t, u(t)

)
ds +

tk–1

�

×
[

�4μ1

λ
Ik–γ1ϒ̂

(
T , u(T)

)
–

�2μ2

λ
Ik+q1ϒ̂

(
T , u(T)

)
+ �2δ2 – �4δ1

+
�4(1 – μ1)

λ
Ik–γ2ϒ̂

(
T , u(T)

)
–

�2(1 – μ2)
λ

Ik+q2ϒ̂
(
T , u(T)

)
]

–
tk–2

�

[

+
�3μ1

λ
Ik–γ1ϒ̂

(
T , u(T)

)
–

�1μ2

λ
Ik–q1ϒ̂

(
T , u(T)

)

+
�3(1 – μ1)

λ
Ik–γ2ϒ̂

(
T , u(T)

)

–
�1(1 – μ2)

λ
Ik+q2ϒ̂

(
T , u(T)

)
+ �1δ2 – �3δ1

]

.

We show that F2u + F2u′ ∈ Br . Let u, u′ ∈ Br . Then we have

∣
∣F1u(t) + F2u′(t)

∣
∣

≤ ‖V‖
[

Tk

λ
(k + 1)
+

�4 + �3T–1

|�|
(

μ1T2k–γ1–1

λ
(k – γ1 + 1)

+
(1 – μ1)T2k–γ2–1

λ
(k – γ2 + 1)

)

+
�2 + �1T–1

|�|
(

μ2T2k+q1–1

λ
(k + q1 + 1)
+

(1 – μ2)T2k+q2–1

λ
(k + q2 + 1)

)]

+ ‖u‖
[

(|λ – 1|)Tα–θ

λ
(α – θ + 1)
+

(|λ – 1|)(�4 + �3T–1)
|�|

(
μ1T2k–θ–γ1–1

λ
(k – θ – γ1 + 1)

+
(1 – μ1)T2k–θ–γ2–1

λ
(k – θ – γ2 + 1)

)

+
(|λ – 1|)(�2 + �1T–1)

|�|
(

μ2T2k–θ+q1–1

λ
(k – θ + q1 + 1)

+
(1 – μ2)T2k–θ+q2–1

λ
(k – θ + q2 + 1)

)]

+
1

|�|
[
Tk–1(|�2δ2| + |�4δ1|

)
+ Tk–2(|�1δ2| + |�3δ1|

)]

≤ (‖V‖W2 + rW1
)

+
1

|�|
[
Tk–1(|�2δ2| + |�4δ1|

)
Tk–2(|�1δ2| + |�3δ1|

)] ≤ r,

and so F1u + F2u′ ∈ Br . Now, we prove F1 is a contraction. For every u, u′ ∈ Br , we have

∣
∣F1u(t) – F1u′(t)

∣
∣

≤ |λ – 1|
λ
(k – θ )

∫ t

0
(t – s)k–θ–1∣∣u(s) – u′(s)

∣
∣ds

+
Tk–1

|�| ×
[

μ1�4(|λ – 1|)
λ

Ik–θ–γ1
∣
∣u(T) – u′(T)

∣
∣

+
�2μ2(|λ – 1|)

λ
Ik–θ+q1

∣
∣u(T) – u′(T)

∣
∣ +

�4(1 – μ1)(|λ – 1|)
λ

× Ik–θ–γ2
∣
∣u(T) – u′(T)

∣
∣ +

�2(1 – μ2)(|λ – 1|)
λ

Ik–θ+q2
∣
∣u(T) – u′(T)

∣
∣

]

+
tk–2

|�|
[

μ1�3(λ – 1)
λ

Ik–θ–γ1
∣
∣u(T) – u′(T)

∣
∣ +

�1μ2(|λ – 1|)
λ

Ik–θ+q1
∣
∣u(T) – u′(T)

∣
∣
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+
�3(1 – μ1)(|λ – 1|)

łλ
Ik–θ–γ2

∣
∣u(T) – u′(T)

∣
∣

+
�1(1 – μ2)(|λ – 1|)

λ
Ik–θ+q2

∣
∣u(T) – u′(T)

∣
∣

]

≤W1
∥
∥u – u′∥∥.

Since W1 < 1, F1 is a contraction. Utilizing the continuity of the function ϒ̂ , we find that
the operator F2 is continuous. If u ∈ Br , then

‖F2u‖ ≤ ‖V‖
(

Tk

λ
(k + 1)
+

�4 + �3T–1

|�3�2 – �1�4|
(

μ1
T2k–γ1–1

λ
(k – γ1 + 1)
+

(1 – μ1)T2k–γ2–1

λ
(k – γ2 + 1)

)

+
�2 + �1T–1

|�3�2 – �1�4|
(

μ2
T2k+q1–1

λ
(k + q1 + 1)
+

(1 – μ2)T2k+q2–1

λ
(k + q2 + 1)

))

= W2‖V‖.

This means that the operator F2 is uniformly bounded on Br . Now, we show that F2 is
equicontinuous. Set supt∈J ,u∈Br |ϒ̂(t, u)| = M. For each t1, t2 with t2 > t1 and u ∈ Br , we
have

∣
∣F2u(t2) – F2u(t1)

∣
∣

=
∣
∣
∣
∣

1
λ
(k)

∫ t2

0
(t2 – s)k–1ϒ̂

(
t, u(t)

)
ds –

1
λ
(k)

∫ t1

0
(t1 – s)k–1ϒ̂

(
t, u(t)

)
ds

+
tk–1
2 – tk–1

1
�

×
[

�4μ1

λ
Ik–γ1ϒ̂

(
T , u(T)

)
–

�2μ2

λ
Ik+q1ϒ̂

(
T , u(T)

)
+ �2δ2 – �4δ1

+
�4(1 – μ1)

λ
Ik–γ2ϒ̂

(
T , u(T)

)
–

�2(1 – μ2)
λ

Ik+q2ϒ̂
(
T , u(T)

)
]

–
tk–2
2 – tk–2

1
�

[

+
�3μ1

λ
Ik–γ1ϒ̂

(
T , u(T)

)
–

�1μ2

λ
Ik–q1ϒ̂

(
T , u(T)

)

+
�3(1 – μ1)

λ
Ik–γ2ϒ̂

(
T , u(T)

)
–

�1(1 – μ2)
λ

Ik+q2ϒ̂
(
T , u(T)

)
+ �1δ2 – �3δ1

]∣
∣
∣
∣

≤ M(2(t2 – t1)k + |tk
2 – tk

1 |)
λ
(k + 1)

+
tk–1
2 – tk–1

1
|�| ×

[M�4μ1Tk–γ1

λ
(k – γ1 + 1)
+
M�2μ2Tk+q1

λ
(k + q1 + 1)
+ |�2δ2| + |�4δ1|

+
M�4(|1 – μ1|)Tk–γ2

λ
(k – γ2 + 1)
+
M�2(|1 – μ2|)Tk+q2

λ
(k + q2 + 1)

]

+
tk–2
2 – tk–2

1
|�|

[M�3μ1Tk–γ1

λ
(k – γ1 + 1)
+
M�1μ2Tk–q1

λ
(k – q1 + 1)

+
M�3(|1 – μ1|)Tk–γ2

λ
(k – γ2)
+
M�1(|1 – μ2|)Tk+q2

λ
(k + q2 + 1)
+ |�1δ2| + |�3δ1|

]

.

The right-hand side of the above inequality tends to zero independently of u as t2 tends to
t1. Hence, F2 is equicontinuous, and so F2 is relatively compact on Br . Now, by using the
Arzela–Ascoli theorem, F2 is compact on Br . Now, by using Theorem 3, boundary value
problem (4) has at least one solution. �

Here, by applying the Leray–Schauder theorem, we give another existence result.
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Theorem 10 Suppose that ϒ̂ : J × R → R is a continuous map and there are nonde-
creasing continuous function � : [0,∞) → (0,∞) and � ∈ C(J ,R+) such that |ϒ̂(t, u)| ≤
�(t)�(‖u‖) for all (t, u) ∈ J ×R. Assume that there exists a constant Q > 0 such that

Q|�|
Q|�|W1 + �(Q)‖�‖|�|W2 + Tk–1(|�2δ2| + |�4δ1|) + Tk–2(|�1δ2| + |�3δ1|) > 1,

where W1, W2 are defined by (10) and (11), respectively. Then boundary value problem (4)
has at least one solution.

Proof Consider the operator F defined by (9). We show that F maps bounded sets into
bounded sets of C . Let ρ > 0 and Bρ = {u ∈ C : ‖u‖ ≤ ρ} be a bounded ball in C and t ∈ J .
Then we have

∣
∣Fu(t)

∣
∣ ≤ sup

t∈J

∣
∣
∣
∣
λ – 1
λ – θ

∫ t

0
(t – s)k–θ–1u(s) ds +

1
λ
(k)

∫ t

0
(t – s)k–1ϒ̂

(
t, u(t)

)
ds

+
tk–1

�
×

[
μ1�4(λ – 1)

λ
Ik–θ–γ1 u(T) –

�2μ2(λ – 1)
λ

Ik–θ+q1 u(T)

+
�4(1 – μ1)(λ – 1)

λ
Ik–θ–γ2 u(T) –

�2(1 – μ2)(λ – 1)
λ

Ik–θ+q2 u(T)

+
�4μ1

λ
Ik–γ1ϒ̂

(
T , u(T)

)
–

�2μ2

λ
Ik+q1ϒ̂

(
T , u(T)

)
+ �2δ2 – �4δ1

+
�4(1 – μ1)

λ
Ik–γ2ϒ̂

(
T , u(T)

)
–

�2(1 – μ2)
λ

Ik+q2ϒ̂
(
T , u(T)

)
]

–
tk–2

�

[
μ1�3(λ – 1)

λ
Ik–θ–γ1 u(T) –

�1μ2(λ – 1)
λ

Ik–θ+q1 u(T)

+
�3(1 – μ1)(λ – 1)

λ
Ik–θ–γ2 u(T) –

�1(1 – μ2)(λ – 1)
λ

Ik–θ+q2 u(T)

+
�3μ1

λ
Ik–γ1ϒ̂

(
T , u(T)

)
–

�1μ2

λ
Ik–q1ϒ̂

(
T , u(T)

)
+ �1δ2 – �3δ1

+
�3(1 – μ1)

λ
Ik–γ2ϒ̂

(
T , u(T)

)
–

�1(1 – μ2)
λ

Ik+q2ϒ̂
(
T , u(T)

)
]∣
∣
∣
∣

≤ ‖�‖�(‖u‖)W2 + ‖u‖W1

+
1

|�|
[
Tk–1(|�2δ2| + |�4δ1|

)
+ Tk–2(|�1δ2| + |�3δ1|

)]
,

and consequently
∥
∥Fu(t)

∥
∥ ≤ ‖�‖�(‖u‖)W2 + ‖u‖W1

+
1

|�|
[
Tk–1(|�2δ2| + |�4δ1|

)
+ Tk–2(|�1δ2| + |�3δ1|

)]
.

Now, we prove that the operator F maps bounded sets into equicontinuous sets of C .
Assume that t1, t2 ∈ J with t1 < t2 and u ∈ Bρ . Then we have

∣
∣Fu(t2) – Fu(t1)

∣
∣

≤ |λ – 1|
λ
(k – θ )

(∣
∣
∣
∣

∫ t2

0
(t2 – s)k–θ–1u(s) ds –

∫ t1

0
(t1 – s)k–θ–1u(s) ds

∣
∣
∣
∣

)
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+
1

λ
(k)

(∣
∣
∣
∣

∫ t2

0
(t2 – s)k–1ϒ̂

(
t, u(s)

)
ds –

∫ t1

0
(t1 – s)k–1ϒ̂

(
t, u(s)

)
ds

∣
∣
∣
∣

)

+
tk–1
2 – tk–1

1
|�| ×

[∣
∣
∣
∣
μ1�4(λ – 1)

λ
Ik–θ–γ1 u(T) –

�2μ2(λ – 1)
λ

Ik–θ+q1 u(T)

+
�4(1 – μ1)(λ – 1)

λ
Ik–θ–γ2 u(T) –

�2(1 – μ2)(λ – 1)
λ

Ik–θ+q2 u(T)

+
�4μ1

λ
Ik–γ1ϒ̂

(
T , u(T)

)
–

�2μ2

λ
Ik+q1ϒ̂

(
T , u(T)

)
+ �2δ2 – �4δ1

+
�4(1 – μ1)

λ
Ik–γ2ϒ̂

(
T , u(T)

)
–

�2(1 – μ2)
λ

Ik+q2ϒ̂
(
T , u(T)

)
∣
∣
∣
∣

]

+
tk–2
2 – tk–2

1
|�|

∣
∣
∣
∣

[
μ1�3(λ – 1)

λ
Ik–θ–γ1 u(T) –

�1μ2(λ – 1)
λ

Ik–θ+q1 u(T)

+
�3(1 – μ1)(λ – 1)

λ
Ik–θ–γ2 u(T) –

�1(1 – μ2)(λ – 1)
λ

Ik–θ+q2 u(T)

+
�3μ1

λ
Ik–γ1ϒ̂

(
T , u(T)

)
–

�1μ2

λ
Ik–q1ϒ̂

(
T , u(T)

)
+ �1δ2 – �3δ1

+
�3(1 – μ1)

λ
Ik–γ2ϒ̂

(
T , u(T)

)
–

�1(1 – μ2)
λ

Ik+q2ϒ̂
(
T , u(T)

)
]∣
∣
∣
∣

≤ |λ – 1|
λ
(k – β + 1)

((
tk–θ
2 – tk–θ

1
)

+ 2(t2 – t1)k–θ
)

+
1

λ
(k + 1)
((

tk
2 – tk

1
)

+ 2(t2 – t1)k) +
tk–1
2 – tk–1

1
|�|

×
{

‖u‖
[

Tk–θ–γ1 (|λ – 1|)
λ
(k – θ – γ1 + 1)

+
Tk–θ+q1 (|λ – 1|)�2μ2

λ
(k – θ + q1 + 1)

+
�4(1 – μ1)(λ – 1)Tk–θ–γ2

λ
(k – θ – γ2 + 1)
+

�2(1 – μ2)(|λ – 1|)Tk–θ+q2

λ
(k – θ + q2 + 1)

]

+ M
[

�4μ1
Tk–γ1

λ
(k – γ1 + 1)
+ �2μ2

Tk+q1

λ
(k + q1 + 1)

+
�4(1 – μ1)Tk–γ2

λ
(k – γ2 + 1)
+

�2(1 – μ2)Tk+q2

λ
(k + q2 + 1)

]

+ |�2δ2| + |�4δ1|
}

+
tk–2
2 – tk–2

1
|�|

{

‖u‖
[

μ1�3
Tk–θ–γ1 (|λ – 1|)

λ
(k – θ – γ1 + 1)
+ �1μ2

Tk–θ+q1 (|λ – 1|)
λ
(k – θ + q1 + 1)

+
�3(1 – μ1)(|λ – 1|)Tk–θ–γ2

λ
(k – θ – γ2 + 1)
+

�1(1 – μ2)(|λ – 1|)Tk–θ+q2

λ
(k – β + q2 + 1)

]

+ M
[

�3μ1
Tk–γ1

λ
(k – γ1 + 1)
+ �1μ2

Tk+q1

λ
(k + q1 + 1)

+
�3(1 – μ1)Tk–γ2

λ
(k – γ2 + 1)
+

�1(1 – μ2)Tk+q2

λ
(k + +1)

]

+ |�1δ2| + |�3δ1|
}

.

If t2 – t1 → 0, then the right-hand side of the above inequality tends to zero independently
of x ∈ Bρ . Thus, by using the Arzela–Ascoli theorem, the operatorF : C → C is completely
continuous. The desired result is deduced from the Leray–Schauder theorem 4 once we
prove the boundedness of the set of the solutions for the equation u = ωFu for some
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ω ∈ (0, 1). Let u be a solution of the last equation. For each t ∈ J , we have

∣
∣u(t)

∣
∣ ≤ ‖�‖�(‖u‖)W2 + ‖u‖W1

+
1

|�|
[
Tk–1(|�2δ2| + |�4δ1|

)
+ Tk–2(|�1δ2| + |�3δ1|

)]
,

and so ‖u‖|�|
‖u‖|�|W1+�(‖u‖)‖�‖|�|W2+Tk–1(|�2δ2|+|�4δ1|)+Tk–2(|�1δ2|+|�3δ1|) < 1. Choose the constant

Q with ‖u‖ 	= Q. Put U = {x ∈ C : ‖x‖ < Q}. One can check that the operator F : Ū → C is
continuous and completely continuous. In view of the choice of U , there is no u ∈ ∂U so
that u = ωFu for some ω ∈ (0, 1). Now, by using the Leray–Schauder theorem, the operator
F has a fixed point u ∈ Ū which is a solution of boundary value problem (4). �

4 Stability analysis
In this section, we study the Hyers–Ulam stability of the boundary value problem

⎧
⎨

⎩

λDk(u(t)) + (1 – λ)Dθ (u(t)) = ϒ̂(t, u(t)) (t ∈ [0, T], k ∈ [2, 3)),

u(0) = 0, Dγ1 u(T) = δ1, Iq1 u(T) = δ2,
(12)

which is a special case of problem (4) when we take μ1 = μ2 = 1.

Definition 11 Problem (12) is called Hyers–Ulam stable whenever there exists a real con-
stant � > 0 such that, for each ε > 0 and u(t) ∈ CR([0, T]) satisfying

∣
∣λDku(t) + (1 – λ)Dθ

(
u(t)

)
– ϒ̂

(
t, u(t)

)∣
∣ < ε,

there is a solution v(t) ∈ CR([0, T]) of problem (12) such that |u(t) – v(t)| ≤ �ε for all t ∈
[0, T].

Theorem 12 Suppose that ϒ̂ : J ×R →R is a continuous map and there exists a constant
L > 0 such that |ϒ̂(t, u) – ϒ̂(t, u′)| ≤ L|u – u′| for all t ∈ J and u, u′ ∈ R. Then boundary
value problem (12) is Hyers–Ulam stable.

Proof Let ε > 0 and u(t) ∈ CR([0, T]) be such that

∣
∣λDku(t) + (1 – λ)Dθ

(
u(t)

)
– ϒ̂

(
t, u(t)

)∣
∣ < ε.

Choose a function g satisfying λDku(t) + (1 – λ)Dθ (u(t)) = ϒ̂(t, u(t)) + g(t) and |g(t)| ≤ ε

for all t. Then we have

u(t) =
λ – 1

λ
Ik–θ u(t) +

1
λ
Ikϒ̂

(
t, u(t)

)
+

1
λ
Ikg(t)

+
tk–1

�
×

[
�4(λ – 1)

λ
Ik–θ–γ1 u(T) –

�2(λ – 1)
λ

Ik–θ+q1 u(T)

+
�4

λ
Ik–γ1ϒ̂

(
T , u(T)

)
–

�2

λ
Ik+q1ϒ̂

(
T , u(T)

)
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+
�4

λ
Ik–γ1 g(T) –

�2

λ
Ik+q1 g(T) + �2δ2 – �4δ1

]

–
tk–2

�

[
�3(λ – 1)

λ
Ik–θ–γ1 u(T) –

�1(λ – 1)
λ

Ik–θ+q1 u(T)

+
�3

λ
Ik–γ1ϒ̂

(
T , u(T)

)
–

�1

λ
Ik+q1ϒ̂

(
T , u(T)

)

+
�4

λ
Ik–γ1 g(T) –

�1

λ
Ik+q1 g(T) + �1δ2 – �3δ1

]

.

Let v ∈ CR([0, T]) be the unique solution of (12). Then v is given by

v(t) =
λ – 1

λ
Ik–θ v(t) +

1
λ
Ikϒ̂

(
t, v(t)

)

+
tk–1

�
×

[
�4(λ – 1)

λ
Ik–θ–γ1 v(T) –

�2(λ – 1)
λ

Ik–θ+q1 v(T)

+
�4

λ
Ik–γ1ϒ̂

(
T , v(T)

)
–

�2

λ
Ik+q1ϒ̂

(
T , v(T)

)
+ �2δ2 – �4δ1

]

–
tk–2

�

[
�3(λ – 1)

λ
Ik–θ–γ1 v(T) –

�1(λ – 1)
λ

Ik–θ+q1 v(T)

+
�3

λ
Ik–γ1ϒ̂

(
T , v(T)

)
–

�1

λ
Ik+q1ϒ̂

(
T , v(T)

)
+ �1δ2 – �3δ1

]

.

Hence,

∣
∣u(t) – v(t)

∣
∣

≤ |λ – 1|
λ

Ik–θ
∣
∣u(t) – v(t)

∣
∣ +

1
λ
Ik∣∣ϒ̂

(
t, u(t)

)
– ϒ̂

(
t, v(t)

)∣
∣

+
Tk–1

|�| ×
[

�4(λ – 1)
λ

Ik–θ–γ1
∣
∣u(T) – v(T)

∣
∣ +

�2(λ – 1)
λ

Ik–θ+q1
∣
∣u(T) – v(T)

∣
∣

+
�4

λ
Ik–γ1

∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂

(
T , v(T)

)∣
∣ +

�2

λ
Ik+q1

∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂

(
T , v(T)

)∣
∣

]

+
Tk–2

|�|
[

�3(λ – 1)
λ

Ik–θ–γ1
∣
∣u(T) – v(T)

∣
∣ +

�1(λ – 1)
λ

Ik–θ+q1
∣
∣u(T) – v(T)

∣
∣

+
�3

λ
Ik–γ1

∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂

(
T , v(T)

)∣
∣ +

�1

λ
Ik+q1

∣
∣ϒ̂

(
T , u(T)

)
– ϒ̂

(
T , v(T)

)∣
∣

]

+
1
λ
Ik∣∣g(t)

∣
∣ +

Tk–1

�

(
�4

λ
Ik–γ1

∣
∣g(T)

∣
∣ +

�2

λ
Ik+q1

∣
∣g(T)

∣
∣

)

+
Tk–2

�

(
�3

λ
Ik–γ1

∣
∣g(T)

∣
∣ +

�1

λ
Ik+q1

∣
∣g(T)

∣
∣

)

≤ 1
λ

∫ t

0

[

|λ – 1| (t – s)k–θ–1


(k – θ )
+ L (t – s)k–1


(k)

]
∣
∣u(s) – v(s)

∣
∣ds + G(ε)ε

+
[

Tk

λ
(k + 1)
+

T2k–γ1–1�4

λ�
(k – γ1 + 1)
+

Tk+q1–1�2

λ�
(k + q1 + 1)

+
T2k–γ1–2�3

λ�
(k – γ1 + 1)
+

T2k+q1–2�1

λ�
(k + q1 + 1)

]

ε,
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where

∫ T

0

{
�4(λ – 1)Tk–1

λ|�|
(t – s)k–θ–γ1–1


(k – θ – γ1)
+

�2(λ – 1)Tk–1

λ|�| +
(t – s)k–θ+q1–1


(k – θ – q1)

+
�4Tk–1

λ|�|
(t – s)k–γ1–1


(k – γ1)
L +

�2Tk–1

λ|�|
(t – s)k+q1–1


(k + q1)
L

+
�3(λ – 1)Tk–2

λ|�|
(t – s)k–θ–γ1–1


(k – θ – γ1)
+

�1(λ – 1)Tk–2

λ|�| +
(t – s)k–θ+q1–1


(k – θ – q1)

+
�3Tk–2

λ|�|
(t – s)k–γ1–1


(k – γ1)
L +

�1Tk–2

λ|�|
(t – s)k+q1–1


(k + q1)
L

}
∣
∣u(s) – v(t)

∣
∣ds

≤ G(ε)ε

and G(ε) is a constant dependent on ε. Let g(t, s) = |λ–1|
λ

1

(k–θ ) + L (t–s)θ

λ
(k) and

� = G(ε) +
[

Tk

λ
(k + 1)
+

T2k–γ1–1�4

λ�
(k – γ1 + 1)
+

T2k+q1–1�2

λ�
(k + q1 + 1)

+
T2k–γ1–2�3

λ�
(k – γ1 + 1)
+

T2k+qq1–2�1

λ�
(k + q1 + 1)

]

.

Then |u(t) – v(t)| ≤ �ε +
∫ t

0 g(t, s)(t – s)α–θ–1|u(s) – v(t)|ds. Note that

g(t, s) ≤ |λ – 1|
λ

1

(k – θ )

+ L Tθ

λ
(k)
= M.

In view of Lemma 5, we get

∣
∣u(t) – v(t)

∣
∣ ≤ �ε + �ε

∫ t

0

∞∑

n=1

(g(t, s)
(k – θ ))n


(n(k – θ ))
(t – s)n(k–θ )–1 ds

≤ �ε + �ε

∫ t

0

∞∑

n=1

(M
(k – θ ))n


(n(k – θ ))
(t – s)n(k–θ )–1 ds

≤ �ε + �ε

∞∑

n=1

(M
(k – θ ))n


(n(k – θ ) + 1)
Tn(k–θ )

≤ �εEk–θ

(
MT (k–θ )
(k – θ )

)
.

Put c = Ek–θ (MT (k–θ )
(k – θ )). Note that the inequality |u(t) – v(t)| < cε holds. Thus,
boundary value problem (12) is Hyers–Ulam stable. �

5 Examples
Now, we provide two examples to illustrate our main results.
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Example 1 Consider the boundary value problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

47
54D5/2u(t) + 7

54D2.03u(t) = t2 cos(u(t)), t ∈ [0, 1
4 ],

u(0) = 0,

μ1D7/15u( 1
4 ) + (1 – μ1)D1/8u( 1

4 ) = 1
16 ,

μ2I3/4u( 1
4 ) + (1 – μ2)I5/3u( 1

4 ) = 5
12 .

(13)

Put λ = 47/54, k = 5/2, θ = 2.1, γ1 = 7/15, γ2 = 1/8, q1 = 3/4, q2 = 5/3, δ1 = 1/16, δ2 = 5/12,
and T = 1/4. Note that 0 < γ1, γ2 < 0.47 = k – θ and

∣
∣ϒ̂

(
t, u(t)

)
– ϒ

(
t, u′(t)

)∣
∣ ≤

(
1
4

)2∣
∣u(t) – u′(t)

∣
∣

with L = 1/16 and |ϒ̂(t, u(t))| ≤ t2 = V(t). If μ1 = 1/3 and μ2 = 3/4, then

�1 ≈ 0.2120, �2 ≈ 0.6825, �3 ≈ 0.0178, �4 ≈ 0.1084,

� ≈ 0.0108, W1 ≈ 0.6761, W2 ≈ 0.0751.

Hence, LW2 + W1 ≈ 0.6808 < 1. Now, by using Theorem 8, problem (13) has a unique
solution. If μ1 = 1 and μ2 = 1, then g(t, s) = |λ–1|

λ
1


(k–θ ) + L (t–s)θ
λ
(k) . Note that

∣
∣g(t, s)

∣
∣ ≤ |λ – 1|

λ

1

(k – θ )

+ L Tθ

λ
(k)
≈ 0.0823 = M.

Now, by using Theorem 12, problem (2) is Hyers–Ulam stable.

Example 2 Consider the boundary value problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

40
45D13/5u(t) + 5

45D2.01u(t) = 1
t2+5 ( u2(t)

|u(t)|+1 + 4), t ∈ [0, 1
4 ],

u(0) = 0,
11
33D7/88u( 1

4 ) + 22
33D3/100u( 1

4 ) = 21
156 ,

9
13I5/4u( 1

4 ) + 4
13I23/33u( 1

4 ) = 55
122 .

(14)

Put λ = 40/45, k = 13/5, θ = 2.01, γ1 = 7/88, γ2 = 3/100, q1 = 5/4, q2 = 23/33, δ1 = 21/156,
δ2 = 55/122, and T = 1

4 . Note that 0 < γ1, γ2 < 0.59 = k – θ and

ϒ̂
(
t, u(t)

)
=

1
t2 + 5

(
u2(t)

|u(t)| + 1
+ 4

)

.

Assume that μ1 = 11/33 and μ2 = 9/13. Then we have

�1 ≈ 0.1203, �2 ≈ 0.4667, �3 ≈ 0.0106, �4 ≈ 0.0663,

� ≈ 0.0030, W1 ≈ 0.6462, W2 ≈ 0.0652,
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and |ϒ̂(t, u(t))| = | 1
t2+5 ( u2(t)

|u(t)|+1 + 4)| ≤ 1
t2+5 (|x| + 4). Put �(t) = 1

t2+5 and �(|u|) = |x| + 4 and
choose Q > 379.5499 such that

Q|�|
Q|�|W1 + �(Q)‖�‖|�|W2 + Tk–1(|�2δ2| + |�4δ1|) + Tk–2(|�1δ2| + |�3δ1|) > 1.

Now, by using Theorem 10, problem (14) has at least one solution.

6 Conclusion
As many researchers would like to investigate the stability notion of different boundary
value problems, this can be a motivation for us to study the stability of complicated systems
supplemented with general boundary conditions. Hence, our main goal in the present
manuscript is to obtain some existence criteria of a new general boundary value problem
including 2-term fractional differential equation which contains multi-order Riemann–
Liouville fractional derivatives and integrals. In the sequel, we check Hyers–Ulam stabil-
ity of the proposed problem in the special case μ1 = 1 and μ2 = 1. Finally, we provide two
illustrative examples to support our theoretical findings. This work can be an introduc-
tion for other researchers to study mentioned notions for numerous fractional multi-order
modelings in the future.

Acknowledgements
The first and second authors were supported by University of Kasdi Merbah. The third and fourth authors were supported
by Azarbaijan Shahid Madani University. The authors express their gratitude to dear unknown referees for their helpful
suggestions which improved the final version of this paper.

Funding
Not applicable.

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Authors’ contributions
The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved
the final manuscript.

Authors’ information
(Salim Ben Chikh: benchikh.salim@univ-ouargla.dz) (Abdelkader Amara: amara.abdelkader@univ-ouargla.dz) (Sina
Etemad: sina.etemad@gmail.com)

Author details
1Laboratory of Applied Mathematics, University of Kasdi Merbah, Ouargla 30000, Algeria. 2Department of Mathematics,
Azarbaijan Shahid Madani University, Tabriz, Iran. 3Institute of Research and Development, Duy Tan University, Da Nang
550000, Vietnam. 4Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam. 5Department of Medical
Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 June 2020 Accepted: 28 September 2020

mailto:benchikh.salim@univ-ouargla.dz
mailto:amara.abdelkader@univ-ouargla.dz
mailto:sina.etemad@gmail.com


Ben Chikh et al. Advances in Difference Equations        (2020) 2020:547 Page 19 of 20

References
1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier,

Amsterdam (2006)
2. Lakshmikantham, V., Leela, S., Vasundhara, D.J.: Theory of Fractional Dynamic Systems. Cambridge Academic

Publishers, London (2009)
3. Lakshmikantham, V., Vatsala, A.S.: Basic theory of fractional differential equations. Nonlinear Anal. 69, 2677–2682

(2008)
4. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York

(1993)
5. Rida, S.Z., Arafa, A.A.M., Gaber, Y.A.: Solution of the fractional epidemic model by L-ADM. J. Fract. Calc. Appl. 7(1),

189–195 (2016)
6. Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value

conditions. Bound. Value Probl. 2020, 64 (2020). https://doi.org/10.1186/s13661-020-01361-0
7. Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: Analysis of the human liver model with Caputo–Fabrizio

fractional derivative. Chaos Solitons Fractals 134, 7 (2020)
8. Baleanu, D., Aydogan, S.M., Mohammadi, H., Rezapour, S.: On modelling of epidemic childhood diseases with the

Caputo–Fabrizio derivative by using the Laplace Adomian decomposition method. Alex. Eng. J. (2020).
https://doi.org/10.1016/j.aej.2020.05.007

9. Baleanu, D., Rezapour, S., Mohammadi, H.: Some existence results on nonlinear fractional differential equations.
Philos. Trans. R. Soc. A 371, 20120144 (2013). https://doi.org/10.1098/rsta.2012.0144

10. Etemad, S., Rezapour, S., Samei, M.E.: On a fractional Caputo–Hadamard inclusion problem with sum boundary value
conditions by using approximate endpoint property. Math. Model. Appl. Sci. (2020).
https://doi.org/10.1002/mma.6644

11. Tuan, N.H., Mohammadi, H., Rezapour, S.: A mathematical model for COVID-19 transmission by using the Caputo
fractional derivative. Chaos Solitons Fractals 140, 110107 (2020). https://doi.org/10.1016/j.chaos.2020.110107

12. Almeida, R., Malinowska, A.B., Odzijewicz, T.: On systems of fractional differential equations with the ψ -Caputo
derivative and their applications. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.5678

13. Singh, H., Dhar, J., Bhatti, H.S., Chandok, S.: An epidemic model of childhood disease dynamics with maturation delay
and latent period of infection. Model. Earth Syst. Environ. 2, 79 (2016)

14. Bao, N.T., Hoang, L.N., Van, A.V., Nguyen, H.T., Zhou, Y.: Existence and regularity of inverse problem for the nonlinear
fractional Rayleigh–Stokes equations. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.6162

15. Ntouyas, S.K., Tariboon, J.: Fractional boundary value problems with multiply orders of fractional derivatives and
integrals. Electron. J. Differ. Equ. 2017, 100 (2017)

16. Baleanu, D., Etemad, S., Rezapour, S.: On a fractional hybrid integro-differential equation with mixed hybrid integral
boundary value conditions by using three operators. Alex. Eng. J. (2020). https://doi.org/10.1016/j.aej.2020.04.053

17. Baleanu, D., Nazemi, Z., Rezapour, S.: Attractivity for a k-dimensional system of fractional functional differential
equations and global attractivity for a k-dimensional system of nonlinear fractional differential equations. J. Inequal.
Appl. 2014, 31 (2014). https://doi.org/10.1186/1029-242X-2014-31

18. Ghorbanian, R., Hedayati, V., Postolache, M., Rezapour, S.: On a fractional differential inclusion via a new integral
boundary condition. J. Inequal. Appl. 2014, 319 (2014). https://doi.org/10.1186/1029-242X-2014-319

19. Baleanu, D., Rezapour, S., Etemad, S., Alsaedi, A.: On a time-fractional partial integro-differential equation via
three-point boundary value conditions. Math. Probl. Eng. 2015, Article ID 785738 (2015).
https://doi.org/10.1155/2015/785738

20. Agarwal, R.P., Baleanu, D., Hedayati, V., Rezapour, S.: Two fractional derivative inclusion problems via integral boundary
conditions. Appl. Math. Comput. 257, 205–212 (2015). https://doi.org/10.1016/j.amc.2014.10.082

21. Alsaedi, A., Baleanu, D., Etemad, S., Rezapour, S.: On coupled systems of time-fractional differential problems by using
a new fractional derivative. J. Funct. Spaces 2016, Article ID 4626940 (2016). https://doi.org/10.1155/2016/4626940

22. Hedayati, V., Rezapour, S.: The existence of solution for a k-dimensional system of fractional differential inclusions
with anti-periodic boundary value problems. Filomat 30(6), 1601–1613 (2016). https://doi.org/10.2298/FIL1606601H

23. Baleanu, D., Hedayati, V., Rezapour, S.: On two fractional differential inclusions. SpringerPlus 5, 882 (2016).
https://doi.org/10.1186/s40064-016-2564-z

24. Aydogan, S.M., Nazemi, Z., Rezapour, S.: Positive solutions for a sum-type singular fractional integro-differential
equation withm-point boundary conditions. UPB Sci. Bull., Ser. A, Appl. Math. Phys. 79(1), 89–98 (2017)

25. Rezapour, S., Samei, M.E.: On the existence of solutions for a multi-singular pointwise defined fractional
q-integro-differential equation. Bound. Value Probl. 2020, 38 (2020). https://doi.org/10.1186/s13661-020-01342-3

26. Samei, M.E., Rezapour, S.: On a system of fractional q-differential inclusions via sum of two multi-term functions on a
time scale. Bound. Value Probl. 2020, 135 (2020). https://doi.org/10.1186/s13661-020-01433-1

27. Bryan, G.H.: On the stability of a plane plate under thrusts in its own plane, with applications to the ‘Buckling’ of the
sides of a ship. Proc. Lond. Math. Soc. 22, 54–67 (1890/91)

28. Greenhill, A.G.: Stability of orbits. Proc. Lond. Math. Soc. 22, 264–305 (1890/91)
29. Klein, F.: On the stability of a sleeping top. Bull. Am. Math. Soc. 3(4), 129–132 (1897)
30. Lockwood, E.H.: Atmospheric stability as affected by water vapor. Ph.D. thesis, Yale University, Ann Arbor, MI (1901)
31. Love, A.E.H.: Note on the stability of a thin elastic rod. Proc. Lond. Math. Soc. 24, 156–161 (1892/93)
32. Love, A.E.H.: On the stability of certain vortex motions. Proc. Lond. Math. Soc. 25, 18–42 (1893/94)
33. Rayleigh, L.: On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. 11, 57–70 (1879/80)
34. Routh, E.J.: Stability of a dynamical system with two independent motions. Proc. Lond. Math. Soc. 5, 97–100 (1873/74)
35. Routh, E.J.: On Laplace’s three particles, with a supplement on the stability of steady motion. Proc. Lond. Math. Soc. 6,

86–97 (1874/75)
36. Sharpe, F.R.: On the stability of the motion of a viscous liquid. Trans. Am. Math. Soc. 6(4), 496–503 (1905)
37. Chalishajar, D., Kumar, A.: Existence,uniqueness and Ulam’s stability of solutions for a coupled system of fractional

differential equations with integral boundary conditions. Mathematics 6(6), 96 (2018).
https://doi.org/10.3390/math6060096

https://doi.org/10.1186/s13661-020-01361-0
https://doi.org/10.1016/j.aej.2020.05.007
https://doi.org/10.1098/rsta.2012.0144
https://doi.org/10.1002/mma.6644
https://doi.org/10.1016/j.chaos.2020.110107
https://doi.org/10.1002/mma.5678
https://doi.org/10.1002/mma.6162
https://doi.org/10.1016/j.aej.2020.04.053
https://doi.org/10.1186/1029-242X-2014-31
https://doi.org/10.1186/1029-242X-2014-319
https://doi.org/10.1155/2015/785738
https://doi.org/10.1016/j.amc.2014.10.082
https://doi.org/10.1155/2016/4626940
https://doi.org/10.2298/FIL1606601H
https://doi.org/10.1186/s40064-016-2564-z
https://doi.org/10.1186/s13661-020-01342-3
https://doi.org/10.1186/s13661-020-01433-1
https://doi.org/10.3390/math6060096


Ben Chikh et al. Advances in Difference Equations        (2020) 2020:547 Page 20 of 20

38. Khan, A., Shah, K., Li, Y., Khan, T.S.: Ulam type stability for a coupled system of boundary value problems of nonlinear
fractional differential equations. J. Funct. Spaces 2017, Article ID 3046013 (2017)

39. Xu, L., Dong, Q., Li, G.: Existence and Hyers–Ulam stability for three-point boundary value problems with
Riemann–Liouville fractional derivatives and integrals. Adv. Differ. Equ. 2018, 458 (2018).
https://doi.org/10.1186/s13662-018-1903-5

40. Sousa, J.V., Oliveira, E.C.: Ulam–Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl.
Math. Lett. 81, 50–56 (2018)

41. Wang, J., Lv, L., Zhou, Y.: Ulam stability and data dependence for fractional differential equations with Caputo
derivative. Electron. J. Qual. Theory Differ. Equ. 2011, 63 (2011)

42. Berhail, A., Tabouche, N., Matar, M.M., Alzabut, J.: On nonlocal integral and derivative boundary value problem of
nonlinear Hadamard Langevin equation with three different fractional orders. Bol. Soc. Mat. Mexicana 26, 303–318
(2020). https://doi.org/10.1007/s40590-019-00257-z

43. Ahmad, M., Zada, A., Alzabut, J.: Hyers–Ulam stability of a coupled system of fractional differential equations of
Hilfer–Hadamard type. Demonstr. Math. 52(1), 283–295 (2019). https://doi.org/10.1515/dema-2019-0024

44. Zada, A., Waheed, H., Alzabut, J.: Existence and stability of impulsive coupled system of fractional integro-differential
equations. Demonstr. Math. 52(1), 296–335 (2019). https://doi.org/10.1515/dema-2019-0035

45. Seemab, A., Rehman, M.U., Alzabut, J., Hamdi, A.: On the existence of positive solutions for generalized fractional
boundary value problems. Bound. Value Probl. 2019, 186 (2019). https://doi.org/10.1186/s13661-019-01300-8

46. Matar, M.M., Amra, I.A., Alzabut, J.: Existence of solutions for tripled system of fractional differential equations
involving cyclic permutation boundary conditions. Bound. Value Probl. 2020, 140 (2020).
https://doi.org/10.1186/s13661-020-01437-x

47. Ali, Z., Zada, A., Shah, K.: Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value
problem. Bound. Value Probl. 2018, 175 (2018). https://doi.org/10.1186/s13661-018-1096-6

48. Waheed, H., Zada, A., Xu, J.: Well-posedness and Hyers–Ulam results for a class of impulsive fractional evolution
equations. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6784

49. Zada, A., Pervaiz, B., Shah, S.O., Xu, J.: Stability analysis of first-order impulsive nonautonomous system on timescales.
Math. Methods Appl. Sci. 43(8), 5097–5113 (2020). https://doi.org/10.1002/mma.6253

50. Rizwan, R., Zada, A.: Nonlinear impulsive Langevin equation with mixed derivatives. Math. Methods Appl. Sci. 43(1),
427–442 (2020). https://doi.org/10.1002/mma.5902

51. Zada, A., Fatima, S., Ali, Z., Xu, J., Cui, Y.: Stability results for a coupled system of impulsive fractional differential
equations. Mathematics 7(10), 927 (2019). https://doi.org/10.3390/math7100927

52. Ahmad, M., Jiang, J., Zadaz, A., Shah, S.O., Xu, J.: Analysis of coupled system of implicit fractional differential equations
involving Katugampola–Caputo fractional derivative. Complexity 2020, Article ID 9285686 (2020).
https://doi.org/10.1155/2020/9285686

53. Ahmad, M., Zadaz, A., Wang, X.: Existence, uniqueness and stability of implicit switched coupled fractional differential
equations of ψ -Hilfer type. Int. J. Nonlinear Sci. Numer. Simul. 21(3–4), 327–337 (2020).
https://doi.org/10.1515/ijnsns-2018-0371

54. Amara, A.: Existence results for hybrid fractional differential equations with three-point boundary conditions. AIMS
Math. 5(2), 1074–1078 (2019)

55. Niyom, S., Ntouyas, S.K., Laoprasittichok, S., Tariboon, J.: Boundary value problems with four orders of
Riemann–Liouville fractional derivatives. Adv. Differ. Equ. 2016, 165 (2016).
https://doi.org/10.1186/s13662-016-0897-0

56. Krasnoselskii, M.A.: Two remarks on the method of successive approximations. Usp. Mat. Nauk 10, 123–127 (1955)
57. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)

https://doi.org/10.1186/s13662-018-1903-5
https://doi.org/10.1007/s40590-019-00257-z
https://doi.org/10.1515/dema-2019-0024
https://doi.org/10.1515/dema-2019-0035
https://doi.org/10.1186/s13661-019-01300-8
https://doi.org/10.1186/s13661-020-01437-x
https://doi.org/10.1186/s13661-018-1096-6
https://doi.org/10.1002/mma.6784
https://doi.org/10.1002/mma.6253
https://doi.org/10.1002/mma.5902
https://doi.org/10.3390/math7100927
https://doi.org/10.1155/2020/9285686
https://doi.org/10.1515/ijnsns-2018-0371
https://doi.org/10.1186/s13662-016-0897-0

	On Hyers-Ulam stability of a multi-order boundary value problems via Riemann-Liouville derivatives and integrals
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Preliminaries
	Some existence results
	Stability analysis
	Examples
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Authors' information
	Author details
	Publisher's Note
	References


