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1 Introduction
In this paper, we consider the following fractional integral boundary value problem:

⎧
⎪⎨

⎪⎩

Dβ
0+φp(t)(Dα

0+x(t)) = f (t, x(t), Dα–2
0+ x(t), Dα–1

0+ x(t)), t ∈ (0, 1),
x(0) = 0, a1Dα–2

0+ x(1) + b1Dα–1
0+ x(1) = ν1Iγ1,δ1

0+,η1 x(ξ1),
Dα

0+x(0) = 0, a2Dα–2
0+ x(0) + b2Dα–1

0+ x(0) = ν2Iγ2,δ2
0+,η2 x(ξ2),

(1.1)

where Dβ
0+ and Dα

0+ are Riemann–Liouville fractional derivatives with 0 < β ≤ 1 and 2 <
α ≤ 3, Iγi ,δi

0+,ηi
is Erdélyi–Kober fractional integral of order δi > 0 with ηi > 0 and γi > 0 in

which i = 1, 2, f : [0, 1] ×R
3 →R is continuous, ai, bi, νi are real numbers in which i = 1, 2,

0 < ξ1 < ξ2 < 1, φp(t)(s) = |s|p(t)–2s is p(t)-Laplacian operator with p(t) ∈ C1[0, 1] and p(t) > 1
for s ∈R. We always assume that the following condition holds:

(H) (a1 + b1)
(α)

(

γ1 +
α – 1
η1

+ δ1 + 1
)

= ν1ξ
α–1
1 


(

γ1 +
α – 1
η1

+ 1
)

;

a1
(α – 1)

(

γ1 +
α – 2
η1

+ δ1 + 1
)

= ν1ξ
α–2
1 


(

γ1 +
α – 2
η1

+ 1
)

;

b2
(α)

(

γ2 +
α – 1
η2

+ δ2 + 1
)

= ν2ξ
α–1
2 


(

γ2 +
α – 1
η2

+ 1
)

;

a2
(α – 1)

(

γ2 +
α – 2
η2

+ δ2 + 1
)

= ν2ξ
α–2
2 


(

γ2 +
α – 2
η2

+ 1
)

.
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Fractional differential equations have a wide application background on many research
fields such as physics, biology, electrical circuits, material, etc. (see [1–7]). For instance,
Leszczynski and Blaszczyk [2] took advantage of a fractional differential model to show
the height of granular material falling over time in a silo:

CDα
T–Dα

a+h∗(t) + βh∗(t) = 0, t ∈ [0, T],

where CDα
T– represents left Caputo fractional derivative, Dα

a+ means right Caputo frac-
tional derivative with α ∈ (0, 1), h∗(t) = hbed – h(t) in which h(t) acts as dropping height
for silo emptying and hbed stands for the initial bed height. In recent years, more and
more scholars have focused on investigating the existence and multiplicity of solutions
to boundary value problems of fractional differential equations by various methods such
as fixed point theory (see [8–10]), coincidence degree method (see [11–14]), critical point
theory (see [15, 16]), etc. For example, by the fixed point theorem for multivalued opera-
tors, Ahmad and Ntouyas [9] considered the existence of solutions to the following frac-
tional differential inclusions with nonlocal multi-point Erdélyi–Kober fractional integral
boundary value conditions:

{
Dq

0+x(t) ∈ F(t, x(t)) + G(t, x(t)), t ∈ (0, T),
x(0) = 0, αx(T) =

∑m
i=1 βiI

γi ,δi
ηi x(ξi),

(1.2)

where α,βi ∈ R, ξi ∈ (0, T), i = 1, 2, . . . , m, Dq
0+ is Riemann–Liouville fractional derivative

of order q that 1 < q ≤ 2, Iγi ,δi
ηi is the Erdélyi–Kober fractional integral of order δi > 0 with

ηi > 0, and γi ∈ R, i = 1, 2, . . . , m, F , G : [0, T] × R → P(R) are multivalued maps, where
P(R) is the family of all nonempty subsets of R.

As is known to all, the boundary value problem with p-Laplacian operator is a classical
problem in differential equations of integer order (see [17–19] and the references therein).
Recently, a growing number of scholars have devoted their attention to studying fractional
boundary value problems with p-Laplacian operator (see [20–23]). For example, by con-
structing Green’s functions and using some fixed point theorems, Mahmudov and Unul
[20] considered the existence and uniqueness of solutions to integral boundary value prob-
lem of the following fractional differential equations with p-Laplacian operator:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dβ
0+φp(Dα

0+x(t)) = f (t, x(t), Dγ
0+x(t)), t ∈ [0, 1],

x(0) + μ1x(1) = σ1
∫ 1

0 g(s, x(s)) ds,
x′(0) + μ2x′(1) = σ2

∫ 1
0 h(s, x(s)) ds,

Dα
0+x(0) = 0, Dα

0+x(1) = νDα
0+x(η),

(1.3)

where Dα
0+, Dβ

0+, Dγ
0+ are Caputo fractional derivatives, 1 < α ≤ 2, 0 < β ,γ ≤ 1, 0 < η < 1,

ν,μi,σi > 0 (i = 1, 2), φp(·) is a p-Laplacian operator, f , g , h are continuous. After that,
Shen and Liu [24] studied the following integral boundary value problem of fractional
differential equations with p(t)-Laplacian operator at non-resonance or resonance:

{
Dβ

0+φp(t)(Dα
0+x(t)) + f (t, x(t)) = 0, t ∈ (0, 1),

x(0) = 0, Dα–1
0+ x(1) = γ Iα–1

0+ x(η), Dα
0+x(0) = 0,

(1.4)
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where 1 < α ≤ 2, 0 < β ≤ 1, Dα
0+ and Dβ

0+ are Riemann–Liouville fractional derivatives,
γ > 0, 0 < η < 1, f : [0, 1] × R → R is continuous. φp(t)(·) is a p(t)-Laplacian opera-
tor with p(t) ∈ C1[0, 1] and p(t) > 1. Note that the dimension of the kernel of operator
Dβ

0+φp(t)(Dα
0+x) is equal to 1 when γ η2α–2 = 
(2α – 1) that is called the resonant case. By

the coincidence degree method, the existence of solutions to problem (1.4) was obtained.
It should be mentioned that the p(t)-Laplacian operator acts as the generalized operator
which occurs in many research fields such as elasticity theory, image restoration, and non-
linear electrorheological fluids (see [25–27]). Moreover, for boundary value problems of
differential equations of integer order with p(t)-Laplacian operator, please refer to [28, 29]
and the references therein. Note that it is a nonstandard growth operator and can turn
into the p-Laplacian operator when p(t) = p.

Motivated by the above work, in our paper we aim to study the existence of solutions to
problem (1.1). It should be emphasized that the Erdélyi–Kober fractional integral operator
is a generalization of the integral of integer order and can convert into Riemann–Liouville
fractional integral with a power weight when η = 1 and γ = 0. So, a problem of this type
becomes more interesting and challenging. Moreover, noting that the dimension of the
kernel of operator Dβ

0+ϕp(t)(Dα
0+ x) is equal to 2 in (1.1), it will cause a lot of difficulties

when we use the coincidence degree method such as constructing continuous linear pro-
jections. Thus, our results extend and enrich some existing papers. Furthermore, there
are few papers studying fractional integral boundary value problem with p(t)-Laplacian
operator.

2 Preliminaries
For the convenience of readers, some basic knowledge will be presented.

Definition 2.1 ([30]) Let X and Y be real Banach spaces, and let L : dom L ⊂ X → Y be
a linear operator. If dim Ker L = codim Im L < +∞ and Im L is a closed subset in Y , then L
is a Fredholm operator with index zero. Define the continuous linear projections P : X →
X and Q : Y → Y that satisfy Im P = Ker L and Ker Q = Im L; it follows that L|dom L∩Ker P :
dom L ∩Ker P → Im L is reversible. Denote its inverse map by KP , and let KP,Q = KP(I – Q).
If  is an open bounded subset of X and dom L ∩  
= ∅, the map N is L-compact on 

when QN :  → Y is bounded and KP(I – Q)N :  → X is compact.

Lemma 2.2 ([30]) Let L : dom L ⊂ X → Y be a Fredholm operator of index zero and N :
X → Y be L-compact on . Assume that the following conditions are satisfied:

(i) Lx 
= λNx for every (x,λ) ∈ [(dom L \ Ker L)] ∩ ∂ × (0, 1);
(ii) Nx /∈ Im L for every x ∈ Ker L ∩ ∂;

(iii) deg(QN |Ker L, Ker L ∩ , 0) 
= 0, where Q : Y → Y is a projection such that
Im L = Ker Q.

Then the equation Lx = Nx has at least one solution in dom L ∩ .

Definition 2.3 ([1]) The Riemann–Liouville fractional integral of order α > 0 for the func-
tion x : (0, +∞) →R is defined by

Iα
0+x(t) =

1

(α)

∫ t

0
(t – s)α–1x(s) ds,
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provided the right-hand side is pointwise defined on (0, +∞), where 
(α) is the standard
gamma function.

Definition 2.4 ([1]) The Riemann–Liouville fractional derivative of order α > 0 of x :
(0, +∞) →R is defined by

Dα
0+u(t) =

1

(n – α)

(
d
dt

)n ∫ t

0
(t – s)n–α–1x(s) ds,

provided the right-hand side integral is pointwise defined on (0, +∞), where n = [α] + 1.

Definition 2.5 ([1]) The Erdlyi–Kober fractional integral of order δ > 0 with η > 0 and
γ ∈R of a continuous function x : (0,∞) →R is defined by

Iγ ,δ
0+,ηx(t) =

ηt–η(δ+γ )


(δ)

∫ t

0

sηγ +η–1x(s)
(tη – sη)1–δ

ds,

provided the right-hand side is pointwise defined on (0, +∞).

Remark 2.6 If η = 1, γ > 0, and δ > 0, the above operator changes into the Kober opera-
tor (see [31]). Moreover, if γ = 0, the Kober operator turns into the following Riemann–
Liouville fractional integral with a power weight:

I1,δ
0+,1x(t) =

t–δ


(δ)

∫ t

0
(t – s)δ–1x(s) ds, δ > 0.

Lemma 2.7 ([1]) If x(t) ∈ Lp(0, 1) (1 ≤ p ≤ ∞), then
(i) Dα

0+Iα
0+x(t) = x(t) with α > 0 holds almost everywhere on [0, 1];

(ii) Dβ
0+Iα

0+x(t) = Iα–β
0+ x(t) with α > β > 0 holds almost everywhere on [0, 1].

Lemma 2.8 ([1]) Let α ≥ 0, m ∈ N, and D = d/dt. If the fractional derivatives Dα
0+x(t) and

Dα+m
0+ x(t) exist, then

DmDα
0+x(t) = Dα+m

0+ x(t).

Lemma 2.9 ([1]) The following equalities hold for fractional integral and derivative:
(i) If α ≥ 0, λ > –1, λ 
= α – i, i = 1, 2, . . . , [α] + 1, we have

Dα
0+tλ =


(λ + 1)

(λ – α + 1)

tλ–α .

Moreover, Dα
0+tα–i = 0, i = 1, 2, . . . , [α] + 1.

(ii) If α > 0, λ > –1, we have

Iα
0+tλ =


(λ + 1)

(λ + α + 1)

tλ+α .

(iii) If δ,η,α > 0, γ ≥ 0, we have

Iγ ,δ
0+,ηtα =

tα
(γ + (α/η) + 1)

(γ + (α/η) + δ + 1)

.
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Lemma 2.10 ([1]) Assume that x ∈ C(0, 1) ∩ L1(0, 1) with a fractional derivative of order
α > 0 which belongs to C(0, 1) ∩ L1(0, 1). Then

Iα
0+Dα

0+x(t) = x(t) + c1tα–1 + c2tα–2 + · · · + cNtα–N

for some ci ∈ R, i = 1, 2, . . . ,N, where N = [α] + 1.

Lemma 2.11 ([29]) For any (t, x) ∈ [0, 1]×R, φp(t)(x) = |x|p(t)–2x is a homeomorphism from
R to R. Moreover, it is strictly monotone increasing for any fixed t. Furthermore, for any
t ∈ [0, 1], its inverse operator φ–1

p(t)(·) is defined by

{

φ–1
p(t)(x) = |x| 2–p(t)

p(t)–1 x, x ∈R \ {0},
φ–1

p(t)(0) = 0, x = 0,

that is continuous and sends bounded sets into bounded sets.

In order to make the continuation theorem of Mawhin applicable, the following lemma
needs to be established.

Lemma 2.12 Problem (1.1) is equivalent to the following fractional integral boundary
value problem:

⎧
⎪⎨

⎪⎩

Dα
0+x(t) = φ–1

p(t)(I
β
0+f (t, x(t), Dα–2

0+ x(t), Dα–1
0+ x(t))), t ∈ (0, 1),

x(0) = 0, a1Dα–2
0+ x(1) + b1Dα–1

0+ x(1) = ν1Iγ1,δ1
0+,η1 x(ξ1),

a2Dα–2
0+ x(0) + b2Dα–1

0+ x(0) = ν2Iγ2,δ2
0+,η2 x(ξ2).

(2.1)

Proof Firstly, since Dα
0+x(0) = 0, it is clear that problem (1.1) implies (2.1). On the other

hand, taking t = 0 into the following equality

Dα
0+x(t) = φ–1

p(t)
(
Iβ

0+f
(
t, x(t), Dα–2

0+ x(t), Dα–1
0+ x(t)

))
,

we have Dα
0+x(0) = 0. Additionally, making the operators φp(t) and Dβ

0+ act on both sides
of the above equality, it follows that Dβ

0+φp(t)(Dα
0+x(t)) = f (t, x(t), Dα–2

0+ x(t), Dα–1
0+ x(t)). Thus,

problem (2.1) implies (1.1). �

3 Main result
Let Y = C[0, 1] with the norm ‖y‖∞ = maxt∈[0,1] |y(t)|, X = {x|x, Dα–2

0+ x, Dα–1
0+ x ∈ C[0, 1]}

with the norm ‖x‖X = max{‖x‖∞,‖Dα–2
0+ x‖∞,‖Dα–1

0+ x‖∞}. Clearly, X and Y are Banach
spaces. Based on Lemma 2.12, we just need to consider the existence of solutions to prob-
lem (2.1). Define the operator L : dom L ⊂ X → Y by

Lx = Dα
0+x(t), (3.1)

where

dom L =
{

x ∈ X|Dα
0+x(t) ∈ Y , x(0) = 0, a1Dα–2

0+ x(1) + b1Dα–1
0+ x(1) = ν1Iγ1,δ1

0+,η1 x(ξ1)

a2Dα–2
0+ x(0) + b2Dα–1

0+ x(0) = ν2Iγ2,δ2
0+,η2 x(ξ2)

}
.
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Moreover, define N : X → Y by

Nx(t) = φ–1
p(t)

(
Iβ

0+f
(
t, x(t), Dα–2

0+ x(t), Dα–1
0+ x(t)

))
, ∀t ∈ [0, 1].

Then problem (1.1) is equivalent to the following operator equation:

Lx = Nx, x ∈ dom L.

Define the operators �1,�2 : Y → Y by

�1y = b1I1
0+y(1) + a1I2

0+y(1) – ν1Iγ1,δ1
0+,η1 Iα

0+y(ξ1),

�2y = Iγ2,δ2
0+,η2 Iα

0+y(ξ2).

Next, some important lemmas will be presented before establishing main conclusions.

Lemma 3.1 Let L be given by (3.1), then

Ker L =
{

x ∈ X|x(t) = c1tα–1 + c2tα–2, c1, c2 ∈R,∀t ∈ [0, 1]
}

, (3.2)

Im L = {y ∈ Y |�1y = �2y = 0}. (3.3)

Proof It is clear that (3.2) is satisfied, which is linearly homeomorphic to R
2. If y ∈ Im L, we

can find a function x ∈ dom L such that y(t) = Dα
0+ x(t). Based on Lemma 2.2 and Lemma 2.9,

it follows

x(t) = Iα
0+ y(s) + c1tα–1 + c1tα–2,

Dα–2
0+ x(t) = I2

0+ y(s) + c1
(α)t + c2
(α – 1),

Dα–1
0+ x(t) = I1

0+ y(s) + c1
(α),

which together with the boundary conditions

a1Dα–2
0+ x(1) + b1Dα–1

0+ x(1) = ν1Iγ1,δ1
0+,η1 x(ξ1),

a2Dα–2
0+ x(0) + b2Dα–1

0+ x(0) = ν2Iγ2,δ2
0+,η2 x(ξ2)

yields that

b1I1
0+y(1) + a1I2

0+y(1) – ν1Iγ1,δ1
0+,y1 Iα

0+y(ξ1) +
(

(a1 + b1)
(α) –
ν1ξ

α–1
1 
(γ1 + α–1

η1
+ 1)


(γ1 + α–1
η1

+ δ1 + 1)

)

c1

+
(

a1
(α – 1) –
ν1ξ

α–2
1 
(γ1 + α–2

η1
+ 1)


(γ1 + α–2
η1

+ δ1 + 1)

)

c2 = 0

and

Iγ2,δ2
0+,y2 Iα

0+y(ξ2) +
(

b2
(α) –
ν2ξ

α–1
2 
(γ2 + α–1

η2
+ 1)


(γ2 + α–1
η2

+ δ2 + 1)

)

c1

+
(

a2
(α – 1) –
ν2ξ

α–2
2 
(γ2 + α–2

η2
+ 1)


(γ2 + α–2
η2

+ δ2 + 1)

)

c2 = 0.
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By (H), one has �jy(t) = 0, j = 1, 2.
On the other hand, if y belongs to Y and satisfies �jy(t) = 0, j = 1, 2, setting x(t) = Iα

0+ y(t),
one has x ∈ dom L and Lx(t) = Dα

0+ x(t) = y(t). Thus, y ∈ Im L and (3.3) holds. �

For convenience, the following notations are given:

�1 :=
b1

α
+

a1

α(1 + α)
–

ν1ξ
α+β–1
1 
(α)
(γ1 + 1 + α+β–1

η1
)


(α + β)
(γ1 + δ1 + 1 + α+β–1
η1

)
,

�2 :=
ξ

α+β–1
2 
(α)
(γ2 + 1 + α+β–1

η2
)


(α + β)
(γ2 + δ2 + 1 + α+β–1
η2

)
,

�3 :=
b1

α – 1
+

a1

α(α – 1)
–

ν1ξ
α+β–2
1 
(α – 1)
(γ1 + 1 + α+β–2

η1
)


(α + β – 1)
(γ1 + δ1 + 1 + α+β–2
η1

)
,

�4 :=
ξ

α+β–2
2 
(α – 1)
(γ2 + 1 + α+β–2

η2
)


(α + β – 1)
(γ2 + δ2 + 1 + α+β–2
η2

)
,

� :=

∣
∣
∣
∣
∣

�1 �2

�3 �4

∣
∣
∣
∣
∣
.

Lemma 3.2 If � 
= 0, the continuous linear projection operators P : X → X and Q : Y → Y
can be written as

Px(t) =
1


(α)
Dα–1

0+ x(0)tα–1 +
1


(α – 1)
Dα–2

0+ x(0)tα–2, t ∈ [0, 1],

Qy(t) =
(
ϒ1y(t)

)
tα–1 +

(
ϒ2y(t)

)
tα–2, t ∈ [0, 1],

where

ϒ1y(t) =
1
�

(
�4�1y(t) – �3�2y(t)

)
, ϒ2y(t) =

1
�

(
–�2�1y(t) + �1�2y(t)

)
.

Moreover, L is a Fredholm operator of index zero and KP : Im L → dom L ∩ Ker P can be
presented as follows:

KPy(t) =
1


(α)

∫ t

0
(t – s)α–1y(s) ds, ∀t ∈ [0, 1].

Proof For the operator P, it is clear that for x ∈ X, P2x = Px, Im P = Ker L, and X = Ker L ⊕
Ker P. For the operator Q, if y ∈ Y , then

ϒ1
((

ϒ1y(t)
)
tα–1) =

1
�

(
�4�1

((
ϒ1y(t)

)
tα–1) – �3�2

((
ϒ1y(t)

)
tα–1))

=
ϒ1y
�

(
�4�1

(
tα–1) – �3�2

(
tα–1))

=
1
�

(�4�1 – �3�2)ϒ1y = ϒ1y,
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ϒ1
((

ϒ2y(t)
)
tα–2) =

1
�

(
�4�1

((
ϒ2y(t)

)
tα–2) – �3�2

((
ϒ2y(t)

)
tα–2))

=
ϒ2y
�

(
�4�1

(
tα–2) – �3�2

(
tα–2))

=
1
�

(�4�3 – �3�4)ϒ2y = 0,

ϒ2
((

ϒ1y(t)
)
tα–1) =

1
�

(
–�2�1

((
ϒ1y(t)

)
tα–1) + �1�2

((
ϒ1y(t)

)
tα–1))

=
ϒ1y
�

(
–�2�1

(
tα–1) + �1�2

(
tα–1))

=
1
�

(–�2�1 + �1�2)ϒ1y = 0,

ϒ2
((

ϒ2y(t)
)
tα–2) =

1
�

(
–�2�1

((
ϒ2y(t)

)
tα–2) + �1�2

((
ϒ2y(t)

)
tα–2))

=
ϒ2y
�

(
–�2�1

(
tα–2) + �1�2

(
tα–2))

=
1
�

(–�2�3 + �1�4)ϒ2y = ϒ2y.

Thus, Q2y = Qy. Next, we will show Ker Q = Im L. In fact, if y ∈ Ker Q ⊂ Y , we can get
ϒ1y = ϒ2y = 0, i.e.,

�4�1y(t) – �3�2y(t) = 0, –�2�1y(t) + �1�2y(t) = 0,

which together with � 
= 0 yields �1y(t) = �2y(t) = 0 and Ker Q ⊂ Im L. If y ∈ Im L ⊂ Y ,
from (3.2), it is clear that Im L ⊂ Ker Q. Thus, Im L = Ker Q, which together with Q2y = Qy
implies Y = Im L ⊕ Im Q. Thus, the operators P and Q are well defined. Moreover,

dim Ker L = dim Im Q = codim Im L = 2,

which means that L is a Fredholm operator of index zero.
Finally, KPx = (L|dom L∩Ker P)–1(x) will be proved. On the one hand, if x ∈ dom L ∩ Ker P,

one has

Dα–1
0+ x(0) = Dα–2

0+ x(0) = 0,

which together with x(0) = 0 yields KPLx(t) = Iα
0+Dα

0+x(t) = x(t). On the other hand, if y ∈
Im L, it is clear that LKPy = Dα

0+Iα
0+y = y. The proof is complete. �

Theorem 3.3 Assume � 
= 0 and the following conditions hold:
(H1) There exist nonnegative functions hi ∈ C[0, 1], i = 1, 2, 3, 4, such that, for any t ∈

[0, 1], (x, y, z) ∈ R
3,

∣
∣f (t, x, y, z)

∣
∣ ≤ h1(t) + h2(t)|x|θ–1 + h3(t)|y|θ–1 + h4(t)|z|θ–1, 1 < θ ≤ Pm,

where Pm = mint∈[0,1] p(t).
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(H2) For x ∈ dom L, there exists a constant B1 > 0 such that if |Dα–2
0+ x(t)| > B1 for any

t ∈ [ξ2, 1], either

sgn
{

Dα–2
0+ x(t)

}
�2Nx(t) > 0 or sgn

{
Dα–2

0+ x(t)
}
�2Nx(t) < 0.

(H3) For x ∈ dom L, there exists a constant B2 > 0 such that if |Dα–1
0+ x(t)| > B2 for any

t ∈ [0, ξ1], either

sgn
{

Dα–1
0+ x(t)

}
�1Nx(t) > 0 or sgn

{
Dα–1

0+ x(t)
}
�1Nx(t) < 0.

Then problem (1.1) admits at least one solution, provided that

2θ


(β + 1)

( ‖h2‖∞
(
(α – 1))θ–1 + ‖h3‖∞ + ‖h4‖∞

)

< 1. (3.4)

Proof Let

1 =
{

x ∈ dom L \ Ker L|Lx = λNx,λ ∈ (0, 1)
}

,

2 = {x|x ∈ Ker L, Nx ∈ Im L},
3 =

{
x ∈ Ker L|λJ–1x + (1 – λ)QNx = 0,λ ∈ [0, 1]

}
and

′
3 =

{
x ∈ Ker L| – λJ–1x + (1 – λ)QNx = 0,λ ∈ [0, 1]

}
,

where J–1 : Ker L → Im Q is defined by J(c1tα–1 + c2tα–2) = 1
�

(�4c1 – �3c2)tα–1 +
1
�

(–�2c1 + �1c2)tα–2, c1, c2 ∈R.
For any x ∈ 1, clearly, Nx ∈ Im L = Ker Q and QNx = 0, which implies �1Nx = �2Nx = 0.

In view of (H2) and (H3), we can find two constants μ1,μ2 ∈ [0, 1] such that |Dα–2
0+ x(μ1)| ≤

B1, |Dα–1
0+ x(μ2)| ≤ B2. Thus, from Lemma 2.8, one has

Dα–2
0+ x(t) = Dα–2

0+ x(μ1) +
∫ t

μ1

Dα–1
0+ x(t) dt,

Dα–1
0+ x(t) = Dα–1

0+ x(μ2) +
∫ t

μ2

Dα
0+x(t) dt,

which leads to ‖Dα–1
0+ x‖∞ ≤ B2 + ‖Dα

0+x‖∞ and ‖Dα–2
0+ x‖∞ ≤ B2 + B1 + ‖Dα

0+x‖∞. Moreover,
based on x(0) = 0, it follows that

x(t) = Iα–2
0+ Dα–2

0+ x(t),

which yields

∣
∣x(t)

∣
∣ ≤ 1


(α – 2)

∫ t

0
(t – s)α–3 dt

∥
∥Dα–2

0+ x
∥
∥∞ ≤ 1


(α – 1)
∥
∥Dα–2

0+ x
∥
∥∞.

Thus, ‖x‖∞ ≤ B1+B2

(α–1) + ‖Dα

0+x‖∞

(α–1) . From Lu = λNu, we know that

Dα
0+x(t) = λφ–1

p(t)
(
Iβ

0+f
(
t, x(t), Dα–2

0+ x(t), Dα–1
0+ x(t)

))
.
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Taking the operator φp(t) act on both sides of the above equality, we have

φp(t)
(
Dα

0+x(t)
)

= λp(t)–1(Iβ
0+f

(
t, x(t), Dα–2

0+ x(t), Dα–1
0+ x(t)

))
.

In view of (H1) and λ ∈ (0, 1), one has

∣
∣Dα

0+x(t)
∣
∣p(t)–1 ≤ 1


(β)

∫ t

0
(t – s)β–1∣∣f

(
t, x(t), Dα–2

0+ x(t), Dα–1
0+ x(t)

)∣
∣ds

≤ 1

(β + 1)

(‖h1‖∞ + ‖h2‖∞‖x‖θ–1
∞ + ‖h3‖∞

∥
∥Dα–2

0+ x
∥
∥θ–1

∞

+ ‖h4‖∞
∥
∥Dα–1

0+ x
∥
∥θ–1

∞
)

≤ 1

(β + 1)

(

‖h1‖∞ + ‖h2‖∞
(

B1 + B2


(α – 1)
+

1

(α – 1)

∥
∥Dα

0+u
∥
∥∞

)θ–1

+ ‖h3‖∞
(
B1 + B2 +

∥
∥Dα

0+u
∥
∥∞

)θ–1 + ‖h4‖∞
(
B2 +

∥
∥Dα

0+u
∥
∥∞

)θ–1
)

,

which together with the basic inequality (x + y)p ≤ 2p(xp + yp), x, y, p > 0 yields

∣
∣Dα

0+x(t)
∣
∣p(t)–1 ≤ K1 + K2

∥
∥Dα

0+x
∥
∥θ–1

∞ ,

where

K1 =
2θ–1


(β + 1)

(

‖h1‖∞ +
(

B1 + B2


(α – 1)

)θ–1

‖h2‖∞ + (B1 + B2)θ–1‖h3‖∞ + Bθ–1
2 ‖h4‖∞

)

,

K2 =
2θ–1


(β + 1)

(
1

(
(α – 1))θ–1 ‖h2‖∞ + ‖h3‖∞ + ‖h4‖∞
)

.

Thus, it follows that

∥
∥Dα

0+x
∥
∥∞ ≤ 2

1
p(t)–1

(
K

1
p(t)–1

1 + K
1

p(t)–1
2

∥
∥Dα

0+x
∥
∥

θ–1
p(t)–1
∞

)
.

Clearly, θ–1
p(t)–1 ∈ (0, 1], based on the basic inequality xl ≤ x + 1, for x > 0, l ∈ (0, 1], we can

obtain that

∥
∥Dα

0+x
∥
∥∞ ≤ 2

1
p(t)–1 K

1
p(t)–1

1 + 2
1

p(t)–1 K
1

p(t)–1
2

(∥
∥Dα

0+x
∥
∥∞ + 1

)
,

which together with (3.4) implies that there exists a positive constant M1 such that
‖Dα

0+x‖∞ ≤ M1, ‖Dα–1
0+ x‖∞ ≤ B2 + M1, ‖Dα–2

0+ x‖∞ ≤ B2 + B1 + M1, and ‖x‖∞ ≤ B1+B2+M1

(α–1) .

Thus, ‖x‖X ≤ M, where M = max{B2 + M1, B2 + B1 + M1, B1+B2+M1

(α–1) }.

If x ∈ 2, then x(t) = c1tα–1 + c2tα–2, c1, c2 ∈ R and Nx ∈ Im L. Therefore, one has
QN(c1tα–1 + c2tα–2) = 0 and

Dα–1
0+ x(t) = c1
(α), Dα–2

0+ x(t) = c1
(α)t + c2
(α – 1),

which together with (H2) and (H3) yields |c1| ≤ B2

(α) and |c2| ≤ B1+B2


(α–1) . Thus, 2 is
bounded.
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If x ∈ 3, we can obtain that x(t) = c1tα–1 + c2tα–2, c1, c2 ∈R and

λ

(
1
�

(�4c1 – �2c2)tα–1 +
1
�

(–�3c1 + �1c2)tα–2
)

+ (1 – λ)
(
ϒ1N

(
c1tα–1 + c2tα–2)tα–1 + ϒ2N

(
c1tα–1 + c2tα–2)tα–2) = 0,

which implies

λ(�4c1 – �2c2) + (1 – λ)
(
�4�1N

(
c1tα–1 + c2tα–2) – �2�2N

(
c1tα–1 + c2tα–2)) = 0,

λ(–�3c1 + �1c2) + (1 – λ)
(
–�3�1N

(
c1tα–1 + c2tα–2) + �1�2N

(
c1tα–1 + c2tα–2)) = 0.

Based on � 
= 0, we have

λc1 + (1 – λ)�1N
(
c1tα–1 + c2tα–2) = 0, (3.5)

λc2 + (1 – λ)�2N
(
c1tα–1 + c2tα–2) = 0. (3.6)

For λ = 1, one has c1 = c2 = 0, which means 3 is bounded. For λ = 0, in view of the first
inequality of (H2) and (H3), it follows that 3 is bounded. For λ ∈ (0, 1), one has

sgn
{

c1
(α)
}
λc1 + sgn

{
c1
(α)

}
(1 – λ)�1N

(
c1tα–1 + c2tα–2) = 0, (3.7)

sgn
{

c1
(α)t + c2
(α – 1)
}
λc2

+ sgn
{

c1
(α)t + c2
(α – 1)
}

(1 – λ)�2N
(
c1tα–1 + c2tα–2) = 0. (3.8)

From (3.7) and the first inequality of (H3), it follows that |c1| ≤ B2

(α) . Since (3.8) holds for

all t ∈ [0, ξ1], by choosing t = 0, we can obtain that

sgn
{

c2
(α – 1)
}
λc2 + sgn

{
c2
(α – 1)

}
(1 – λ)�2N

(
c1tα–1 + c2tα–2) = 0,

which together with the first inequality of (H2) yields |c2| ≤ B1+B2

(α–1) . Hence, 3 is bounded.

Similarly, based on the second inequality of (H2) and (H3), we can get that

′
3 =

{
x ∈ Ker L| – λJ–1x + (1 – λ)QNx = 0,λ ∈ [0, 1]

}

is bounded.
Set  = {x ∈ X|‖x‖X < max{M, B1 +2B2, B2


(α) + B1+B2

(α–1) }+1}. By the continuity of f , it is clear

that QN :  → Y is bounded and KP(I – Q)N :  → X is compact, i.e., N is L-compact on
. Moreover, from Lemma 3.1, L is a Fredholm operator of index zero. Furthermore, based
on the definition of , one has:

(i) Lx 
= λNx for every (x,λ) ∈ [(dom L \ Ker L) ∩ ∂] × (0, 1);
(ii) Nx /∈ Im L for every x ∈ Ker L ∩ ∂.

Define

H(x,λ) = ±λJ–1(x) + (1 – λ)QNx.
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Clearly, H(x,λ) 
= 0 for every x ∈ Ker L ∩ ∂. Hence, in view of the homotopic property of
degree, it follows that

deg(QN , ∩ Ker L, 0) = deg
(
H(·, 0), ∩ Ker L, 0

)
= deg

(
H(·, 1), ∩ Ker L, 0

)

= deg(±I, ∩ Ker L, 0) 
= 0.

Therefore, from Lemma 2.2, we can get that Lx = Nx admits at least one solution in dom L∩
. Then problem (1.1) possesses at least one solution. �

Corollary 3.4 Let p(t) = p, � 
= 0, (H2), (H3), and the following condition hold.
(H1)′ There exist nonnegative functions hi ∈ C[0, 1], i = 1, 2, 3, 4, such that, for any t ∈

[0, 1], (x, y, z) ∈R
3,

∣
∣f (t, x, y, z)

∣
∣ ≤ h1(t) + h2(t)|x|p–1 + h3(t)|y|p–1 + h4(t)|z|p–1.

Then problem (1.1) admits at least one solution, provided that

2p


(β + 1)

( ‖h2‖∞
(
(α – 1))p–1 + ‖h3‖∞ + ‖h4‖∞

)

< 1. (3.9)

Corollary 3.5 Let γ1 = γ2, δ1 = δ2, η1 = η2 = 1, and 0 < ξ1 < ξ2 ≤ α+β–1
1+α

< 1, ν1 > 0, αb1 +
a1 > 0. Assume that (H1), (H2), and (H3) hold. Then problem (1.1) has at least one solution,
provided that (3.4) holds.

Proof From Theorem 3.3, we just need to prove � 
= 0. In fact,

� =

∣
∣
∣
∣
∣

�1 �2

�3 �4

∣
∣
∣
∣
∣

= �1�4 – �2�3 = (A1 – A2) – (A3 – A4),

where

A1 =
(

b1

α
+

a1

α(1 + α)

)
ξ

α+β–2
2 
(α – 1)
(γ1 + α + β – 1)


(α + β – 1)
(γ1 + δ1 + α + β – 1)
,

A2 =
ν1ξ

α+β–1
1 
(α)
(γ1 + α + β)


(α + β)
(γ1 + δ1 + α + β)
· ξ

α+β–2
2 
(α – 1)
(γ1 + α + β – 1)


(α + β – 1)
(γ1 + δ1 + α + β – 1)
,

A3 =
(

b1

α – 1
+

a1

α(α – 1)

)
ξ

α+β–1
2 
(α)
(γ1 + α + β)


(α + β)
(γ1 + δ1 + α + β)
,

A4 =
ν1ξ

α+β–2
1 
(α – 1)
(γ1 + α + β – 1)


(α + β – 1)
(γ1 + δ1 + α + β – 1)
· ξ

α+β–1
2 
(α)
(γ1 + α + β)


(α + β)
(γ1 + δ1 + α + β)
.
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Since 0 < ξ1 < ξ2 < 1 and ν1 > 0, we have A4 > A2. Next, we will prove A1 > A3. Based on

(x + 1) = x
(x) for x > 0 and δ1 > 0, it follows

A3 =
(

b1

α – 1
+

a1

α(α – 1)

)
ξ2ξ

α+β–2
2 (α – 1)(γ1 + α + β – 1)

(α + β – 1)(γ1 + δ1 + α + β – 1)

· 
(α – 1)
(γ1 + α + β – 1)

(α + β – 1)
(γ1 + δ1 + α + β – 1)

<
(

b1

α + β – 1
+

a1

α(α + β – 1)

)
ξ2ξ

α+β–2
2 
(α – 1)
(γ1 + α + β – 1)


(α + β – 1)
(γ1 + δ1 + α + β – 1)
,

which together with 2 < α ≤ 3, 0 < β ≤ 1, and 0 < ξ1 < ξ2 ≤ α+β–1
1+α

< 1 yields that

A3 <
(

b1

α + β – 1
+

a1

α(α + β – 1)

)
ξ2ξ

α+β–2
2 
(α – 1)
(γ1 + α + β – 1)


(α + β – 1)
(γ1 + δ1 + α + β – 1)

≤
(

b1

α + β – 1
+

a1

α(α + β – 1)

)
α + β – 1

1 + α
· ξ

α+β–2
2 
(α – 1)
(γ1 + α + β – 1)


(α + β – 1)
(γ1 + δ1 + α + β – 1)

=
(

b1

1 + α
+

a1

α(1 + α)

)
ξ

α+β–2
2 
(α – 1)
(γ1 + α + β – 1)


(α + β – 1)
(γ1 + δ1 + α + β – 1)
= A1.

Thus, we have � > 0. The proof is complete. �

Example 3.6 Consider the following example:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
1
2
0+φ3+sin2t(D

5
2
0+x(t)) = f (t, x(t), D

1
2
0+x(t), D

5
2
0+x(t)), t ∈ (0, 1),

x(0) = 0, 2
3 D

1
2
0+x(1) – 4

9 D
1
2
0+x(1) = ( 2

3 ) 1
2 I0, 1

2
0+,1x( 2

3 ),

D
5
2
0+x(0) = 0, 3

4
( 1
2 )

Dα–2
0+ x(0) + 1

4
( 1
2 )

Dα–1
0+ x(0) = ( 3

4 ) 1
2 I

1
2 ,1

0+,1x( 3
4 ),

(3.10)

where β = 1
2 , α = 5

2 , p(t) = 3, γ1 = 0, γ2 = 1
2 , η1 = η2 = 1, δ1 = 1

2 , δ2 = 1, ξ1 = 2
3 , ξ2 = 3

4 , ν1 =
( 2

3 ) 1
2 , ν2 = ( 3

4 ) 1
2 , a1 = 2

3 , a2 = 3
4
( 1

2 )
, b1 = – 4

9 , b2 = 1
4
( 1

2 )
,

f (t, x, y, z) =

⎧
⎪⎪⎨

⎪⎪⎩

t2

32 + t2

32 sin2 x + (t– 2
3 )2

32 sin2 z + 1, t ∈ [0, 2
3 ], x, z ∈R;

t2

32 + t2

32 sin2 x + 1, t ∈ ( 2
3 , 3

4 ], x ∈R;
t2

32 + t2

32 sin2 x + (t– 3
4 )2

8 y2 + 1, t ∈ ( 3
4 , 1], x, y ∈ R.

By simple calculation, it is clear that � 
= 0 and (H) is satisfied. Moreover,

∣
∣f (t, x, y, z)

∣
∣ ≤ h1(t) + h2(t)|x|2 + h3(t)|y|2 + h4(t)|z|2,

where h1(t) = t2

32 + 1, h2(t) = t2

32 ,

h3(t) =

{
0, t ∈ [0, 3

4 ],
(t– 3

4 )2

8 , t ∈ ( 3
4 , 1];

h4(t) =

{
(t– 2

3 )2

32 , t ∈ [0, 2
3 ],

0, t ∈ ( 2
3 , 1],

which implies that (3.4) and (H1) hold. Let D
1
2
0+x(t) > 1 for any t ∈ [ 3

4 , 1]. Since f (t, x, y, z) >

0, we have sgn{D 1
2
0+x(t)}�2Nx(t) > 0. Similarly, if D

1
2
0+x(t) < –1 for any t ∈ [ 3

4 , 1], it follows
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sgn{D 1
2
0+x(t)}�2Nx(t) < 0. Hence, (H2) is satisfied. If D

3
2
0+x(t) > 1 for any t ∈ [0, 2

3 ], we have
1 < f (t, x, y, z) < 75

72 and

(
2t 1

2


( 1
2 )

) 1
2

< Nx(t) <
(

150t 1
2

72
( 1
2 )

) 1
2

.

Since

–
4
9

∫ 1

0
Nx(s) ds +

2
3

∫ 1

0
(1 – s)Nx(s) ds

< –
4
9

(
2


( 1
2 )

) 1
2
∫ 1

0
s

1
4 ds +

2
3

(
150

72
( 1
2 )

) 1
2
∫ 1

0
(1 – s)s

1
4 ds

= –
16
45

(
2


( 1
2 )

) 1
2

+
32

135

(
150

72
( 1
2 )

) 1
2

< 0

and –( 2
3 ) 1

2 I0, 1
2

0+,1I
5
2

0+Nx( 2
3 ) < 0, we can obtain sgn{D 3

2
0+x(t)}�1Nx(t) < 0. Similarly, if D

3
2
0+x(t) <

–1 for any t ∈ [0, 2
3 ], one has sgn{D 1

2
0+x(t)}�1Nx(t) > 0. Therefore, (H3) is verified. Based

on the above facts, problem (3.10) has at least one solution.

4 Conclusions
This paper is concerned with the solvability for Erdélyi–Kober fractional integral bound-
ary value problems with p(t)-Laplacian operator at resonance. By employing the coin-
cidence degree method of Mawhin, some new results on the existence of solutions are
acquired. It should be emphasized that the Erdélyi–Kober fractional integral operator is
a generalization of the integral of integer order and can convert into Riemann–Liouville
fractional integral with a power weight when η = 1 and γ = 0. So, a problem of this type be-
comes more interesting and challenging. Moreover, we consider the Erdélyi–Kober frac-
tional integral boundary value problems with p(t)-Laplacian operator at resonance when
the dimension of the kernel of operator Dβ

0+ϕp(t)(Dα
0+ x) is equal to 2, which causes a lot of

difficulties such as constructing continuous linear projections. Thus, our results extend
and enrich some existing papers. Furthermore, there are few papers studying fractional
integral boundary value problem with p(t)-Laplacian operator.
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