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Abstract
In this study, random linear difference equations obtained by transforming the
components of deterministic difference equations to random variables are
investigated. Uniform, Bernoulli, binomial, negative binomial (or Pascal), geometric,
hypergeometric and Poisson distributions have been used for the random effects for
obtaining the random behavior of linear difference equations. The random version of
the Z-transform, the RZ-transform, has been used to obtain an approximation for the
random linear difference equation. Approximate expected values and variances are
calculated by using the RZ-transform. The results have been obtained with Maple and
are shown in graphs. It is shown that the random Z-transform is an effective tool for
the investigation of random linear difference equations.
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1 Introduction
Difference equations are known as the first theory to emerge with the systematical devel-
opment of mathematics. Having emerged as the discrete analogues of differential equa-
tions, difference equations are a field of mathematics with a rich application area. Dif-
ference equations found in economy, biology, signal processing, computer engineering,
genetics, medicine, ecology and digital control some of its application fields [1–9].

Today, difference equations are used for system analysis and design with the use of
the Z-transform. The Z-transform has been introduced in mid-20th century [10]. The z-
transform, together with probability theory, was first introduced by de Moivre in 1730 and
is known among mathematicians as the “generator function method”. The Z-transform of
an array is the generating function of this array, where the independent variable Z is re-
placed by a mutual 1/Z. It has been used within probability theory [11] and to treat data
control systems [12]. In 1952, it was called the Z-transform by Ragazzini and Zadeh [13].
Recently, the Z-transform has been highly developed as a result of its use in digital com-
puter systems. In these systems, discrete system theory is developed due to the fact that
information and signals are discrete. The Z-transformation method is one of the trans-
formation methods that can be applied to the solution of linear difference equations. It
reduces the solutions of such equations to algebraic solutions and resembles the Laplace
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transform method commonly used in solving differential equations [12]. Some of the stud-
ies in this area are given in [14–23].

In this study the random version of the Z-transform, the RZ-transform, has been ap-
plied to obtain an approximation to the solution of random linear difference equation.
Difference equations are transformed into random difference equations through the use of
several probability distributions. The approximate solutions obtained by Z-transform are
used to obtain the approximate expected values and variances of random linear difference
equations, which are shown in graphs. Sections 2 and 3 contain introductory information
on linear difference equations and Z-transform method. Section 4 contains numerical ex-
amples with uniform, geometric, Poisson and Bernoulli distributions.

2 Difference equations
Definition 1 The equation with n ∈ N = {0, 1, . . .} independent variables and unknown x
such that

F
(
n, x(n), x(n + 1), . . . , x(n + k)

)
= 0

is called a difference equation [1–9].

Definition 2 Let x be a continuous variable and hk(x) and g(x) be real valued functions
with n ≥ n0 such that hk �= 0, then the difference equation

h0(x)f (x + n) + h1f (x + n – 1) + · · · + hn(x)f (x) = g(x) (1)

is called a linear difference equation of order n.

Equation (1) is called a linear homogeneous difference equation of order n for g(x) = 0
and a non-homogeneous linear difference equation of order n for g(x) �= 0 [13].

Z-transform

Definition 3 ([10–13, 24–27]; Z-transform) Let the sequence x(n) defined for the nega-
tive integers n = –1, –2, . . . be given. The Z-transform for the sequence x(n) is given as

x̃(z) = Z
(
x(n)

)
=

∞∑

i=0

x(i)z–i. (2)

Theorem 1 The set of numbers z on the complex plane is called the convergence region x(z)
for the convergence of the sequence (2). The ratio test is the most used method for finding
the convergence region of the sequence (2). Assume that

lim
i→∞

∣
∣∣
∣
x(i + 1)

x(i)

∣
∣∣
∣ = R.

The convergence of (2) with ratio test is

lim
i→∞

∣∣
∣∣
x(i + 1)z–i–1

x(i)z–i

∣∣
∣∣ < 1
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and its divergence

lim
i→∞

∣
∣∣∣
x(i + 1)z–i–1

x(i)z–i

∣
∣∣∣ > 1.

Hence, the sequence (2) is convergent for |z| > R and divergent for |z| < R. The number
R is called the radius of convergence. If R = 0, the sequence x̃(z) is everywhere convergent.
On the other side, if R = ∞, the Z-transform is everywhere divergent.

Properties of Z-transform
1. Linearity: Let x̃(z) be the Z-transform of x(n) with a radius of convergence of R1 and

ỹ(z) be the Z-transform of y(n) with a radius of convergence of R2. For complex numbers
λ, β

Z
[
λx(n) + βy(n)

]
= λx̃(z) + β ỹ(z), |z| > max(R1, R2) (3)

2. Shifting: Let R be the radius of convergence of x̃(z).
a. Right shifting: If x(–j) = 0, j = 1, 2, . . . , k, then

Z
[
x(n – k)

]
= z–kx̃(z), |z| > R. (4)

b. Left shifting:

Z
[
x(n + k)

]
= zkx̃(z) –

k–1∑

t=0

x(t)zk–t , |z| > R. (5)

The most used versions of (5) are

Z
[
x(n + 1)

]
= zkx̃(z) – zx(0), |z| > R,

Z
[
x(n + 2)

]
= z2x̃(z) – z2x(0) – zx(1), |z| > R.

3. Initial and final values:
a. Initial value theorem:

lim|z|→∞ x̃(z) = x(0). (6)

b. Final value theorem:

x(∞) = lim
n→∞ x(n) = lim

z→1
(z – 1)x̃(z). (7)

Proof a. The proof of (6) follows from the definition of x̃(z).
b. To prove (7)

Z
[
x(n + 1) – x(n)

]
=

∞∑

i=0

[
x(i + 1) – x(i)

]
z–i.

If (5) is applied to the left of this equation

(z – 1)x̃(z) = x(0) +
∞∑

i=0

[
x(i + 1) – x(i)

]
z–i.
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Thus,

lim
z→1

(z – 1)x̃(z) = x(0) +
∞∑

i=0

[
x(i + 1) – x(i)

]
z–i = lim

n→∞ x(n). �

4. Multiplication by an: Let x̃(z) be the Z-transform of x(n) with a radius of convergence
of R. Then

Z
[
anx(n)

]
= x̃

(
z
a

)
, |z| > |a|R. (8)

The proof of (8) follows from the definition.
5. Multiplication by nk :

Z
(
nan) = –z

d
dz

Z
(
an).

Similarly, if the order is increased

Z
(
n2an) = –z

d
dz

[
–z

d
dz

Z
(
an)

]

and hence

Z
(
n2an) =

(
–z

d
dz

)2

Z
(
an).

Its generalization gives

(
–z

d
dz

)k

x̃(z) =
(

–z
d
dz

(
–z

d
dz

(
. . .

(
–z

d
dz

)
. . .

)))
.

Thus

Z
[
nkx(n)

]
=

(
–z

d
dz

)k

Z
(
x(n)

)
. (9)

Definition (Inverse Z-transform) A Z-transform transforms the difference equation of
an unknown x(n) sequence to an algebraic equation in x̃(z). Afterwards, the x(n) sequence
is obtained from x̃(z) through an operation known as inverse Z-transform. Symbolically,
this operation can be shown as

Z–1[x̃(z)
]

= x(n). (10)

The uniqueness of the inverse Z-transform can be obtained as follows. Assume two se-
quences x(n), y(n) have the same Z-transform, i.e.

∞∑

i=0

x(i)z–i =
∞∑

i=0

y(i)z–i, |z| > R.
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Table 1 Z-transform

x(n), n = 0, 1, 2, 3, . . . x̃(z) =
∑∞

i=0 x(i)z
–i

1 z
z–1

an z
z–a

an–1 1
z–a

n z
(z–1)2

n2 z(z+1)
(z–1)3

nk (–1)kDk( z
z–1 ); D = z d

dz

nan az
(z–a)2

n2an az(z+a)
(z–a)3

nkan (–1)kDk( z
z–a ); D = z d

dz

x(n – k) z–k x̃(z)

x(n + k) z–k x̃(z) –
∑k–1

r=0 x(r)z
k–r

Hence,

∞∑

i=0

[
x(i) – y(i)

]
z–i = 0, |z| > R

is used to obtain the inverse Z-transform [25].

3 Discrete time probability distributions
3.1 Discrete uniform distribution
Definition For a random variable, the value of the probability function is a discrete prob-
ability distribution if all the values between the lower and upper bounds of the integer are
constant. For any random positive n in the form of k1, k2, . . . , kn

P(k, n) =

⎧
⎨

⎩
1/n, k = 1, 2, 3, . . . , n,

0, otherwise,

if each of them shows equal probability, then this random variable is called a (discrete)
uniform distributed random variable [28, 29].

Theorem If X has a discrete uniform distribution, then
a. E(X) = k+1

2 ,
b. V (X) = k2–1

12 ,
c. Mx(t) = 1

k
∑k

x=1 etx.

3.2 Bernoulli distribution
Definition For the random variable X, p takes a value of 1 with probability of success, and
X, takes a value of 0 with probability of failure where q = 1 – p, then this random variable
is called the Bernoulli random variable. The Bernoulli probability mass function is given
as [28, 29]:

f (x, p) = px(1 – p)1–x, x = 0, 1.
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Theorem If X has a Bernoulli distribution,
a. E(X) = p,
b. V (X) = p(1 – p),
c. Mx(t) = etp + (1 – p).

3.3 Binomial distribution
Definition Let n be the total number of independent Bernoulli successful trials and X
be the random variable. If the probability of success for a single experiment is p and the
probability of failure (1 – p), then X is called the binomial random variable X and the
probability function of X is

f (x; n, p) =
(

n
x

)
px(1 – p)n–x, x = 0, 1, 2, . . . , n.

Calculation of consecutive binomial probabilities:

f (x + 1; n, p) =
(n – x)p

(x + 1)(1 – p)
f (x; n, p), x = 0, 1, . . . , n – 1.

Theorem If X has a binomial distribution,
a. E(X) = np,
b. V (X) = np(1 – p),
c. Mx(t) = [etp + (1 – p)]n.

3.4 Negative binomial (Pascal) distribution
Definition Let X be the random variable of the number of trials required to achieve suc-
cess K ≥ 1, with the probability of success p in each experiment for independent Bernoulli
trials. In this case, X is called a negative binomial random variable and its probability func-
tion is given as

f (x) =
(

x – 1
K – 1

)
pK (1 – p)x–K , x = K , K + 1, . . . .

Theorem If X has a negative binomial distribution,
a. E(X) = k

p ,

b. V (X) = k(1–p)
p2 ,

c. Mx(t) = pk etk

(1–etq)k .

3.5 Geometric distribution
Definition If the number of Bernoulli trials is repeated n times, the number of tests per-
formed to achieve the first success is called geometric distribution and if X is the probabil-
ity of success for each trial, p is the probability function for the number of trials required
to achieve a single success [28, 29],

f (x) = P(X = k) = qk–1p, x = 1, 2, 3, . . . .

Theorem If X has a geometric distribution,
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a. E(X) = 1
p ,

b. V (X) = (1–p)
p2 ,

c. Mx(t) = pet 1
1–[et (1–p)] .

3.6 Hypergeometric distribution
Definition Let a be the number of elements of a given Type A in a mass consisting of a
finite number of N elements. Let X be the number of elements of its type in a sample of
n units that are randomly drawn without replacing them again. X is a random hypergeo-
metric variable and the hypergeometric probability mass function is given as [28, 29]

f (x; N , M, n) =
(M

X
)(N–M

n–x
)

(N
n
) , x = 0, 1, . . . , n.

Theorem If X has a hypergeometric distribution,
a. E(X) = nM

N ,
b. V (X) = M(M–1)n(n–1)

N(N–1) + M n
N ,

c. Mx(t) = N–n
N–1 n M

N (1 – M
N ).

3.7 Poisson distribution
Definition f (x) = P(X = x) = e–λλx

x! ; x = 0, 1, 2, . . . , λ > 0. The Taylor expansion of the func-
tion ey and the probability function gives (ey =

∑∞
i=0

yi

i! ):

∞∑

x=0

f (X = x;λ) = e–λ

∞∑

x=0

λx

x!
= e–λeλ = 1.

Theorem If X has a Poisson distribution,
a. E(X) = λ,
b. V (X) = λ,
c. Mx = eλ(et–1).

4 Numerical examples
Some numerical examples are given for random linear difference equations through the
use of various probability distributions.

Example 1 Let A, B be random variables with uniform distribution such that

x(n + 2) + 5x(n + 1) + 4x(n) = 0, x(0) = A, x(1) = B. (11)

We investigate the behavior of the solution of (11) with the Z-transform method.
Solution. The Z-transform of both sides of (11) gives

z2x̃(z) – z2x(0) – zx(1) + 5x̃(z) – 5zx(0) + 4x̃(z) = 0,

x̃(z)
[
z2 + 5z + 4

]
– z2A – zB – 5zA = 0.

(12)

Partial fractions of x̃(z)/z gives

x̃(z)
z

=
z2A + B + 5A
(z + 1)(z + 4)

=
a1

z + 1
+

a2

z + 4
. (13)
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It can be found that a1 = 4A+B
3 , a2 = –A–B

3 . Hence,

x̃(z) =
( 4A+B

3 )z
z + 1

+
( –A–B

3 )z
z + 4

. (14)

The inverse Z-transform Z–1[x̃(z)] = x(n) gives

x(n) =
(

4A + B
3

)
(–1)n +

(
–A – B

3

)
(–4)n. (15)

Higher moments of the random variables are needed to obtain the approximate expected
values and variances. The moment generating function of a uniformly distributed random
variable X ∼ U(α,β) is given as [29]

MX(t) = E
[
etX]

=
eβt – eαt

(β – α)t
.

Hence, the expected value and variance of the random variable X are

E[X] =
α + β

2
, Var[X] =

(α – β)2

12
.

To find the numerical characteristics of (5), we start with the expectation:

E
[
x(n)

]
= E

[(
4A + B

3

)
(–1)n

]
+ E

[(
–A – B

3

)
(–4)n

]
(16)

which gives

=
(

4
3

(–1)n –
1
3

(–4)n
)

E[A] +
(

–
1
3

(–4)n +
1
3

(–1)n
)

E[B].

The variance is obtained as follows:

Var
[
x(n)

]
= Var

[(
4A + B

3

)
(–1)n

]
+ Var

[(
–A – B

3

)
(–4)n

]
(17)

which is found to be

= Var[A]
(

1
9

(16)n +
16
9

)
+ Var[B]

(
1
9

(16)n +
1
9

)
.

Let us investigate the case α = 3 and β = 1 for A, B ∼ U(α = 3,β = 1). The numerical
characteristics of the approximate solution of the random linear difference equation ob-
tained from the random Z-transform are obtained as follows [30–44]:

E
[
x(n)

]
= E

[(
4A + B

3

)
(–1)n

]
+ E

[(
–A – B

3

)
(–4)n

]

=
(

4
3

(–1)n –
1
3

(–4)n
)

E[A] +
(

–
1
3

(–4)n +
1
3

(–1)n
)

E[B]
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Figure 1 Expected value and variance obtained from the Z-transform of (11)

=
(

4
3

(–1)n –
1
3

(–4)n
)

2 +
(

–
1
3

(–4)n +
1
3

(–1)n
)

2

=
(

10
3

)
(–1)n +

(
–4
3

)
(–4)n,

Var
[
x(n)

]
= Var

[(
4A + B

3

)
(–1)n

]
+ Var

[(
–A – B

3

)
(–4)n

]

= Var[A]
(

1
9

(16)n +
16
9

)
+ Var[B]

(
1
9

(16)n +
1
9

)

=
1
3

(
1
9

(16)n +
16
9

)
+

1
3

(
1
9

(16)n +
1
9

)

=
(

2
27

)
(16)n +

(
17
27

)
.

Example 2 Let A, B be random variables with geometric distribution such that A, B ∼
G(p, q) where p = 1

3 and q = 2
3 .

x(n + 2) – 2x(n + 1) – 3x(n) = 2n, x(0) = A, x(1) = B. (18)

We investigate the behavior of the solution of (18) with the Z-transform method.
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Solution. The Z-transform of both sides gives

z2x̃(z) – z2x(0) – zx(1) – 2x̃(z) + 2zx(0) – 3x̃(z) =
z

z – 2
,

x̃(z)
[
z2 – 2z – 3

]
– z2A – zB + 2zA =

z
z – 2

.
(19)

Partial fraction of x̃(z)/z gives

x̃(z)
z

=
1 + (z – 2)[A(z – 2) + B]

(z – 2)(z – 3)(z + 1)
=

a1

z – 2
+

a2

z – 3
+

a3

z + 1
. (20)

This equation gives a1 = –1
3 , a2 = 1+A+B

4 , a3 = 1+9A–3B
12 . Hence

x̃(z) =
( –1

3 )z
z – 2

+
( 1+A+B

4 )z
z – 3

+
( 1+9A–3B

12 )z
z + 1

. (21)

The inverse Z-transform Z–1[x̃(z)] = x(n) gives

x(n) =
(

–1
3

)
(2)n +

(
1
4

)
(3)n +

(
1

12

)
(–1)n +

(
A
4

+
B
4

)
(3)n +

(
3A
4

–
B
4

)
(–1)n. (22)

The moment generating function of a geometrically distributed random variable X ∼
G(p, q) is given as [29]

MX(t) = E
[
etX]

=
pet

1 – qet .

Hence, the expected value and variance of the random variable X are

E[X] =
1
p

, Var[X] =
q
p2 .

To find the numerical characteristics of (22), we start with the expectation:

E
[
x(n)

]
= E

[(
–1
3

)
(2)n

]
+ E

[(
1
4

)
(3)n

]
+ E

[(
1

12

)
(–1)n

]

+ E
[(

A
4

+
B
4

)
(3)n

]
+ E

[(
3A
4

–
B
4

)
(–1)n

] (23)

which gives

=
–1
3

(2)n +
1
4

(3)n +
1

12
(–1)n + E[A]

(
1
4

(3)n +
3
4

(–1)n
)

+ E[B]
(

1
4

(3)n –
1
4

(–1)n
)

.

The variance is obtained as follows:

Var
[
x(n)

]
= Var

[(
–1
3

)
(2)n

]
+ Var

[(
1
4

)
(3)n

]
+ Var

[(
1

12

)
(–1)n

]

+ Var

[(
A
4

+
B
4

)
(3)n

]
+ Var

[(
3A
4

–
B
4

)
(–1)n

] (24)
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which is found to be

= Var[A]
(

9
16

+
1

16
(9)n

)
+ Var[B]

(
1

16
+

1
16

(9)n
)

.

Let the parameters be A, B ∼ G(p = 1
3 , q = 2

3 ). The numerical characteristics of the ap-
proximate solution of the random linear difference equation obtained from the random
Z-transform are as follows [30–44]:

E
[
x(n)

]
= E

[(
–1
3

)
(2)n

]
+ E

[(
1
4

)
(3)n

]
+ E

[(
1

12

)
(–1)n

]

+ E
[(

A
4

+
B
4

)
(3)n

]
+ E

[(
3A
4

–
B
4

)
(–1)n

]

=
–1
3

(2)n +
1
4

(3)n +
1

12
(–1)n + E[A]

(
1
4

(3)n +
3
4

(–1)n
)

+ E[B]
(

1
4

(3)n –
1
4

(–1)n
)

=
–1
3

(2)n +
1
4

(3)n +
1

12
(–1)n + 3

(
1
4

(3)n +
3
4

(–1)n
)

+ 3
(

1
4

(3)n –
1
4

(–1)n
)

=
–1
3

(2)n +
7
4

(3)n +
19
12

(–1)n,

Var
[
x(n)

]
= Var

[(
–1
3

)
(2)n

]
+ Var

[(
1
4

)
(3)n

]
+ Var

[(
1

12

)
(–1)n

]

+ Var

[(
A
4

+
B
4

)
(3)n

]
+ Var

[(
3A
4

–
B
4

)
(–1)n

]

= Var[A]
(

9
16

+
1

16
(9)n

)
+ Var[B]

(
1

16
+

1
16

(9)n
)

= 6
(

9
16

+
1

16
(9)n

)
+ 6

(
1

16
+

1
16

(9)n
)

=
15
4

+
3
4

(9)n.

Example 3 Let A, B be random variables with a Poisson distribution such that

x(n + 3) – 2x(n + 2) – x(n + 1) + 2x(n)

= A(–3)n + B2n, x(0) = –1, x(1) = 1, x(2) = 2.
(25)

We investigate the behavior of the solution of (25) with the Z-transform method.
Solution. The Z-transform of both sides gives

z3x̃(z) – z3x(0) – z2x(1) – zx(2) – 2z2x̃(z) + 2z2x(0) + 2zx(1) – zx̃(z) + zx(0) + 2x̃(z)

=
Az

z + 3
+

Bz
z – 2

,

x̃(z)
[
z3 – 2z2 – z + 2

]
– z

(
–z2 + 3z + 1

)
=

Az
z + 3

+
Bz

z – 2
. (26)
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Figure 2 Expected value and variance obtained from the Z-transform of (18)

Partial fraction of x̃(z)/z gives

x̃(z)
z

=
A(z – 2) + B(z + 3) + (1 + 3z – z2)(z + 3)(z – 2)

(z + 3)(z + 1)(z – 1)(z – 2)2

=
b1

z + 3
+

a1

z + 1
+

a2

z – 1
+

a3

z – 2
+

a4

(z – 2)2 .
(27)

Here,

b1 =
–A
40

, a1 =
A
12

–
B
18

–
1
2

, a2 =
–A
8

+
B
2

–
3
2

,

a3 =
A
15

–
8B
18

+ 1, a4 =
B
3

.

Hence,

x̃(z) =
–A
40 z

z + 3
+

( A
12 – B

18 – 1
2 )z

z + 1
+

( –A
8 + B

2 – 3
2 )z

z – 1
+

( A
15 – 8B

18 + 1)z
z – 2

+
B
3 z

(z – 2)2 .
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The inverse Z-transform Z–1[x̃(z)] = x(n) gives

x(n) =
(

–A
40

)
(–3)n + (2)n –

(
1
2

)
(–1)n –

3
2

(1)n +
(

A
12

–
B
18

)
(–1)n +

(
B(n + 1)

6

)
(2)n

+
(

–
A
15

+
11B
18

)
(2)n –

A
8

+
B
2

.
(28)

The moment generating function of a Poisson distributed random variable X ∼ P(λ) is
given as [29]

Mx = eλ(et–1).

Hence, the expected value and variance of the random variable X are

E(X) = λ, V (X) = λ.

To find the numerical characteristics of (28), we start with the expectation:

E
[
x(n)

]
= E

[(
–A
40

)
(–3)n

]
+ E

[
(2)n] + E

[
–
(

1
2

)
(–1)n

]
+ E

[
–

3
2

]

+ E
[(

A
12

–
B
18

)
(–1)n

]
+ E

[(
B(n + 1)

6

)
(2)n

]
+ E

[(
–

A
15

+
11B
18

)
(2)n

]

+ E
[

–A
8

+
B
2

]
(29)

which gives

= (2)n –
(

1
2

)
(–1)n –

3
2

+ E[A]
((

–1
40

)
(–3)n +

1
12

(–1)n –
1

15
(2)n –

1
8

)

+ E[B]
(

–
1

18
(–1)n +

11
18

(2)n +
n + 1

6
(2)n +

1
2

)
.

The variance is obtained as follows:

Var
[
x(n)

]
= Var

[(
–A
40

)
(–3)n

]
+ Var

[
(2)n] + Var

[
–
(

1
2

)
(–1)n

]
+ Var

[
–

3
2

]

+ Var

[(
A
12

–
B
18

)
(–1)n

]
+ Var

[(
B(n + 1)

6

)
(2)n

]

+ Var

[(
–

A
15

+
11B
18

)
(2)n

]
+ Var

[
–A
8

+
B
2

]

(30)

which is found to be

= Var[A]
(

1
900

(9)n +
1

144
+

1
225

(4)n +
1

64

)
+Var[B]

(
1

324
+

121
324

(4)n +
(n + 1)2

36
(4)n +

1
4

)
.

Let the parameters be A, B ∼ P(λ = 2). The numerical characteristics of the approximate
solution of the random linear difference equation obtained from the random Z-transform
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are obtained as follows [30–44]:

E
[
x(n)

]
= E

[(
–A
40

)
(–3)n

]
+ E

[
(2)n] + E

[
–
(

1
2

)
(–1)n

]
+ E

[
–

3
2

]

+ E
[(

A
12

–
B
18

)
(–1)n

]
+ E

[(
B(n + 1)

6

)
(2)n

]
+ E

[(
–

A
15

+
11B
18

)
(2)n

]

+ E
[

–A
8

+
B
2

]

= (2)n –
(

1
2

)
(–1)n –

3
2

+ E[A]
((

–1
40

)
(–3)n +

1
12

(–1)n –
1

15
(2)n –

1
8

)

+ E[B]
(

–
1

18
(–1)n +

11
18

(2)n +
n + 1

6
(2)n +

1
2

)

=
–1
20

(–3)n –
4
9

(–1)n +
109 + 15n

45
–

3
4

,

Var
[
x(n)

]
= Var[A]

(
1

900
(9)n +

1
144

+
1

225
(4)n +

1
64

)

+ Var[B]
(

1
324

+
121
324

(4)n +
(n + 1)2

36
(4)n +

1
4

)

= 2
(

1
900

(9)n +
1

144
+

1
225

(4)n +
1

64

)

+ 2
(

1
324

+
121
324

(4)n +
(n + 1)2

36
(4)n +

1
4

)

=
1

450
(9)n +

(
2

225
+

121
162

+
(n + 1)2

18

)
(4)n +

1
72

+
1

32
+

1
162

+
1
2

.

Example 4 Let A, B be random variables with Bernoulli distribution such that p = 1
5 and

q = 4
5 in

x(n + 2) + 2x(n + 1) + 5x(n) = 0, x(0) = A, x(1) = B, A, B ∼ B(p, q). (31)

We investigate the behavior of the solution of (31) with the Z-transform method.
Solution. The Z-transform of both sides gives

z2x̃(z) – z2x(0) – zx(1) + 2zx̃(z) + 2zx(0) + 5x̃(z) = 0,

x̃(z)
[
z2 + 2z + 5

]
– z2A – zB – 2zA = 0.

(32)

Partial fraction of x̃(z)/z gives

x̃(z)
z

=
z(zA + B + 2A)

z2 + 2z + 5
=

a1

|z – (–1 + 2i)| +
a2

|z – (–1 – 2i)| . (33)

Here,

a1 =
(1 + 2i)A + B

4i
, a2 = –

(1 – 2i)A + B
4i

, a2 = a1.
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Figure 3 Expected value and variance obtained from the Z-transform of (25)

Hence,

x̃(z) =
a1z

|z – (–1 + 2i)| +
a1z

|z – (–1 – 2i)| . (34)

The inverse Z-transform Z–1[x̃(z)] = x(n) gives

x(n) =
(

(1 + 2i)A + B
4i

)
(–1 + 2i)n +

(
–

(1 – 2i)A + B
4i

)
(–1 – 2i)n. (35)

The moment generating function of a Bernoulli distributed random variable X ∼ B(p, q)
is given as [29]

Mx(t) = etp + (1 – p).

Hence, the expected value and variance of the random variable X are

E(X) = p, V (X) = p(1 – p).
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To find the numerical characteristics of (35), we start with the expectation:

E
[
x(n)

]
= E

[(
(1 + 2i)A + B

4i

)
(–1 + 2i)n

]
+ E

[(
–

(1 – 2i)A + B
4i

)
(–1 – 2i)n

]
(36)

which gives

= E[A]
(

(1 + 2i)
4i

(–1 + 2i)n –
(1 – 2i)

4i
(–1 – 2i)n

)
+ E[B]

(
1
4i

(–1 + 2i)n –
1
4i

(–1 – 2i)n
)

.

The variance is obtained as follows:

Var
[
x(n)

]
= Var

[(
(1 + 2i)A + B

4i

)
(–1 + 2i)n

]
+ Var

[(
–

(1 – 2i)A + B
4i

)
(–1 – 2i)n

]
(37)

which is found to be

= Var[A]
(

1
16

(–1 + 2i)2n(1 + 2i)2 +
1

16
(–1 – 2i)2n(1 – 2i)2

)

+ Var[B]
(

1
16

(–1 + 2i)2n +
1

16
(–1 – 2i)2n

)
.

Let the parameters be A, B ∼ B(p = 1
5 , q = 4

5 ). The numerical characteristics of the ap-
proximate solution of the random linear difference equation obtained from the random
Z-transform are obtained as follows [30–44]:

E
[
x(n)

]
= E

[(
(1 + 2i)A + B

4i

)
(–1 + 2i)n

]
+ E

[(
–

(1 – 2i)A + B
4i

)
(–1 – 2i)n

]

= E[A]
(

(1 + 2i)
4i

(–1 + 2i)n –
(1 – 2i)

4i
(–1 – 2i)n

)

+ E[B]
(

1
4i

(–1 + 2i)n –
1
4i

(–1 – 2i)n
)

=
1
5

(
(1 + 2i)

4i
(–1 + 2i)n –

(1 – 2i)
4i

(–1 – 2i)n
)

+
1
5

(
1
4i

(–1 + 2i)n –
1
4i

(–1 – 2i)n
)

=
(1 + i)

10i
(–1 + 2i)n –

(1 – i)
10i

(–1 – 2i)n,

Var
[
x(n)

]
= Var

[(
(1 + 2i)A + B

4i

)
(–1 + 2i)n

]
+ Var

[(
–

(1 – 2i)A + B
4i

)
(–1 – 2i)n

]

= Var[A]
(

1
16

(1 + 2i)2(–1 + 2i)2n +
1

16
(1 – 2i)2(–1 – 2i)2n

)

+ Var[B]
(

1
16

(–1 + 2i)2n +
1

16
(–1 – 2i)2n

)

=
4

25

(
1

16
(–1 + 2i)2n(1 + 2i)2 +

1
16

(–1 – 2i)2n(1 – 2i)2
)

+
4

25

(
1

16
(–1 + 2i)2n +

1
16

(–1 – 2i)2n
)
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Figure 4 Expected value and variance obtained from the Z-transform of (31)

=
(

–3 + 4i
100

)
(–1 + 2i)2n +

(
–3 – 4i

100

)
(–1 – 2i)2n.

5 Conclusion
The application of the Z-transform for obtaining solutions to random linear difference
equations is examined in this study and random behavior of the solutions have been inves-
tigated with uniform, geometric, Poisson and Bernoulli distributions for the random be-
havior of linear difference equations. Expected values and variances of the solutions have
been obtained and are shown in graphs. Hence, it has been shown that the Z-transform is
the most suitable method for the solutions of random linear difference equations.
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