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Abstract
In this paper, we propose a mathematical model to predict the novel coronavirus.
Due to the rapid spread of the novel coronavirus disease in the world, we add to the
deterministic model of the coronavirus the terms of the stochastic perturbations. In
other words, we consider in this paper a stochastic model to predict the novel
coronavirus. The equilibrium points of the deterministic model have been
determined, and the reproduction number of our deterministic model has been
implemented. The asymptotic behaviors of the solutions of the stochastic model
around the equilibrium points have been studied. The numerical investigations and
the graphical representations obtained with the novel stochastic model are made
using the classical stochastic numerical scheme.
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1 Introduction
The spread of the novel coronavirus continues throughout the world. This novel coron-
avirus appeared in Wuhan and caused many inconveniences all over the world. Many peo-
ple died in China, Italia, Espagna, Africa, and many countries worldwide due to this new
disease. Presently, 20 June 2020, following the report 152 given by World Health Organiza-
tion (WHO), the number of infected persons in the world is 8,525,042, and the number of
deaths caused by this disease is 456,973 [1]. At this time, there exist no significant meth-
ods to stop this disease. One of the alternatives to prevent this disease is confinement
and the use of masks, but these methods are not so efficient. This novel disease impacts
many domains such as the economy, finance, and industries. There exist many models
for predicting the novel coronavirus, but in our paper we use the SEIR model exposed in
[2]. This novel coronavirus is known to behave very mysteriously and admits two types of
symptoms: visible symptoms and invisible symptoms, making this disease very dangerous.
Presently, the main problem with this disease is the infected persons who do not present
symptoms. This category of infected persons continues to spread the disease and to infect
other people throughout the world.

Nowadays, there exist many papers related to the prediction of the novel coronavirus.
We give a brief review of the articles addressing this novel disease modeled with integer-
order derivative and the non-integer-order derivative. In [3], Bozkurt et al. have intro-
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duced a new model for predicting the novel coronavirus. They mainly discussed a mathe-
matical model of the evolution and spread of pathogenic coronaviruses from natural host
to a human host. In [4], Monotosh et al. have introduced a model based on the dynamics of
the novel coronavirus. In [5], Atangana has modeled the spread of COVID-19 with fractal-
fractional operators and has asked the question: Can the lockdown save mankind before
vaccination? In [6], Singh et al. have studied the novel coronavirus model by a new hybrid
model of discrete wavelet decomposition and autoregressive integrated moving average
models in application to one month forecasts of the casualties of COVID-19. In [7], Li et
al. have proposed the SEIQDR model for predicting the novel coronavirus. In [8], Alka-
htani et al. have studied the stability analysis and suggested a numerical scheme for their
proposed model. There exist many investigations related to the epidemic models in gen-
eral [9–11]. Many of the existing models in the literature can be adapted as well with the
novel coronavirus with minors changes. For further references related to the novel coro-
navirus in fractional context, see [12–16]. There exist also many investigations related to
the stochastic epidemic models; the reader may refer to [17–22].

In this paper, we try to model the novel coronavirus using differential equations. Due
to the fact that this new disease is not controllable, we introduce in the new model the
perturbations which take into account the other phenomena which are not detected with
this new disease. In other words, we will focus on the stochastic novel coronavirus model.
In this paper, we mainly investigate the positivity, the boundedness, and the stochastic
stability around the equilibrium points of the novel coronavirus model. The primary tool
used in this paper is the Ito lemma. The reproduction number is experienced because it is
essential to control the novel coronavirus. By this number, we can give a proportion of the
population infected by this novel virus to stop the disease. We also provide some illustra-
tions of our main results by considering the data obtained in Senegal for a specific period.
It is essential to mention that the stochastic model does not have equilibrium points in
general. The method is to determine the equilibrium points of the deterministic model,
and for the stochastic model, to study the asymptotic behaviors around the equilibrium
points.

2 Description of the model predicting the novel coronavirus
In this section, we propose a model which we use to study the novel coronavirus disease.
We do not have many pieces of information related to the extinction of this disease in
the world, but it is clear, based on the literature associated with this disease, and on the
confirmed cases given by WHO related to the novel coronavirus, that we can use the SEIR
model [2],

Ṡ = � – μS – nS(I + ψA) – ηSM, (1)

Ė = nS(I + ψA) + ηSM –
(
(1 – θ )w + θρ + μ

)
E, (2)

İ = (1 – θ )wE – (τ + μ)I, (3)

Ȧ = θρE – (γ + μ)A, (4)

Ṙ = τ I + γ A – μR, (5)

Ṁ = ϑI + 
A – πM, (6)
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with the initial conditions represented by the following relationships:

S(0) = S0, E(0) = E0, I(0) = I0, (7)

and

A(0) = A0, R(0) = R0, M(0) = M0, (8)

where the total population number is denoted by N at time t and is divided into six com-
partments: S denotes the susceptible, E represents the exposed people, I denotes the
symptomatic infective, A represents the asymptotic infective, R indicates the recovered
people and M represents the reservoir. Furthermore, the definitions of the parameters
are summarized in the following list: � represents the birth–death rate of the people,
μ represents the natural death rate of the people, n represents the disease transmission
coefficient, ψ is the transmissibility multiplier of A to that I , η denotes the disease trans-
mission coefficient from M to S, θ represents the proportion of asymptomatic infection, ρ
and w indicate the transmission rate after completing the incubation period and becomes
infected, joining the class I and A, the symptomatic people and the asymptomatic peo-
ple joining the recovered class with the removal τ or recovery rate γ , respectively, ϑ and

 influence the symptomatic and the asymptomatic people contributing the virus into
the seafood market M, and π is the removing rate of the virus from the seafood market.
There are more pieces of information, the term nSI designs the number of suspected per-
sons infected by infective persons who enter in contact. The term SA designs the number
of suspected persons infected by asymptomatic persons entering contacts. This term rep-
resents a problem in controlling the novel coronavirus. The issue is to test all the people
massively when it is possible. But this issue is not always applicable due to the low status of
some countries, where the capacity of hospitalization impacts is limited. An alternative to
control this term in the world is confinement applied throughout the world. The time of
incubation also influences this term; for example, asymptomatic people can be included
in the recovery after incubation term when they have negative tests. The term SM is not
applicable outside China because it stipulates the number of suspective persons that are
infected when they enter in contact with the people in the market where the pandemic
has begun. This term will be omitted in many countries like France, Senegal, Italy, USA,
Switzerland, and Spain.

The trajectories generated by the model (1)–(8) can be experienced using numerical so-
lutions; however, in many applications, the experimentally measured trajectories of the
differential equations modeled by Eqs. (1)–(8) do not, in fact, behave as predicted. There-
fore, to make our novel coronavirus model more realistic, we introduce the stochastic
perturbation terms, including random noise types. The novel coronavirus is studied in
the literature without perturbation terms. In this paper, we are interested in the novel
coronavirus model when we introduce a white noise. In other words, how stochastic per-
turbations affect the deterministic model is described by Eqs. (1)–(8) in this paper. Due to
some random environmental effects, for the rest of the paper, we consider the following
perturbation terms: we replace in Eq. (1) μ by the term μ + σ1 dB1, in Eq. (2) μ by the term
μ+σ2 dB2, in Eq. (3) μ by the term μ+σ3 dB3, in Eq. (4) μ by the term μ+σ4 dB4, in Eq. (5)
μ by the term μ + σ5 dB5 and at last Eq. (6) π by the term π + σ6 dB6. Note that the terms
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B1, B2, B3, B4, B5, and B6 denote independent Brownian motions and σ 2
1 , σ 2

1 , σ 2
2 , σ 2

3 , σ 2
4 , σ 2

5
and σ 2

5 represent the intensities of the associated stochastic perturbation terms. That is,
we obtain the stochastic novel coronavirus model described by the following equations:

dS =
[
� – μS – nS(I + ψA) – ηSM

]
dt + σ1S dB1(t), (9)

dE =
[
nS(I + ψA) + ηSM –

(
(1 – θ )w + θρ + μ

)
E
]

dt + σ2E dB2(t), (10)

dI =
[
(1 – θ )wE – (τ + μ)I

]
dt + σ3I dB3(t), (11)

dA =
[
θρE – (γ + μ)A

]
dt + σ4A dB4(t), (12)

dR = [τ I + γ A – μR] dt + σ5Sq dB5(t), (13)

dM = [ϑI + 
A – πM] dt + σ6R dB6(t). (14)

3 Properties of the deterministic model for the novel coronavirus disease
In this section, we consider the deterministic model outside of China. In this context, the
transmission coefficient η from M to S is considered null. Thus the novel coronavirus
model under consideration is described by the following equation:

Ṡ = � – μS – nS(I + ψA), (15)

Ė = nS(I + ψA) –
(
(1 – θ )w + θρ + μ

)
E, (16)

İ = (1 – θ )wE – (τ + μ)I, (17)

Ȧ = θρE – (γ + μ)A, (18)

Ṙ = τ I + γ A – μR, (19)

with the initial conditions represented by the following relationships:

S(0) = S0, E(0) = E0, I(0) = I0, A(0) = A0, R(0) = R0. (20)

For the rest of the paper, we consider the SEIA model because the equation for recovery
of people R does not impact the other sub-equations.

3.1 Positivity and boundedness of the solutions
In this section, we prove the positivity and the boundedness of the solutions using the
standard method. We begin by the global positivity of the solutions. All the functions
constituting the equations of the model are differentiable, continuous, and Lipschitz con-
tinuous, then the solutions of the model (15)–(20) exist and are unique. Our objective is
to show the solutions are positive. We begin by the positivity of the variable S. First of all,
we consider a time t1 ≥ 0 verifying the set

t1 = min
{

t : S(t) = 0, or E(t) = 0, or I(t) = 0, or A(t) = 0, or R(t) = 0
}

. (21)

We first assume that S(t1) = 0, which in turn implies that S(t) < 0 for all t ∈ [0, t1], then
there exists a constant A such that

Ṡ ≥ AS. (22)
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Thus there exists a positive function n such that

Ṡ(t) = AS(t) + n(t). (23)

The solution of the above equation is given by the following equation:

S(t) = S(0) exp(At) +
∫ t

0
exp

(
A(t – τ )

)
n(τ ) dτ . (24)

Neglecting the second positive term in Eq. (24), and considering the time t1, we get the
following relationship:

S(t1) ≥ S(0) exp(At1) > 0, (25)

which is in contradiction with S(t1) = 0. That proves the solution S is positive for all t ≥ 0.
The same reasoning is repeated for the other variables of the model. Thus the solutions of
the model (15)–(20) are positive. We finish by showing the boundedness of the solutions.
Note that, by summing all the equations of the model (15)–(19), we have the following
relationships:

dN
dt

= � – μN(t). (26)

Applying the Laplace transform and its inverse to both sides of Eq. (26), we get the follow-
ing solution:

N(t) =
�

μ

(
1 – exp(–μt)

)
+ N(0) exp(–μt). (27)

Thus the solutions are bounded; with the blow-up concept, we obtain the existence of the
solutions for all t ≥ 0. Furthermore, when t tends to +∞, then we have

0 ≤ N(t) ≤ �

μ
. (28)

3.2 Reproduction number and its interpretations
In this section, we provide the reproduction number of the proposed model (15)–(20).
We use the generation matrix method. Therefore we reduce the study by considering the
variables E, I , and A because these variables are the infected variables. First of all we recall
the trivial equilibrium point ( �

μ
, 0, 0) given by the relation below. We begin by recalling

the matrix F and V at the trivial equilibrium point. They are represented in the following
forms:

F =

⎛

⎜
⎝

0 n �
μ

nψ �
μ

0 0 0
0 0 0

⎞

⎟
⎠ and V =

⎛

⎜
⎝

κ 0 0
–(1 – θ )w μ + τ 0

–θρ 0 γ + μ

⎞

⎟
⎠ . (29)

Then the reproduction number is obtained by determining the spectral radius of the ma-
trix FV –1. After calculation, we obtain the following relationship:

R0 =
nc(1 – θ )w
κ(τ + μ)

+
ncψθρ

κ(γ + μ)
, (30)
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where κ = (1 – θ )w + θρ + μ and c = �
μ

. The reproduction number plays an essential role
in controlling the novel coronavirus disease; when this number is less than 1, we can con-
sider the disease is controlled. But when this number exceeds 1, we can tell the disease is
not controlled. This number also has another property; it can give us the maximal pro-
portion of infected persons by the virus of corona under which the disease will die out.
The following formula gives the percentage of the infected persons under which the novel
coronavirus will die out:

CIM × 100 =
[

1 –
1
R0

]
× 100, (31)

where CIM denotes collective immunity, this option is not applied with the novel coro-
navirus due to the fact the percentage of death is not high, but the spread of this disease
is exponential. Furthermore, the use of the mask also makes this option inapplicable in
many countries because the masks and confinement can stop the spread of the disease
considerably.

4 Stochastic model for novel coronavirus disease
This section focuses on the spread of the novel coronavirus pandemic in the world. The
advantage of using the stochastic model is motivated by the fact that this new disease is
difficult to predict because we do not have an efficient therapy at this moment. Research
on therapy continues around the world. The transmission by person to person is exponen-
tial. The children, in general, are rather not infected by this new virus. One in science tries
to explain this fact in the literature. There exist many aspects that cannot be controlled
with the novel coronavirus. Thus many perturbation terms can impact the mathematical
modeling of the novel coronavirus. In this section, we study the stochastic novel coro-
navirus model with white noise. We will answer particularly to the boundedness of the
solution in the first question. In the second question, we will focus on an extinction study
and the asymptotic behavior around endemic equilibrium and the ergodicity. One of the
main ideas is the use of the Ito lemma, which will be recalled in this paper. This section
will be intense as regards calculations. The following equations describe the stochastic
equation under consideration in this paper:

dS =
[
� – μS – nS(I + ψA)

]
dt + σ1S dB1(t), (32)

dE =
[
nS(I + ψA) –

(
(1 – θ )w + θρ + μ

)
E
]

dt + σ2E dB2(t), (33)

dI =
[
(1 – θ )wE – (τ + μ)I

]
dt + σ3I dB3(t), (34)

dA =
[
θρE – (γ + μ)A

]
dt + σ4A dB4(t), (35)

dR = [τ I + γ A – μR] dt + σ5Sq dB5(t). (36)

For preliminaries sets, we consider a probability space defined by (�, F , P) with a fil-
tration {Ft}t≥0 which is increasing and right continuous while F0 contains all P-null sets.
The Brownian motions defined by Bi(t) where i = 1, 2, 3, 4, 5, are defined on the probability
space. Let the space be defined by

R
n
+ =

{
x ∈R

n : xi > 0, 1 < i ≤ n
}

.
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Let the stochastic differential equation be defined by the following equation:

dx(t) = h(x, t) dt + g(x, t) dB(t), (37)

with the initial condition represented by x(0) = x0 ∈R
n and B(t) denotes the n-dimensional

Brownian motion on the probability space (�, F , {Ft}t≥0, P) which is supposed complete.
We define the operator L associated to Eq. (37) as follows:

L =
∂

∂t
+

n∑

i=1

hi(x, t)
∂

∂xi
+

1
2

n∑

i,j=1

[
gT (x, t)g(x, t)

]
ij

(
∂2

∂xi ∂yi

)
. (38)

We define a fundamental operation for our investigations, L acts on the function V ∈
C2,1(Rn × [t0,∞],R≥0) by the following operation:

LV (x, t) =
∂V
∂t

+ Vx(x, t)h(x, t) +
1
2

trace
[
gT (x, t)Vxx(x, t)g(x, t)

]
, (39)

with

Vxx =
(

∂2V
∂xi ∂xj

)

n×n
, Vx =

[
∂V
∂x1

,
∂V
∂x2

, . . .
]

. (40)

The Ito lemma which will be used throughout stipulates the following relationship: if x ∈
R

n, then we have

dV (x, t) = LV (x, t) dt + Vx(x, t)g(x, t) dB(t). (41)

4.1 Global positivity of the solutions of the novel coronavirus model
In this section, we will prove our model admits a unique positive solution which is
bounded as well. For brevity, we establish the stochastic model related to novel coron-
avirus assuming it to be biologically well-posed. It is essential to mention that the sketch
of the proofs for this section and the rest of the paper can be found in the literature, here
we adapt the theorem with our novel model [17, 18, 20, 21].

Theorem 1 Let the initial value (S(0), E(0), I(0), A(0), R(0))T ∈R≥0, then the solution

(
S(t), E(t), I(t), A(t), R(t)

)T ,

for all strict positive time of the model (32)–(36) exists, and is positive almost surely.

Proof We assume that (S(0), E(0), I(0), A(0), R(0))T ∈R≥0, then using the fact in our model
all the functions are continuous, and Lipschitz continuous then there exists a positive solu-
tion (S(t), E(t), I(t), A(t), R(t)) into the interval [0,σe], where σe denotes the explosion time.
We have to prove the explosion time σe = ∞ almost surely. We consider natural number k0

such that S(0), E(0), I(0), A(0), R(0) belongs to the interval [ 1
k0

, k0]. For each k ≥ k0, where
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k is also a natural number, we define the stopping time in the following form:

σk = inf

{
σ ∈ [0,σe] : min

{
S(t), E(t), I(t), A(t), R(t)

} ≤ 1
k

or

max
{

S(t), E(t), I(t), A(t), R(t)
} ≥ k

}
. (42)

We remark inf(�) = ∞. We notice the stopping time σk defined in Eq. (42) increases as
well when k → ∞. Then two statements can be proven to hold almost surely. The first
σ∞ = limk→∞ ≤ σe almost surely and the second assumption is when σ∞ = ∞ then σe = ∞
almost surely. For the rest of the proof, we suppose the statements are not satisfied, which
in turn implies the existence of positive time T and ζ ∈ (0, 1) such that

P(σ∞ ≤ T) ≥ ζ for all k ≥ k0. (43)

Let the function V : R3 −→ R belong to the class C2. Let the function V be expressed in
the following form:

V (S, E, I, A, R) =
(

S – c – c ln

(
S
c

))
+ E – 1 – ln(E) + I – 1

– ln(I) + A – 1 – ln(A) + R – 1 – ln(R),

where the constant c = �/μ. We evaluate the stochastic derivative using the Ito lemma
along the trajectories of Eqs. (32)–(36), and we have the following relationship:

dV =
(

1 –
c
S

)
dS +

(
1 –

1
E

)
dE +

(
1 –

1
I

)
dI +

(
1 –

1
A

)
dA +

(
1 –

1
R

)
dR

+
cσ 2

1 + σ 2
2 + σ 2

3 + σ 2
4 + σ 2

5
2

dt

=
(

1 –
c
S

)
([

� – μS – nS(I + ψA)
]

dt + σ1S dB1(t)
)

+
(

1 –
1
E

)
([

nS(I + ψA) –
(
(1 – θ )w + θρ + μ

)
E
]

dt + σ2E dB2(t)
)

+
(

1 –
1
I

)([
(1 – θ )wE – (τ + μ)I

]
dt + σ3I dB3(t)

)

+
(

1 –
1
A

)([
θρE – (γ + μ)A

]
dt + σ4A dB4(t)

)

+
(

1 –
1
R

)(
[τ I + γ A – μR] dt + σ5Sq dB5(t)

)
+

cσ 2
1 + σ 2

2 + σ 2
3 + σ 2

4 + σ 2
5

2
dt

≤
[
� + cμ + (1 – θ )w + θρ + 4μ + γ + τ +

cσ 2
1 + σ 2

2 + σ 2
3 + σ 2

4 + σ 2
5

2

]
dt

+ σ1(S – c) dB1(t) + σ2(E – 1) dB2(t) + σ3(I – 1) dB3(t)

+ σ4(A – 1) dB4(t) + σ5(R – 1) dB5(t). (44)
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For simplification, we suppose the following constant: K = � + cμ + (1 – θ )w + θρ + 4μ +
γ + τ + cσ 2

1 +σ 2
2 +σ 2

3 +σ 2
4 +σ 2

5
2 , then Eq. (44) can be re-expressed in the following form:

dV ≤ K dt + σ1(S – c) dB1(t) + σ2(E – 1) dB2(t) + σ3(I – 1) dB3(t)

+ σ4(A – 1) dB4(t) + σ5(R – 1) dB5(t). (45)

We now integrate to both sides of Eq. (45) between 0 to σk ∧ T and we calculate the ex-
pectation; we obtain the following inequality:

E
[
V

(
S(σk ∧ T), E(σk ∧ T), I(σk ∧ T), A(σk ∧ T), R(σk ∧ T)

)] ≤ V (0) + E
∫ σk∧T

0
K ds

≤ V (0) + KE(σk ∧ T)

≤ V (0) + KT , (46)

where V (0) = V (S(0), E(0), I(0), A(0), R(0)). We consider �k = {σk ≤ T}, for all k ≥ k1,
which in turn implies from Eq. (43) that P(�k) ≥ ζ . We remark that, for every w ∈ �k ,
there exists at least

S(σk , w), E(σk , w), I(σk , w), A(σk , w), R(σk , w),

equaling the number k or 1
k . We get

V
(
S(σk ∧ T , w), E(σk ∧ T , w), I(σk ∧ T , w), A(σk ∧ T , w), R(σk ∧ T , w)

)

≥
(

1
k

– c – c ln

(
c
k

))
∧ (

k – 1 – ln(k)
)
. (47)

From Eq. (46) and Eq. (47), we obtain the following relationships:

V (0) + KT

≥ E
[
1�k V

(
S(σk ∧ T , w), E(σk ∧ T , w), I(σk ∧ T , w), A(σk ∧ T , w), R(σk ∧ T , w)

)]

≥ ζ

(
1
k

– c – c ln

(
c
k

))
∧ (

k – 1 – ln(k)
)
, (48)

where 1�k denotes the indicator function. We observe when k → ∞

∞ > V (0) + KT = ∞, (49)

which is absurd, which in turn implies σ∞ = ∞, almost surely. That means the solution
(S, E, I, A, R) is globally positive, almost surely. �

4.2 The remove of the novel coronavirus disease model
In this section, we study the asymptotic behavior around the trivial point given by
( �

μ
, 0, 0, 0). Concretely, we can observe that the trivial equilibrium is not an equilibrium

point for the stochastic model (32)–(36). Thus, we cannot study the local stability of this
point. The study made in this section gives us an alternative by studying the estimation
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of the average oscillation around this point because the model admits stochastic pertur-
bation term. In this section, we focus on the extinction of the disease according to the
value of the reproduction number. We present the following theorem to answer the above
points.

Theorem 2 Let the solution (S(t), E(t), I(t), A(t), R(t))T satisfy Eqs. (32)–(36) under the ini-
tial condition

(
S(0), E(0), I(0), A(0), R(0)

)T ∈ R≥0,

then when the reproduction number R0 is less than 1, the following relationship holds:

lim
t→∞ sup

1
t

∫ t

0

(
m1

(
S(r) – c

)2 + m2E2(r) + m3I2(r) + m4A2(r)
)

dr ≤ ξ1, (50)

where the constants are defined as follows:

m1 = 2μ – σ 2
1 (1 + c), m2 = κ –

σ 2
2

2
, m3 = τ + μ –

σ 2
3

2
,

m4 = γ + μ –
σ 2

4
2

, ξ1 = σ 2
1 c(1 + c),

Proof In this section, we utilize the change variables x1 = S – c, x2 = E, x3 = I , x4 = A. Then
the stochastic model (32)–(36) can be rewritten in the following form:

dx1 =
[
–μx1 – n(x1 + c)x3 – nψ(x1 + c)x4

]
dt + σ1(x1 + c) dB1(t), (51)

dx2 =
[
n(x1 + c)x2 + nψ(x1 + c)x4 – κx2

]
dt + σ2x2 dB2(t), (52)

dx3 =
[
(1 – θ )wx2 – (τ + μ)x3

]
dt + σ3x3 dB3(t), (53)

dx4 =
[
θρx2 – (γ + μ)x4

]
dt + σ4x4 dB4(t), (54)

where κ = ((1 – θ )w + θρ + μ). Let the function V be a class C2 function defined by the
following:

V (x) = V1(x) + V2(x) + V3(x) + V4(x), (55)

where the explicit form of the functions V1, V2, V3, V4 and V5 are given by the following
expressions:

V1(x) =
x2

1
2

, V2(x) =
x2

3
2

, V3(x) =
x2

4
2

,

V4(x) = x1 + x2 +
κR0

(1 – θ )w
x3, V5(x) =

(x1 + x2)2

2
.

(56)

Our objective is to calculate dV (x) = LV (x) dt + Vx(x)g(x) dB(t) represented in Eq. (41). We
apply the Ito lemma along the trajectories of Eqs. (51)–(54), and we obtain the following
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expression:

dV1 + dV2 + dV3

= LV1 dt + LV2 dt + LV3 dt + σ1(x1 + c)2 dB1(t) + σ3x2
3 dB3(t) + σ4x2

4 dB4(t), (57)

dV4 = LV4 dt + σ1x1 dB1(t) + σ2x2 dB2(t) + σ3
κR0

(1 – θ )w
x3 dB3(t), (58)

dV5 = LV5 dt + (x1 + x2)
[
σ1(x1 + c) dB1(t) + σ2x2 dB2(t)

]
. (59)

For the rest of the proof, we will calculate LV1, LV2, LV3, LV4 and LV5. The main idea in all
the proofs is the use of the classical inequality ab ≤ a2/2 + b2/2. Following Eq. (39), we get
the following results:

LV1 = x1
[
–μx1 – n(x1 + c)x3 – nψ(x1 + c)x4

]
+

σ 2
1 (x1 + c)2

2

= –
(

μ –
σ 2

1
2

)
x2

1 + σ 2
1 cx1 +

σ 2
1 c2

2
– nx2

1x3 – ncx1x3 – nψx2
1x4 – ncψx1x4

≤ –
(

μ –
σ 2

1 (1 + c)
2

)
x2

1 +
σ 2

1 c(1 + c)
2

– nx2
1x3 – ncx1x3 – nψx2

1x4 – ncψx1x4, (60)

LV2 = x3
[
(1 – θ )wx2 – (τ + μ)x3

]
+

σ 2
3 x2

3
2

= –(τ + μ)x2
3 + (1 – θ )wx2x3 +

σ 2
3 x2

3
2

= –
(

τ + μ –
σ 2

3
2

)
x2

3 + (1 – θ )wx2x3, (61)

LV3 = x4
[
θρx2 – (γ + μ)x4

]
+

σ 2
4 x2

4
2

= –(γ + μ)x2
4 + θρx2x4 +

σ 2
4 x2

4
2

= –
(

γ + μ –
σ 2

4
2

)
x2

4 + θρx2x4, (62)

LV4 = –μx1 – κx2 + κR0x2 –
(τ + μ)κR0

(1 – θ )w
x3

= –μx1 + κ(R0 – 1)x2 –
(τ + μ)κR0

(1 – θ )w
x3, (63)

and finally

LV5 = (x1 + x2)(–μx1 – κx2) +
1
2
[
σ 2

1 (x1 + c)2 + σ 2
2 x2

2
]

= –μx2
1 – κx1x2 – μx1x2 – κx2

2 +
1
2
[
σ 2

1 (x1 + c)2 + σ 2
2 x2

2
]

≤ –
(

μ –
σ 2

1 (1 + c)
2

)
x2

1 –
(

κ –
σ 2

2
2

)
x2

2 +
σ 2

1 c(1 + c)
2

– (κ + μ)x1x2. (64)
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Under the assumptionR0 ≤ 1 in Eq. (63) and summing Eqs. (60)–(64), we get the following
inequality:

LV ≤ –
(
2μ – σ 2

1 (1 + c)
)
x2

1 –
(

κ –
σ 2

2
2

)
x2

2 –
(

τ + μ –
σ 2

3
2

)
x2

3 –
(

γ + μ –
σ 2

4
2

)
x2

4

+ σ 2
1 c(1 + c). (65)

Thus, recalling the formula of dV (x) = LV (x) dt + Vx(x)g(x) dB(t) represented in Eq. (41),
it follows from the Ito lemma that

dV ≤ [
–m1x2

1 – m2x2
2 – m3x2

3 – m4x2
4 + ξ1

]
dt

+ σ1(x1 + c)2 dB1(t) + σ3x2
3 dB3(t) + σ4x2

4 dB4(t)

+ σ1x1 dB1(t) + σ2x2 dB2(t) + σ3
κR0

(1 – θ )w
x3 dB3(t)

+ (x1 + x2)
[
σ1(x1 + c) dB1(t) + σ2x2 dB2(t)

]
. (66)

We integrate Eq. (66) between 0 to t and we apply at the same moment the expectation;
we get the following relationship:

EV
(
x(t)

)
– V

(
x(0)

) ≤ –E
∫ t

0

[
m1x2

1(r) + m2x2
2(r) + m3x2

3(r) + m4x2
4(r) – ξ1

]
dr. (67)

Using the fact the model (32)–(36) admits the positive bounded solution and using the
changes variables, we arrive at the following inequality:

lim
t→∞ sup

1
t

∫ t

0

(
m1

(
S(r) – c

)2 + m2E2(r) + m3I2(r) + m4A2(r)
)

dr ≤ ξ1. (68)

The previous theorem can be interpreted thus: when R0 ≤ 1 in Eq. (63) and the pa-
rameters m1, m2, m4, and m4 are strictly positive, the solution of the stochastic model
oscillates around the trivial equilibrium point, and the length of the oscillations are given
by Eq. (50). �

4.3 Asymptotic behavior around endemic equilibrium and ergodicity
In this section, we repeat the procedure of the previous section by considering the endemic
equilibrium point. We mainly investigate the asymptotic behavior around the endemic
equilibrium given by (S∗, E∗, I∗, A∗). We give the following theorem to answer the above
point.

Theorem 3 Let the solution (S(t), E(t), I(t), A(t), R(t))T satisfy Eqs. (32)–(36) under the ini-
tial condition

(
S(0), E(0), I(0), A(0), R(0)

)T ∈ R≥0,
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then when the reproduction number R0 is greater than 1, the following relationship holds:

lim
t→∞ sup

1
t

∫ t

0

(
n1

(
S(r) – S∗)2 + n2

(
E(r) – E∗)2 + n3

(
I(r) – I∗)2 + n4

(
A(r) – A∗)2)dr

≤ ξ2, (69)

where the constants are defined as follows:

n1 = 3μ, n2 = 3κ – θρ – (1 – θ )w,

n3 =
(τ + μ)(1 – θ )2w2 – 1

(1 – θ )2w2 , n4 =
(μ + γ )(θρ)2 – 1

θ2ρ2 ,

and

ξ2 =
2(τ + μ)

(1 – θ )2w2 I∗ +
(τ + μ)σ 2

4 I∗

(1 – θ )2w2 +
2(γ + μ)

(θρ)2 A∗ +
(γ + μ)σ 2

4 A∗

(θρ)2 . (70)

In addition the solution of the stochastic novel coronavirus model is ergodic as well when
the following inequality holds:

0 < ξ2 < min
{

n1
(
S∗)2, n2

(
E∗)2, n3

(
I∗)2, n4

(
A∗)2}. (71)

Proof The first remark is to observe when the reproduction number is greater than 1; then
the deterministic novel coronavirus disease model admits one endemic equilibrium point
as described in the previous sections. We decompose our proof in five steps. In the first
step, we consider the function W1 to be of class C2 and defined by the following form:

W1(x) =
1
2
[
S – S∗ + E – E∗ + A – A∗]. (72)

For simplification, we limit ourselves to the calculations of the function LW1 according to
the Ito lemma, and we have the following relationship:

LW1 =
[
S – S∗ + E – E∗ + A – A∗](� – μS – κE + θρE – (μ + γ )A

)

+
σ 2

1 S2

2
+

σ 2
2 E2

2
+

σ 2
4 A2

2

= –μ
(
S – S∗)2 – (κ – θρ)

(
E – E∗)2 – (μ + γ )

(
A – A∗)2

– (κ – θρ + μ)
(
S – S∗)(E – E∗) – (2μ + γ )

(
S – S∗)(A – A∗)

– (μ + γ + κ – θρ)
(
A – A∗)(E – E∗) +

σ 2
1 S2

2
+

σ 2
2 E2

2
+

σ 2
4 A2

2
. (73)

In the second step, we consider the function W2 be a class C2 defined by the following
form

W2(x) =
1
2
[
S – S∗ + E – E∗ + I – I∗]. (74)
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For simplification, we continue with the calculations of the function LW2 according to the
Ito lemma, and we have the following relationship:

LW2 =
[
S – S∗ + E – E∗ + I – I∗][� – μS – κE + (1 – θ )wE – (τ + μ)I

]

+
σ 2

1 S2

2
+

σ 2
2 E2

2
+

σ 2
3 I2

2

= –μ
(
S – S∗)2 –

(
κ – (1 – θ )w

)(
E – E∗)2 – (τ + μ)

(
I – I∗)2

–
(
κ + μ – (1 – θ )w

)(
S – S∗)(E – E∗) – (τ + 2μ)

(
S – S∗)(I – I∗)

–
(
τ + μ + κ – (1 – θ )w

)(
E – E∗)(I – I∗) +

σ 2
1 S2

2
+

σ 2
2 E2

2
+

σ 2
3 I2

2
. (75)

In the third step, we consider the function W3 to be of class C2 and defined by the following
form:

W3(x) =
1
2
[
S – S∗ + E – E∗]. (76)

For simplification, we continue with the calculations of the function LW3 according to the
Ito lemma, and we have the following relationship:

LW3 =
[
S – S∗ + E – E∗][� – μS – κE] +

σ 2
1 S2

2
+

σ 2
2 E2

2

= –μ
(
S – S∗)2 – κ

(
E – E∗)2 – (κ + μ)

(
S – S∗)(E – E∗) +

σ 2
1 S2

2
+

σ 2
2 E2

2
. (77)

In the fourth step, we consider the function W4 to be of class C2 and defined by the fol-
lowing form:

W4(x) = I – I∗ – I∗ ln

(
I
I∗

)
. (78)

For simplification, we continue with the calculations of the function LW4 according to the
Ito lemma, and we have the following relationship:

LW4 =
(

1 –
I∗

I

)[
(1 – θ )wE – (τ + μ)I

]
+

σ 2
4 I∗

2

=
(1 – θ )wE

I
(
I – I•) – (τ + μ)I + (τ + μ)I∗ +

σ 2
4 I∗

2
. (79)

Using the inequality 2ab ≤ a2 + b2, the above equation can be written in the following
form:

LW4 ≤ 1
2
(
I – I∗)2 +

(1 – θ )2w2E2

2I2 – (τ + μ)I + (τ + μ)I∗ +
σ 2

4 I∗

2
,

2LW4

(1 – θ )2w2 ≤ 1
(1 – θ )2w2

(
I – I∗)2 +

E2

I2 –
2(τ + μ)

(1 – θ )2w2 I

+
2(τ + μ)

(1 – θ )2w2 I∗ +
(τ + μ)σ 2

4 I∗

(1 – θ )2w2 . (80)
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In the last step, we consider the function W5 to be of class C2 and defined by the following
form:

W5(x) = A – A∗ – A∗ ln

(
A
A∗

)
. (81)

For simplification, we continue with the calculations of the function LW5 according to the
Ito lemma, and we have the following relationship:

LW5 =
(

1 –
A∗

A

)
[
θρE – (γ + μ)A

]
+

σ 2
5 A∗

2

=
θρE

A
(
A – A•) – (γ + μ)A + (γ + μ)A∗ +

σ 2
5 A∗

2
. (82)

Using the inequality 2ab ≤ a2 + b2, the above equation can be written in the following
form:

LW5 ≤ 1
2
(
A – A∗)2 +

(θρ)2E2

2A2 – (γ + μ)A + (γ + μ)A∗ +
σ 2

5 A∗

2
,

2LW5

(θρ)2 ≤ 1
(θρ)2

(
A – A∗)2 +

E2

A2 –
2(γ + μ)

(θρ)2 A +
2(γ + μ)

(θρ)2 A∗ +
(γ + μ)σ 2

4 A∗

(θρ)2 . (83)

Let the function W be of class C2 and defined by the following form:

W = W1 + W2 + W3 +
2W4

(1 – θ )2w2 +
2W5

(θρ)2 . (84)

We finish with the calculation of the function LW using the functions LW1, LW2, LW3,
LW4 and LW5, the upper bound of the function LW is given by the following inequality:

LW ≤ –n1
(
S – S•)2 – n2

(
E – E•)2 – n3

(
I – I•)2 – n4

(
A – A•)2 + ξ2, (85)

where

n1 = 3μ, n2 = 3κ – θρ – (1 – θ )w,

n3 =
(τ + μ)(1 – θ )2w2 – 1

(1 – θ )2w2 , n4 =
(μ + γ )(θρ)2 – 1

θ2ρ2 ,

and

ξ2 =
2(τ + μ)

(1 – θ )2w2 I∗ +
(τ + μ)σ 2

4 I∗

(1 – θ )2w2 +
2(γ + μ)

(θρ)2 A∗ +
(γ + μ)σ 2

4 A∗

(θρ)2 . (86)

We integrate Eq. (85) between 0 to t and we apply at the same moment the expectation;
we get the following relationship:

EW
(
x(t)

)
– W

(
x(0)

)

≤ –E
∫ t

0

[
n1

(
S(r) – S∗)2 + n2

(
E(r) – E∗)2 + n3

(
I(r) – I∗)2 + n4

(
A(r) – A∗)2 – ξ2

]
dr.
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From this and from the boundedness of the solution of the model (32)–(36), we conclude
that Eq. (69) holds. We finish by proving the ergodicity of the solution of the model. Note
that Eqs. (32)–(36) prove that the constants n1, n2, n3, and n4 are strictly positive, and we
use the ellipsoid domain equation given by

n1
(
S – S•)2 + n2

(
E – E•)2 + n3

(
I – I•)2 + n4

(
A – A•)2 ≤ ξ2, (87)

which lies in the domainR
4≥0. We consider any open neighborhood of the ellipsoid domain

given by U such that Ū ⊆ R
4≥0. Note that Eq. (85) implies LW < 0 for all x ∈ R

4≥0|U . Fur-
thermore the stochastic novel coronavirus disease model can be written its matrix form,
that is,

dx = f (x) dt + A(x) dB(t),

where the function f and the diffusion matrix are given by

f (x) =

⎛

⎜⎜
⎜
⎝

� – μS – nS(I + ψA)
nS(I + ψA) – κE

(1 – θ )wE – (τ + μ)I
θρE – (γ + μ)A

⎞

⎟⎟
⎟
⎠

, A(x) =

⎛

⎜⎜
⎜
⎝

σ 2
1 S2 0 0 0
0 σ 2

2 E2 0 0
0 0 σ 2

3 I2 0
0 0 0 σ 2

4 A2

⎞

⎟⎟
⎟
⎠

. (88)

There exists M = min{σ 2
1 S2,σ 2

2 E2,σ 2
3 I2,σ 2

4 A2} such that the solution (S, E, I, A)T ∈ Ū and
ε = (ε1, ε2, ε3, ε4)T ∈R

4≥0 satisfying the relation

4∑

i,j=1

= σ 2
1 S2ε1 + σ 2

2 E2ε2 + σ 2
1 I2ε3 + σ 2

4 A2ε4

≥ min
{
σ 2

1 S2,σ 2
2 E2,σ 2

3 I2,σ 2
4 A2}|ε| = Mε2. (89)

From the previously established assumptions, we conclude that the stochastic novel coro-
navirus disease model admits the ergodic solution (S, E, I, A)T . �

4.4 Applications and illustrations
In this section, we give the application of the main results established in the previous sec-
tions. We represent the dynamics of the E the exposed population graphically, I the symp-
tomatic infective and A asymptomatic infective in Senegal. We apply our study in the case
of Senegal. We fix certain parameters:

• the natural mortality rate is equal to μ = 0.0079 day–1, the birth rate is considered
proportional to the natural mortality rate, but here we estimate it to be � = 0.0079 day–1;

• the contact rate or the disease transmission coefficient is assumed to be n = 0.4;
• the transmission multiplier is estimated to be ψ = 0.8, note that when this number

converges to zero it means there is no transmission,
• the proportion of asymptomatic infection in our country is θ = 0.6, which tells how

many persons are asymptomatic with the novel coronavirus disease;
• the incubation periods parameter is w = ρ = 1/10 day–1, which means an infected per-

son takes 10 days to present the first signs;
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• the removal or recovery rate of I , τ = 1/9 day–1, that is, an infected person takes 9 days
in general to recover when he receives specific treatment;

• and the removal or recovery rate of A, γ = 1/9 day–1, which means an asymptomatic
person takes 9 days in general to recover.

To analyze the extinction and the asymptotic behavior around the endemic point, we
determine the generation number given by

R0 = 2.9577 > 1. (90)

We observe the reproduction number exceeds 1. It means, in general, that an infected per-
son can contaminate three persons. We see when we prefer the collective immunity, the
novel coronavirus will be stopped when the CIM = 66.2. That explains the fact in Sénégal,
the disease is continuing to cause deaths and infects persons. But the reproduction num-
ber R0 > 1, Theorem 3, means that the solutions of the stochastic model oscillate around
the nontrivial equilibrium point with an amplitude ξ2.

We finish this section by proposing the numerical discretization and graphical repre-
sentations. We use Monod–Milstein discretization, which is mostly used to discretize the
stochastic differential. We have the following discretization:

Sk+1 = Sk
[
� – μSk – nSk(Ik + ψAk)

]
�t + σ1Skχ1,k

√
�t +

σ 2
1

2
Sk

(
χ2

1,k�t – �t
)
, (91)

Ek+1 = Ek +
[
nSk(Ik + ψAk) – κEk

]
�t + σ2Ekχ2,k

√
�t +

σ 2
2

2
Ek

(
χ2

2,k�t – �t
)
, (92)

Ik+1 = Ik +
[
(1 – θ )wEk – (τ + μ)Ik

]
�t + σ3Ikχ3,k

√
�t +

σ 2
3

2
Ik

(
χ2

3,k�t – �t
)
, (93)

Ak+1 = Ak +
[
θρEk – (γ + μ)Ak

]
�t + σ4Akχ4,k

√
�t +

σ 2
4

2
Ak

(
χ2

4,k�t – �t
)
, (94)

Rk+1 = Rk[τ Ik + γ Ak – μRk]�t + σ5Rkχ5,k
√

�t +
σ 2

5
2

Rk
(
χ2

5,k�t – �t
)
, (95)

where χ1,k , χ2,k , χ2,k , χ2,k and χ2,k represent the independent Gaussian random variables
with N(0, 1). We give the graphical representations (see in Figs. 1, 2, 3) with the following

Figure 1 Dynamics of the infected individuals
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Figure 2 Dynamics of the asymptomatic individuals

Figure 3 Dynamics of the exposed induviduals

values of the intensities of the stochastic perturbations: χ1,k = 0.05, χ2,k = 0.05, χ2,k = 0.05,
χ2,k = 0.05 and χ2,k = 0.05. Note that all the values of the exposed, infective, asymptomatic
cases depend on the intensity of the stochastic perturbations. In this section, we set E =
100 (assumed), I = 10 (comminatory transmission, they are infected because they present
the novel coronavirus disease symptoms), A = 54 (contact with infected persons). All the
data of the disease are considered before June 1, 2020, in Senegal [1].

Note that to obtain the total estimated number of infected per day, we sum the number
infective and the number of asymptomatic persons.
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