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Abstract
In this work, we introduce the notion of interval-valued coordinated convexity and
demonstrate Hermite–Hadamard type inequalities for interval-valued convex
functions on the co-ordinates in a rectangle from the plane. Moreover, we prove
Hermite–Hadamard inequalities for the product of interval-valued convex functions
on coordinates. Our results generalize several other well-known inequalities given in
the existing literature on this subject.
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1 Introduction
The classical Hermite–Hadamard inequality is one of the most well-established inequal-
ities in the theory of convex functions with geometrical interpretation, and it has many
applications. The Hermite–Hadamard inequality states that, if f : I → R is a convex func-
tion on the interval I of real numbers and a, b ∈ I with a < b, then

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
. (1.1)

Both inequalities in (1.1) hold in the reversed direction if f is concave. We note that
Hermite–Hadamard inequality may be regarded as a refinement of the concept of con-
vexity, and it is implied easily from Jensen’s inequality. Hermite–Hadamard inequality for
convex functions has received renewed attention in recent years, and a remarkable variety
of refinements and generalizations have been studied. In [7], Dragomir demonstrated the
subsequent inequality of Hadamard type for coordinated convex functions.

Theorem 1 Let f : � = [a, b] × [c, d] → R be convex on coordinates �. Then the following
inequalities hold:

f
(

a + b
2

,
c + d

2

)

≤ 1
2

[
1

b – a

∫ b

a
f
(

x,
c + d

2

)
dx +

1
d – c

∫ d

c
f
(

a + b
2

, y
)

dy
]
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≤ 1
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≤ 1
4

[
1

b – a

∫ b

a
f (x, c) dx +

1
b – a

∫ b

a
f (x, d) dx

+
1

d – c

∫ d

c
f (a, y) dy +

1
d – c

∫ d

c
f (b, y) dy

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)
4

. (1.2)

For more results related to (1.2), we refer the readers to [1, 9, 15] and the references
therein.

On the other hand, interval analysis is a notable case of set-valued analysis, which is the
discussion of sets in the spirit of mathematical analysis and general topology. It was intro-
duced as an attempt to handle the interval uncertainty that appears in many mathematical
or computer models of some deterministic real-world phenomena. An old example of an
interval enclosure is Archimede’s method, which is related to computing the circumfer-
ence of a circle. In 1966, the first book related to interval analysis was given by Moore,
who is known as the first user of intervals in computational mathematics, see [11]. Af-
ter his book, several scientists started to investigate the theory and application of interval
arithmetic. Nowadays, because of its applications, interval analysis is a useful tool in var-
ious areas which are interested intensely in uncertain data. You can see applications in
computer graphics, experimental and computational physics, error analysis, robotics, and
many others.

What is more, several important inequalities (Hermite–Hadamard, Ostrowski, etc.)
have been studied for interval-valued functions in recent years. In [3, 4], Chalco-
Cano et al. obtained Ostrowski type inequalities for interval-valued functions by using
Hukuhara derivative for interval-valued functions. In [16], Román-Flores et al. established
Minkowski and Beckenbach’s inequality for interval-valued functions. For other related
results, we refer the readers to [5, 6, 8, 10, 13, 17, 18].

2 Preliminaries and known results
In this section, we review some basic definitions, results, notions, and properties which
are used throughout the paper. The set of all closed intervals of R, the sets of all closed
positive intervals of R, and closed negative intervals of R are denoted by RI , R+

I , R–
I ,

respectively. The Hausdorff distance between [X, X] and [Y , Y ] is defined as

d
(
[X, X], [Y , Y ]

)
= max

{|X – Y |, |X – Y |}.

The metric space (RI , d) is a complete metric space. For more in-depth notations on
interval-valued functions, see [12, 19].

In [11], Moore gave the notion of the Riemann integral for interval-valued functions.
The sets of all Riemann integrable interval-valued functions and real-valued functions on
[a, b] are denoted by IR([a,b])and R([a,b]), respectively. The following theorem gives a relation
between (IR)-integrable functions and Riemann integrable (R-integrable) functions (see,
[12, p. 131]).
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Theorem 2 Let F : [a, b] → RI be an interval-valued function with the property that
F(t) = [F(t), F(t)]. F ∈ IR([a,b]) if and only if F(t), F(t) ∈ R([a,b]) and

(IR)
∫ b

a
F(t) dt =

[
(R)

∫ b

a
F(t) dt, (R)

∫ b

a
F(t) dt

]
.

In [19, 21], Zhao et al. introduced a kind of convex interval-valued function as follows.

Definition 1 Let h : [c, d] → R be a nonnegative function, (0, 1) ⊆ [c, d] and h �= 0. We
say that F : [a, b] → R

+
I is an h-convex interval-valued function if, for all x, y ∈ [a, b] and

t ∈ (0, 1), we have

h(t)F(x) + h(1 – t)F(y) ⊆ F
(
tx + (1 – t)y

)
. (2.1)

With SX(h, [a, b],R+
I), we will show the set of all h-convex interval-valued functions.

The usual notion of convex interval-valued function matches a relation (2.1) with h(t) =
t (see [18]). Moreover, if we take h(t) = ts in (2.1), then Definition 1 gives the s-convex
interval-valued function defined by Breckner (see [2]).

In [19], Zhao et al. obtained the following Hermite–Hadamard inequality for interval-
valued functions by using h-convexity.

Theorem 3 Let F : [a, b] →R
+
I be an interval-valued function such that F(t) = [F(t), F(t)]

and F ∈ IR([a,b]), h : [0, 1] → R be a nonnegative function and h( 1
2 ) �= 0. If F ∈ SX(h, [a, b],

R
+
I), then

1
2h( 1

2 )
F
(

a + b
2

)
⊇ 1

b – a
(IR)

∫ b

a
F(x) dx ⊇ [

F(a) + F(b)
]∫ 1

0
h(t) dt. (2.2)

Remark 1 (i) If h(t) = t, then (2.2) reduces to the following result:

F
(

a + b
2

)
⊇ 1

b – a
(IR)

∫ b

a
F(x) dx ⊇ F(a) + F(b)

2
, (2.3)

which was obtained by Sadowska in [18].
(ii) If h(t) = ts, then (2.2) reduces to the following result:

2s–1F
(

a + b
2

)
⊇ 1

b – a
(IR)

∫ b

a
F(x) dx ⊇ F(a) + F(b)

s + 1
,

which was obtained by Osuna-Gómez et al. in [14].

Theorem 4 Let F , G : [a, b] → R
+
I be two interval-valued functions such that F(t) =

[F(t), F(t)] and G(t) = [G(t), G(t)], where F , G ∈ IR([a,b]), h1, h2 : [0, 1] → R are two non-
negative functions and h1( 1

2 )h2( 1
2 ) �= 0. If F , G ∈ SX(h, [a, b],R+

I), then

1
2h1( 1

2 )h2( 1
2 )

F
(

a + b
2

)
G

(
a + b

2

)
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⊇ 1
b – a

(IR)
∫ b

a
F(x)G(x) dx + M(a, b)

∫ 1

0
h1(t)h2(1 – t) dt

+ N(a, b)
∫ 1

0
h1(t)h2(t) dt (2.4)

and

1
b – a

(IR)
∫ b

a
F(x)G(x) dx ⊇ M(a, b)

∫ 1

0
h1(t)h2(t) dt

+ N(a, b)
∫ 1

0
h1(t)h2(1 – t) dt, (2.5)

where

M(a, b) = F(a)G(a) + F(b)G(b) and N(a, b) = F(a)G(b) + F(b)G(a).

Remark 2 If h(t) = t, then (2.4) reduces to the following result:

1
b – a

(IR)
∫ b

a
F(x)G(x) dx ⊇ 1

3
M(a, b) +

1
6

N(a, b). (2.6)

Remark 3 If h(t) = t, then (2.5) reduces to the following result:

2F
(

a + b
2

)
G

(
a + b

2

)
⊇ 1

b – a
(IR)

∫ b

a
F(x)G(x) dx

+
1
6

M(a, b) +
1
3

N(a, b). (2.7)

3 Interval-valued double integral
A set of numbers {ti–1, ξi, ti}m

i=1 is called a tagged partition P1 of [a, b] if

P1 : a = t0 < t1 < · · · < tn = b

with ti–1 ≤ ξi ≤ ti for all i = 1, 2, 3, . . . , m. Moreover, if we have �ti = ti – ti–1, then P1 is
said to be δ-fine if �ti < δ for all i. Let P(δ, [a, b]) denote the set of all δ-fine partitions of
[a, b]. If {ti–1, ξi, ti}m

i=1 is a δ-fine P1 of [a, b] and {sj–1,ηj, tj}n
j=1 is δ-fine P2 of [c, d], then the

rectangles

�i,j = [ti–1, ti] × [sj–1, sj]

partition rectangle � = [a, b] × [c, d] with the points (ξi,ηj) are inside the rectangles
[ti–1, ti] × [sj–1, sj]. Furthermore, by P(δ,�) we denote the set of all δ-fine partitions P of
� with P1 × P2, where P1 ∈ P(δ, [a, b]) and P2 ∈ P(δ, [c, d]). Let �Ai,j be the area of the
rectangle �i,j. In each rectangle �i,j, where 1 ≤ i ≤ m, 1 ≤ j ≤ n, choose arbitrary (ξi,ηj)
and get

S(F , P, δ,�) =
m∑

i=1

n∑
j=1

F(ξi,ηj)�Ai,j.

We call S(F , P, δ,�) an integral sum of F associated with P ∈ P(δ,�).
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Now, we review the concepts and notations of interval-valued double integral given by
Zhao et al. in [20].

Theorem 5 ([20]) Let F : � → RI . Then F is called ID-integrable on � with ID-integral
U = (ID)

∫∫
�

F(t, s) dA if, for any ε > 0, there exists δ > 0 such that

d
(
S(F , P, δ,�), U

)
< ε

for any P ∈ P(δ,�). The collection of all ID-integrable functions on � will be denoted by
ID(�).

Theorem 6 ([20]) Let � = [a, b]× [c, d]. If F : � →RI is ID-integrable on �, then we have

(ID)
∫∫

�

F(s, t) dA = (IR)
∫ b

a
(IR)

∫ d

c
F(s, t) ds dt.

Example 1 Let F : � = [0, 1] × [1, 2] →R
+
I be defined by

F(s, t) = [st, s + t],

then F(s, t) is integrable on � and (ID)
∫∫

�
F(t, s) dA = [ 3

4 , 2].

4 Crucial results
In this section, we define interval-valued coordinated convex functions and then demon-
strate some inequalities of Hermite–Hadamard type by using the new definition. Through-
out this section, we use � = [a, b] × [c, d], where a < b and c < d, a, b, c, d ∈ R.

Definition 2 A function F : � → R
+
I is said to be interval-valued coordinated convex

function if the following inequality holds:

F
(
tx + (1 – t)y, su + (1 – s)w

)
⊇ tsF(x, u) + t(1 – s)F(x, w) + s(1 – t)F(y, u) + (1 – s)(1 – t)F(y, w)

for all (x, y), (u, w) ∈ � and s, t ∈ [0, 1].

Lemma 1 A function F : � → R
+
I is an interval-valued convex on coordinates if and only

if there exist two functions Fx : [c, d] → R
+
I , Fx(w) = F(x, w) and Fy : [a, b] → R

+
I , Fy(u) =

F(y, u) are interval-valued convex.

Proof The proof of this lemma follows immediately by the definition of interval-valued
coordinated convex function. �

It is easy to prove that an interval-valued convex function is interval-valued coordinated
convex, but the converse may not be true. For this, we can see the following example.

Example 2 An interval-valued function F : [0, 1]2 →R
+
I defined as F(x, y) = [xy, (6–ex)(6–

ey)] is interval-valued convex on coordinates, but it is not interval-valued convex on [0, 1]2.
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Proposition 1 If F , G : � → R
+
I are two interval-valued coordinated convex functions on

� and α ≥ 0, then F + G and αF are interval-valued coordinated convex functions.

Proposition 2 If F , G : � → R
+
I are two interval-valued coordinated convex functions on

�, then (FG) is interval-valued coordinated convex function on �.

In what follows, without causing confusion, we will delete the notations of (R), (IR), and
(ID). We start with the following theorem.

Theorem 7 If F : � → R
+
I is an interval-valued coordinated convex function on � such

that F(t) = [F(t), F(t)], then the following inequalities hold:

F
(

a + b
2

,
c + d

2

)

⊇ 1
2

[
1

b – a

∫ b

a
F
(

x,
c + d

2

)
dx +

1
d – c

∫ d

c
F
(

a + b
2

, y
)

dy
]

⊇ 1
(b – a)(d – c)

∫ b

a

∫ d

c
F(x, y) dy dx

⊇ 1
4

[
1

b – a

∫ b

a
F(x, c) dx +

1
b – a

∫ b

a
F(x, d) dx

+
1

d – c

∫ d

c
F(a, y) dy +

1
d – c

∫ d

c
F(b, y) dy

]

⊇ F(a, c) + F(a, d) + F(b, c) + F(b, d)
4

. (4.1)

Proof Since F is an interval-valued coordinated convex function on coordinates �, then
Fx : [c, d] → R

+
I , Fx(y) = F(x, y) is an interval-valued convex function on [c, d] and for all

x ∈ [a, b]. From inequality (2.3), we have

Fx

(
c + d

2

)
⊇ 1

d – c

∫ d

c
Fx(y) dy ⊇ Fx(c) + Fx(d)

2
,

which can be written as

F
(

x,
c + d

2

)
⊇ 1

d – c

∫ d

c
F(x, y) dy ⊇ F(x, c) + F(x, d)

2
. (4.2)

Integrating (4.2) with respect to x over [a, b] and dividing both sides by b – a, we have

1
b – a

∫ b

a
F
(

x,
c + d

2

)
dx

⊇ 1
(b – a)(d – c)

∫ b

a

∫ d

c
F(x, y) dy dx

⊇ 1
2(b – a)

[∫ b

a
F(x, c) dx +

∫ b

a
F(x, d) dx

]
. (4.3)
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Similarly, Fy : [a, b] → R
+
I , Fy(x) = F(x, y) is an interval-valued convex function on [a, b]

and y ∈ [c, d], we have

1
d – c

∫ d

c
F
(

a + b
2

, y
)

dy

⊇ 1
(b – a)(d – c)

∫ b

a

∫ b

a
F(x, y) dy dx

⊇ 1
2(d – c)

[∫ d

c
F(a, y) dy +

∫ d

c
F(b, y) dy

]
. (4.4)

By adding (4.3) and (4.4) and using Theorem 2, we have the second and third inequality
in (4.1). From (2.3) we also have

F
(

a + b
2

,
c + d

2

)
⊇ 1

b – a

∫ b

a
F
(

x,
c + d

2

)
dx, (4.5)

F
(

a + b
2

,
c + d

2

)
⊇ 1

d – c

∫ d

c
F
(

a + b
2

, y
)

dy. (4.6)

By adding (4.5) and (4.6) and using Theorem 2, we have the first inequality in (4.1). In the
end, again from (2.2) and Theorem 2, we have

1
b – a

∫ b

a
F(x, c) dx ⊇ F(a, c) + F(b, c)

2
,

1
b – a

∫ b

a
F(x, d) dx ⊇ F(a, d) + F(b, d)

2
,

1
d – c

∫ d

c
F(a, y) dy ⊇ F(a, c) + F(a, d)

2
,

1
d – c

∫ d

c
F(b, y) dy ⊇ F(b, c) + F(b, d)

2
,

and the proof is completed. �

Example 3 Suppose that [a, b] = [0, 1] and [c, d] = [0, 1]. Let F : [a, b] × [c, d] → R
+
I be

given as F(x, y) = [xy, (6 – ex)(6 – ey)] for all x ∈ [a, b] and y ∈ [c, d]. We have

F
(

a + b
2

,
c + d

2

)
=

[
1
4

, (6 –
√

e)2
]

,

1
2

[
1

b – a

∫ b

a
F
(

x,
c + d

2

)
dx +

1
d – c

∫ d

c
F
(

a + b
2

, y
)

dy
]

=
[

1
4

, (7 – e)(6 –
√

e)
]

,

1
(b – a)(d – c)

∫ b

a

∫ d

c
F(x, y) dy dx =

[
1
4

, (7 – e)2
]

,

1
4

[
1

b – a

∫ b

a
F(x, c) dx +

1
b – a

∫ b

a
F(x, d) dx

+
1

d – c

∫ d

c
F(a, y) dy +

1
d – c

∫ d

c
F(b, y) dy

]
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=
[

1
4

,
(7 – e)(11 – e)

2

]
,

F(a, c) + F(a, d) + F(b, c) + F(b, d)
4

=
[

1
4

,
(6 – e)(16 – e) + 25

4

]
.

Consequently, Theorem 7 is verified.

Remark 4 If F = F , then Theorem 7 reduces to Theorem 1.

Theorem 8 If F , G : � → R
+
I are two interval-valued coordinated convex functions such

that F(t) = [F(t), F(t)] and G(t) = [G(t), G(t)], then the following inequality holds:

1
(b – a)(d – c)

∫ b

a

∫ d

c
F(x, y)G(x, y) dy dx

⊇ 1
9

P(a, b, c, d) +
1

18
M(a, b, c, d) +

1
36

N(a, b, c, d), (4.7)

where

P(a, b, c, d) = F(a, c)G(a, c) + F(a, d)G(a, d) + F(b, c)G(b, c) + F(b, d)G(b, d),

M(a, b, c, d) = F(a, c)G(a, d) + F(a, d)G(a, c) + F(b, c)G(b, d) + F(b, d)G(b, c)

+ F(b, c)G(a, c) + F(a, c)G(b, c) + F(b, d)G(a, d) + F(a, d)G(b, d),

N(a, b, c, d) = F(b, c)G(a, d) + F(a, d)G(b, c) + F(b, d)G(a, c) + F(a, c)G(b, d).

Proof Since F and G are interval-valued coordinated convex functions on �, therefore

Fx(y) : [c, d] →R
+
I , Fx(y) = F(x, y), Gx(y) : [c, d] →R

+
I , Gx(y) = G(x, y),

and

Fy(x) : [a, b] → R
+
I , Fy(x) = F(x, y), Gy(x) : [a, b] →R

+
I , Gy(x) = G(x, y)

are interval-valued convex functions on [c, d] and [a, b], respectively, for all x ∈ [a, b], y ∈
[c, d].

Now, from inequality (2.6), we have

1
d – c

∫ d

c
Fx(y)Gx(y) dy ⊇ 1

3
[
Fx(c)Gx(c) + Fx(d)Gx(d)

]

+
1
6
[
Fx(c)Gx(d) + Fx(d)Gx(c)

]
,

which can be written as

1
d – c

∫ d

c
F(x, y)G(x, y) dy ⊇ 1

3
[
F(x, c)G(x, c) + F(x, d)G(x, d)

]

+
1
6
[
F(x, c)G(x, d) + F(x, d)G(x, c)

]
.
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Integrating the above inequality with respect to x over [a, b] and dividing both sides by
b – a, we have

1
(b – a)(d – c)

∫ b

a

∫ d

c
F(x, y)G(x, y) dy dx

⊇ 1
3(b – a)

∫ b

a

[
F(x, c)G(x, c) + F(x, d)G(x, d)

]
dx

+
1

6(b – a)

∫ b

a

[
F(x, c)G(x, d) + F(x, d)G(x, c)

]
dx. (4.8)

Now, using inequality (2.6) for each integral on the right-hand side of (4.8), we have

1
b – a

∫ b

a
F(x, c)G(x, c) dx

⊇ 1
3
[
F(a, c)G(a, c) + F(b, c)G(b, c)

]
+

1
6
[
F(a, c)G(b, c) + F(b, c)G(a, c)

]
, (4.9)

1
b – a

∫ b

a
F(x, d)G(x, d) dx

⊇ 1
3
[
F(a, d)G(a, d) + F(b, d)G(b, d)

]
+

1
6
[
F(a, d)G(b, d) + F(b, d)G(a, d)

]
, (4.10)

1
b – a

∫ b

a
F(x, c)G(x, d) dx

⊇ 1
3
[
F(a, c)G(a, d) + F(b, c)G(b, d)

]
+

1
6
[
F(a, c)G(b, d) + F(b, c)G(a, d)

]
, (4.11)

1
b – a

∫ b

a
F(x, d)G(x, c) dx

⊇ 1
3
[
F(a, d)G(a, c) + F(b, d)G(b, c)

]
+

1
6
[
F(a, d)G(b, c) + F(b, d)G(a, c)

]
. (4.12)

Substituting (4.9)–(4.12) in (4.8), we have our desired inequality (4.7). Similarly, we can
find the same inequality by using Fy(x)Gy(x) on [a, b]. �

Remark 5 If F = F , then Theorem 8 reduces to [9, Theorem 4].

Theorem 9 If F , G : � → R
+
I are two interval-valued coordinated convex functions such

that F(t) = [F(t), F(t)] and G(t) = [G(t), G(t)], then we have the following inequality:

4F
(

a + b
2

,
c + d

2

)
G

(
a + b

2
,

c + d
2

)

⊇ 1
(b – a)(d – c)

∫ b

a

∫ d

c
F(x, y)G(x, y) dy dx

+
5

36
P(a, b, c, d) +

7
36

M(a, b, c, d) +
2
9

N(a, b, c, d), (4.13)

where P(a, b, c, d), M(a, b, c, d), and N(a, b, c, d) are defined in Theorem 8.
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Proof Since F and G are interval-valued coordinated convex functions, from (2.7) we have

2F
(

a + b
2

,
c + d

2

)
G

(
a + b

2
,

c + d
2

)

⊇ 1
b – a

∫ b

a
F
(

x,
c + d

2

)
G

(
x,

c + d
2

)
dx +

1
6

[
F
(

a,
c + d

2

)
G

(
a,

c + d
2

)

+ F
(

b,
c + d

2

)
G

(
b,

c + d
2

)]
+

1
3

[
F
(

a,
c + d

2

)
G

(
b,

c + d
2

)

+ F
(

b,
c + d

2

)
G

(
a,

c + d
2

)]
(4.14)

and

2F
(

a + b
2

,
c + d

2

)
G

(
a + b

2
,

c + d
2

)

⊇ 1
d – c

∫ d

c
F
(

a + b
2

, y
)

G
(

a + b
2

, y
)

dy +
1
6

[
F
(

a + b
2

, c
)

G
(

a + b
2

, c
)

+ F
(

a + b
2

, d
)

G
(

a + b
2

, d
)]

+
1
3

[
F
(

a + b
2

, c
)

G
(

a + b
2

, d
)

+ F
(

a + b
2

, d
)

G
(

a + b
2

, c
)]

. (4.15)

Adding (4.14) and (4.15), then multiplying both sides of the resultant one by 2, we get

8F
(

a + b
2

,
c + d

2

)
G

(
a + b

2
,

c + d
2

)

⊇ 2
b – a

∫ b

a
F
(

x,
c + d

2

)
G

(
x,

c + d
2

)
dx +

2
d – c

∫ d

c
F
(

a + b
2

, y
)

G
(

a + b
2

, y
)

dy

+
1
6

[
2F

(
a,

c + d
2

)
G

(
a,

c + d
2

)
+ 2F

(
b,

c + d
2

)
G

(
b,

c + d
2

)]

+
1
6

[
2F

(
a + b

2
, c

)
G

(
a + b

2
, c

)
+ 2F

(
a + b

2
, d

)
G

(
a + b

2
, d

)]

+
1
3

[
2F

(
a,

c + d
2

)
G

(
b,

c + d
2

)
+ 2F

(
b,

c + d
2

)
G

(
a,

c + d
2

)]

+
1
3

[
2F

(
a + b

2
, c

)
G

(
a + b

2
, d

)
+ 2F

(
a + b

2
, d

)
G

(
a + b

2
, c

)]
. (4.16)

Now, from (2.7), we have

2F
(

a,
c + d

2

)
G

(
a,

c + d
2

)

⊇ 1
d – c

∫ d

c
F(a, y)G(a, y) dy +

1
6
[
F(a, c)G(a, c) + F(a, d)G(a, d)

]

+
1
3
[
F(a, c)G(a, d) + F(a, d)G(a, c)

]
, (4.17)
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2F
(

b,
c + d

2

)
G

(
b,

c + d
2

)

⊇ 1
d – c

∫ d

c
F(b, y)G(b, y) dy +

1
6
[
F(b, c)G(b, c) + F(b, d)G(b, d)

]

+
1
3
[
F(b, c)G(b, d) + F(b, d)G(b, c)

]
, (4.18)

2F
(

a + b
2

, c
)

G
(

a + b
2

, c
)

⊇ 1
b – a

∫ b

a
F(x, c)G(x, c) dx +

1
6
[
F(a, c)G(a, c) + F(b, c)G(b, c)

]

+
1
3
[
F(a, c)G(b, c) + F(b, c)G(a, c)

]
, (4.19)

2F
(

a + b
2

, d
)

G
(

a + b
2

, d
)

⊇ 1
b – a

∫ b

a
F(x, d)G(x, d) dx +

1
6
[
F(a, d)G(a, d) + F(b, d)G(b, d)

]

+
1
3
[
F(a, d)G(b, d) + F(b, d)G(a, d)

]
, (4.20)

2F
(

a,
c + d

2

)
G

(
b,

c + d
2

)

⊇ 1
d – c

∫ d

c
F(a, y)G(b, y) dy +

1
6
[
F(a, c)G(b, c) + F(a, d)G(b, d)

]

+
1
3
[
F(a, c)G(b, d) + F(a, d)G(b, c)

]
, (4.21)

2F
(

b,
c + d

2

)
G

(
a,

c + d
2

)

⊇ 1
d – c

∫ d

c
F(b, y)G(a, y) dy +

1
6
[
F(b, c)G(a, c) + F(b, d)G(a, d)

]

+
1
3
[
F(b, c)G(a, d) + F(b, d)G(a, c)

]
, (4.22)

2F
(

a + b
2

, c
)

G
(

a + b
2

, d
)

⊇ 1
b – a

∫ b

a
F(x, c)G(x, d) dx +

1
6
[
F(a, c)G(a, d) + F(b, c)G(b, d)

]

+
1
3
[
F(a, c)G(b, d) + F(b, c)G(a, d)

]
, (4.23)

2F
(

a + b
2

, d
)

G
(

a + b
2

, c
)

⊇ 1
b – a

∫ b

a
F(x, d)G(x, c) dx +

1
6
[
F(a, d)G(a, c) + F(b, d)G(b, c)

]

+
1
3
[
F(a, d)G(b, c) + F(b, d)G(a, c)

]
. (4.24)

Using (4.17)–(4.24) in (4.16), we have

8F
(

a + b
2

,
c + d

2

)
G

(
a + b

2
,

c + d
2

)
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⊇ 2
b – a

∫ b

a
F
(

x,
c + d

2

)
G

(
x,

c + d
2

)
dx +

2
d – c

∫ d

c
F
(

a + b
2

, y
)

G
(

a + b
2

, y
)

dy

+
1

6(d – c)

∫ d

c
F(a, y)G(a, y) dy +

1
6(b – a)

∫ b

a
F(x, c)G(x, c) dx

+
1

6(d – c)

∫ d

c
F(b, y)G(b, y) dy +

1
6(b – a)

∫ b

a
F(x, d)G(x, d) dx

+
1

3(d – c)

∫ d

c
F(a, y)G(b, y) dy +

1
3(d – c)

∫ d

c
F(b, y)G(a, y) dy

+
1

3(b – a)

∫ b

a
F(x, c)G(x, d) dx +

1
3(b – a)

∫ b

a
F(x, d)G(x, c) dx

+
1

18
P(a, b, c, d) +

1
9

M(a, b, c, d) +
2
9

N(a, b, c, d). (4.25)

Again from (2.7), we have the following relation:

2
d – c

∫ d

c
F
(

a + b
2

, y
)

G
(

a + b
2

, y
)

dy

⊇ 1
(b – a)(d – c)

∫ b

a

∫ d

c
F(x, y)G(x, y) dy dx +

1
6(d – c)

∫ d

c
F(a, y)G(a, y) dy

+
1

6(d – c)

∫ d

c
F(b, y)G(b, y) dy +

1
3(d – c)

∫ d

c
F(a, y)G(b, y) dy

+
1

3(d – c)

∫ d

c
F(b, y)G(a, y) dy, (4.26)

2
b – a

∫ b

a
F
(

x,
c + d

2

)
G

(
x,

c + d
2

)
dx

⊇ 1
(b – a)(d – c)

∫ b

a

∫ d

c
F(x, y)G(x, y) dx dy +

1
6(b – a)

∫ b

a
F(x, c)G(x, c) dx

+
1

6(b – a)

∫ b

a
F(x, d)G(x, d) dx +

1
3(b – a)

∫ b

a
F(x, c)G(x, d) dx

+
1

3(b – a)

∫ b

a
F(x, d)G(x, c) dx. (4.27)

Using (4.26) and (4.27) in (4.25), we have

8F
(

a + b
2

,
c + d

2

)
G

(
a + b

2
,

c + d
2

)

⊇ 2
(b – a)(d – c)

∫ b

a

∫ d

c
F(x, y)G(x, y) dy dx

+
1

3(d – c)

∫ d

c
F(a, y)G(a, y) dy +

1
3(d – c)

∫ d

c
F(b, y)G(b, y) dy

+
1

3(b – a)

∫ b

a
F(x, c)G(x, c) dx +

1
3(b – a)

∫ b

a
F(x, d)G(x, d) dx

+
2

3(d – c)

∫ d

c
F(a, y)G(b, y) dy +

2
3(d – c)

∫ d

c
F(b, y)G(a, y) dy
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+
2

3(b – a)

∫ b

a
F(x, c)G(x, d) dx +

2
3(b – a)

∫ b

a
F(x, d)G(x, c) dx

+
1

18
P(a, b, c, d) +

1
9

M(a, b, c, d) +
2
9

N(a, b, c, d), (4.28)

and by using (2.6) for each integral in (4.28), we have our required result. �

Remark 6 If F = F , then Theorem 9 reduces to [9, Theorem 5].

5 Conclusion
In this study, coordinated convexity for interval-valued functions is introduced, and some
new Hermite–Hadamard type inequalities are established. It is also shown that the results
derived in this article are the potential generalization of the existing comparable results
in the literature. As future directions, one may find similar inequalities through different
types of convexities.
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