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Abstract
This work is devoted to a stochastic model on the spread and control of corona virus
(COVID-19), in which the total population of a corona infected area is divided into
susceptible, infected, and recovered classes. In reality, the number of individuals who
get disease, the number of deaths due to corona virus, and the number of recovered
are stochastic, because nobody can tell the exact value of these numbers in the
future. The models containing these terms must be stochastic. Such numbers are
estimated and counted by a random process called a Poisson process (or birth
process). We construct an SIR-type model in which the above numbers are stochastic
and counted by a Poisson process. To understand the spread and control of corona
virus in a better way, we first study the stability of the corresponding deterministic
model, investigate the unique nonnegative strong solution and an inequality
managing of which leads to control of the virus. After this, we pass to the stochastic
model and show the existence of a unique strong solution. Next, we use the
supermartingale approach to investigate a bound managing of which also leads to
decrease of the number of infected individuals. Finally, we use the data of the
COVOD-19 in USA to calculate the intensity of Poisson processes and verify our results.

Keywords: COVID-19 epidemic; Stochastic process; Stability; Unique strong solution;
Poisson process

Disease COVID-19, named after the attack of coronavirus in China at the end of 2019,
spread world wide and killed more than 0.6 million individuals in initial eight months. This
virus transmits person to person through respiratory droplets produced when an infected
person coughs or sneezes. Infected droplets land in the noses and mouths of people who
are nearby or possibly are inhaled into the lungs. It also spreads through touching a surface
or object that has the virus on it and then touching your own mouth, nose, or possibly
your eyes. It infects the respiratory system, and the infected person faces fever, cough,
shortness of breath, and breathing difficulties. The infection and the onset of symptoms
ranges from one to fourteen days. An infectious person shows symptoms within five to six
days. To prevent the infection spread, one needs regular hand washing, covering mouth
and nose when coughing and sneezing, and avoiding contact with effected individuals.

Mathematical modeling is a tool to study the structure of spread and control of vari-
ous infectious diseases. Mathematical models have potential to educate persons about the
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control techniques of such diseases. It can also be used to predict the expected number of
patients in the future under any controlling strategy and to set their goals. Fundamental
work is done by researchers to model viral diseases and used by policy makers to control
them. For example, in 2009, Pang et al. [1] considered dynamical behavior of a Hepati-
tis B virus transmission model with vaccination, and Zou et al. [2] discussed modeling
the transmission dynamics and control of Hepatitis B virus in China. These models were
implemented in China to study the number of HBV patients and to control HBV virus.
To understand the spread and control of coronavirus, Chen et al. [3] proposed a mathe-
matical model to understand the transmissibility of coronavirus. Zhou et al. [4] studied
pneumonia outbreak associated with coronavirus, whereas Li et al. [5] discussed the early
transmission dynamics in Wuhan, China. Huang et al. [6] provided clinical features of the
patients infected with coronavirus, whereas Chan et al. [7] discussed familywise trans-
mission of the novel coronavirus. Wu et al. [8] provided newscasting and forecasting of
the COVID-19 outbreak in Wuhan, China, through modeling. Zhao et al. [9] have used
the model approach to estimate the unreported number of COVID-19 in China in the
first half of January 2020. Chen et al. [3] proposed a mathematical model for simulating
the transmission of this virus in Wuhan. Ivorra et al. [10] developed and implemented
a mathematical model on the spread of COVID-19 using data from China. Sameni [11]
studied the epidemic patterns of coronavirus through a mathematical model. Kochańczyk
et al. [12] studied constant and time-dependent contact rates of COVID-19 pandemic.
For more detail on mathematical modeling of such viral disease, we refer the readers to
[13–22]. Besides the integer-order models, fractional calculus and stochastic differential
equations play an important role in the epidemic models; see [23–26]. A Poisson process
is a random process that counts the number of occurrences of certain events that happen
at certain rate called the intensity of the Poisson process. For more detail on this process,
we refer the readers to [27].

In this work, we study a stochastic model on the spread and control of coronavirus in
which the total population of an infected area is divided into susceptible, infected, and
recovered classes. Generally, the exact number of individuals who get the disease, the
number of deaths due to coronavirus, and the number of recovered are random and un-
known, and thus these numbers are stochastic. Any model containing these terms must be
stochastic. These numbers are estimated and counted by a Poisson process. We construct
an SIR type model in which the above numbers are stochastic and counted by a Poisson
process. To understand the flow and prevent of coronavirus in a better way, we first study
the stability of the corresponding deterministic model, calculate the unique nonnegative
strong solution, and investigate an inequality managing of which leads to control of the
virus. After this, we pass to the stochastic model and show the existence of a unique strong
solution. Next, we use the supermartingale approach to investigate a bound managing of
which also leads to decrease of the number of infected individuals. Finally, we use COVID-
19 data from USA (April 1 to July 19, 2020) to calculate the intensity of Poisson processes
and verify our results.

The rest of the paper is organized as follows. In Sect. 2, we give a deterministic model,
discus the stability, calculate solution of the model, and investigate an inequality managing
of which leads to control the virus. In Sect. 3, we pass to a stochastic model and show
the existence and uniqueness of a nonnegative strong solution. Next, we use COVID-19
data from USA, calculate the parameters of the Poison process, verify our results, and
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Figure 1 Figure shows the flow and control of the
coronavirus

sketch the number of effected individuals. To control the virus, this work provides useful
information to policy makers. Moreover, the results can be used to predict the number of
patients in any future time to set the future goals.

1 Deterministic model and stability
In this section, we consider an SIR deterministic model on the spread and control of coro-
navirus, discuss the local and global stability of the model and the reproductive number,
calculate the unique strong solution, which can be used to calculate the future number of
infected individuals, and investigate an inequality depending on some parameters of the
model and the number of susceptible individuals, which would be managed to control the
virus and to set the future goals.

Let us divide the total population in three categories, susceptible, infected, and recov-
ered individuals, and denote by S = S(t), t ≥ 0, the number of susceptible individuals,
I = I(t) the number of infected individuals, and by R = R(t) the number of recovered indi-
viduals. The flow and control are shown in the Fig. 1. The mathematical model on these
classes is expressed by the following system of differential equations:

dS = (a – μS – bcSI) dt, S(0) ≥ 0,

dI = I(bcS – μ – k – λ) dt, I(0) ≥ 0,

dR = (kI – μR) dt, R(0) ≥ 0,

(1)

where a is the rate of new born and migrated individuals, b is the transmission rate from
susceptible to infected, c is the contact rate of susceptible with infected, μ is the natural
death rate, k is the recovery rate, and λ is the death rate of infected class due to virus.

In the following result, we discuss the local and global stability of the model and calculate
the reproductive number R0.

Theorem 1 The proposed model is locally asymptotically stable at the free virus equilib-
rium point P1 if the reproductive number R0 < 1, whereas it is globally asymptotically stable
at the positive virus point P2 if R0 > 1, where R0 = abc

μ(μ+k+λ) .

Proof The free virus equilibrium point is P1( a
μ

, 0, 0), whereas the positive virus point is
P2( μ+k+λ

bc , a
μ+k+λ

– μ

bc , ka
μ(μ+k+λ) – k

bc ). The Jacobian matrix of system (1) is

J =

⎛
⎜⎝

–μ – bcI –bcS 0
bcI bcS – μ – k – λ 0
0 k –μ

⎞
⎟⎠ .

Putting the point P1 in the Jacobean matrix J gives the eigenvalues λ1 = λ2 = –μ and λ3 =
abc
μ

– (μ + k + λ). Putting λ3 < 0, we get the reproductive number R0 = abc
μ(μ+k+λ) . Thus all the

eigenvalues are negative if and only if R0 < 1, and hence the model is locally asymptotically
stable.



Hussain et al. Advances in Difference Equations        (2020) 2020:574 Page 4 of 11

Similarly, at point P2, all the eigenvalues are negative if R0 > 1. Hence the proposed model
is globally stable if R0 > 1. �

Next, we come to the nonnegative unique strong solution of the model, formula for
calculating the future number of infected individuals, and an inequality that would be
managed to control the virus.

Theorem 2 Solution of model (1) is nonnegative, and the number I(t) decreases if the
transmission function bcS satisfies the upper bound

bcS < μ + k + λ.

Proof As coefficients in the model are locally Lipschitz, the solution of the model is strong
and unique (see Arnold [28]). Using integrating factors, we can express the solution of the
proposed model as

S(t) = e–
∫ t

0 (μ+bcI(v)) dv
[

S(0) + a
∫ t

0
I(v)e

∫ v
0 (μ+bcI(u)) du dv

]
,

I(t) = I(0)e
∫ t

0 (bcS(v)–μ–k–λ) dv, (2)

R(t) = e–μt
[

R(0) + k
∫ t

0
I(v)eμv dv

]
.

From solution (2) we first observe that I(t) is nonnegative, and using this, we find that S(t)
and R(t), are also nonnegative for all t.

The future value of the infected number can be calculated from the expression of I(t).
For the second part, we put the exponent bcS – μ – k – λ into I(t) less than zero and get

the answer. �

Note that the product bc can be easily calculated by using past information in the ex-
pression of I(t).

2 Stochastic model formulation
In this section, we pass from deterministic to stochastic model as the number of infected
population, deaths due to virus, and recovered individuals are generally not determin-
istic. These numbers are random and can be counted by a Poisson process. To do this,
let us consider � a sample space, F a sigma algebra, Ft a filtration of F , and P a proba-
bility measure. On a filtered probability space (�, F , Ft , P)t≥0, we consider three classes,
the susceptible class S = (S(t))t≥0, the infected individuals I = (I(t))t≥0, the recovered class
R = (R(t))t≥0, and three independent Poisson processes Nt , Mt , and Kt with intensities λ,
γ , and η, respectively. Let Mt be the number of individuals who got disease in the time
interval (0, t] due to I , Nt be the number of deaths, and Kt be the number of recovered in
this interval. We replace the transmission term

∫ t
0 bcS(v) dv in a deterministic form by a

Poisson random variable Mt , the death term
∫ t

0 (μ + λ)I(v) dv by Nt , and the recovery term∫ t
0 kI(v) dv by Kt . For simplicity, we drop the natural death rate μ from I(t) as it can be

added in the number Nt .
The flow in the model is shown in Fig. 2.
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Figure 2 Figure shows the flow and control of
coronavirus

The sizes of S, I , and R can be formulated by the system of stochastic equations (see
Asmussen and Albrecher [29]) as

S = S(0) + at – (μS)t – MtI, S(0) ≥ 0,

I = I(0) + MtI – Nt – Kt , I(0) ≥ 0, (3)

R = R(0) + Kt – (μR)t, R(0) ≥ 0,

with bounds

0 ≤ Mt ≤ S and 0 ≤ Nt + Kt ≤ I.

Generally, a Poison process is right continuous with left-hand limits (see Lamberton and
Lapeyre [27]), and therefore the increment � in a Poisson random process can be given
as

�Mt = Mt – Mt– =

⎧⎨
⎩

1 if there is a jump,

0 if there is no jump,

and the derivative of the Poisson process coincides with the increment (see Lamberton
and Lapeyre [27]). Thus the Poisson random processes Mt , Nt , and Kt must satisfy

�Mt = dMt , �Nt = dNt and �Kt = dKt .

Since μ is the natural death rate, using the later expressions, the differential form of system
(3) is (see Shreve [30] in case of assets modeling)

dS = (a – μS) dt – IdMt ,

dI = IdMt – d(Nt + Kt), (4)

dR = dKt – μR dt.

Since most of the data is available daywise, so if t is time in days, then if Xi, Yi, and Zi,
i = 1, 2, . . . , denote the numbers of infected individuals, deaths, and recovered individuals,
respectively, at the ith day since the starting day t0 = 0, then the Poisson processes Mt , Nt ,
and Kt satisfy

Mt =
t∑

i=1

Xi, Nt =
t∑

i=1

Yi and Kt =
t∑

i=1

Zi, (5)

where the random variables Xi, Yi, and Zi are independent and identically distributed with
uniform distribution.
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If t is time in days, then Mt , Nt , and Kt satisfy

dMt = Mt – Mt– =

⎧⎨
⎩

Xi if there is a jump at time t,

0 if there is no jump at time t,

where

Xi ∈ {0, 1, . . . , S}. (6)

Similarly,

dNt =

⎧⎨
⎩

Yi if day changes at time t,

0 on the same day,
and dKt =

⎧⎨
⎩

Zi if day changes at time t,

0 on the same day,

where

Yi + Zi ∈ {0, 1, 2, . . . , I}. (7)

The expected values of the above expressions can be expressed (see Lamberton and
Lapeyre [27] and Karatzas and Shreve [31]) as

γ t =
t∑

i=1

E[Xi], λt =
t∑

i=1

E[Yi] and ηt =
t∑

i=1

E[Zi], (8)

with the following quadratic variations (see Karatzas and Shreve [31], p. 31)

〈Mt – γ t〉 = γ t, 〈Nt – λt〉 = λt and 〈Kt – ηt〉 = ηt. (9)

Moreover, the random processes Mt – γ t, Nt – λt, and Kt – ηt are martingales (see Shreve
[30]).

2.1 Existence of the solution of the stochastic model
Here, we show the stability of the stochastic model and investigate an inequality managing
of which leads to decrease of the number of COVID-19 patients.

Theorem 3 For initial positive values S(0), I(0), and R(0) in formulation (3), there exists
a unique nonnegative solution (S(t), I(t), R(t)), t > 0, with probability one.

Proof As all the coefficients in stochastic system (4) are locally Lipschitz continuous (see
Mao [32]), there exists a unique maximum local solution (S(t), I(t), R(t)) on t ∈ [0, Te),
where Te is the explosion time.

To show that the solution is global, we will show that the explosion time Te = ∞ a.s. Oth-
erwise, we suppose that there is some bounded time such that the solution (S(t), I(t), R(t))
cannot explode to infinity. Let N be a large positive number such that the initial values
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S(0), I(0), and R(0) belong to the interval [ 1
N , N]. For each integer n ≥ N , let us define the

sequence of stopping times

Tn = inf
t

{
t ∈ [0, Te) : min

{
S(t), I(t), R(t)

} ≤ 1
n

or max
{

S(t), I(t), R(t)
} ≥ n

}
,

and let inf(∅) = ∞. Note that the above sequence increases and denote T∞ = limn→∞ Tn;
then T∞ ≤ Te a.s.

If T∞ = ∞ a.s., then also Te = ∞ a.s. Thus all the values (S(t), I(t), and R(t)) are positive
a.s. for all t. Otherwise, suppose there exists a pair (t, ε), t > 0 and 0 < ε < 1, such that the
probability P{T∞ ≤ t} > ε. Thus there exists an integer n1 ≥ N such that the probability
P{T∞ ≤ t} ≥ ε for all integers n1 ≥ N .

Next, let us define the smooth function W : R3
+ →R+ as

W (S, I, R) =
(
S – 1 – ln(S)

)
+

(
I – 1 – ln(I)

)
+

(
R – 1 – ln(R)

)
. (10)

Using Itô’s formula (see Karatzas and Shreve [31]), we calculate

dW (S, I, R) = Ws dS + Wi dI + Wr dR +
1
2
(
Wss d〈S〉 + Wii d〈I〉 + Wrr d〈R〉)

=
(

1 –
1
S

)
dS +

(
1 –

1
I

)
dI +

(
1 –

1
R

)
dR

+
1
2

(
1
S2 d〈S〉 +

1
I2 d〈I〉 +

1
R2 d〈R〉

)
, (11)

where W· and W·· are the first- and second-order partial derivatives of W , with respect to
the space variable respectively, and 〈S〉, 〈I〉, and 〈R〉 are the quadratic variations.

Using (3), (4), and (9), we calculate

dW (S, I, R) =
[

a – μ(S + R) –
a
S

+ 2μ +
γ

2S2 +
γ + λ + η

2I2 +
η

2R2

]
dt

– I
(

1
S

–
1
I

)
dMt –

(
1 –

1
I

)
dNt –

(
1
I

+
1
R

)
dKt . (12)

Using the martingale property of Mt – γ t, Nt – λt,and Kt – ηt, this stochastic equation
becomes

dW = LW (S, I, R) dt – I
(

1
S

–
1
I

)
d(Mt – γ t)

–
(

1 –
1
I

)
d(Nt – λt) –

(
1
I

+
1
R

)
d(Kt – ηt),

where

LW (S, I, R) = a – μ(S + R) –
a
S

+ 2μ +
γ

2S2 +
γ + λ + η

2I2 +
η

2R2

+ γ I
(

1
S

–
1
I

)
+ λ

(
1 –

1
I

)
+ η

(
1
I

+
1
R

)
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≤ q +
γ

2S2 +
γ + λ + η

2I2 +
η

2R2 +
γ I
S

+ η

(
1
I

+
1
R

)
(13)

with q = a + 2μ + λ.
Further, as the positive space variables S, I , and R represent the numbers of individuals,

we have I
S ≤ 1, 1

I ≤ 1, and 1
R ≤ 1. Using this, we write

LW (S, I, R) ≤ a + 2μ + 3γ + 2λ + 4η. (14)

Thus by Theorem 2.2 in [33] we deduce that T∞ = ∞, which completes the proof. �

Now we come to the inequality among some parameters of the stochastic model, man-
aging of which leads to decrease of the number I(t) of the infected COVID-19 patients.

Theorem 4 The expected value of the infected class I(t) decreases with time, that is,
d
dt E[I(t)] ≤ 0 (or I(t) is supermartingale) if

γ I(0) ≤ λ + η. (15)

Proof From (3) we write

(1 – Mt)I(t) = I(0) – Nt – Kt .

Applying mathematical expectation to both sides and simplifying, we obtain

E
[
I(t)

]
=

I(0) – (λ + η)t
1 – γ t

,

and differentiating with respect to t, we find

d
dt

E
[
I(t)

]
=

γ I(0) – λ – η

(1 – γ t)2 .

Using inequality (15), we get the result. �

Note that in this work the parameter γ is calculated from Mt by using equations (5)
and (8), which is replaced by transmission and contact rate parameters. These parame-
ters decrease by applying lock down, using a sanitizer, washing hands, and keeping social
distance and awareness campaign. Moreover, η is calculated from Kt replaced by the re-
covery term, and we know that recovery terms increase through strong immunity system
of the body and good treatment. Decrease of γ and increase of η strick inequality (15).
The strictness of (15) leads to control of disease COVID-19.

A controlling strategy is optimal if it decreases the value of I(t) and strick inequality (15).
Finally, we use relations (5) in I(t) and graph I(t) using the COVID-19 data of USA from

first April to 19th July, 2020 taken from [34]. We also calculate the values of γ , λ, and η to
verify Theorem 4.

The following table shows the values of γ , λ, and η for April, May, June, and July, 2020,
in case of COVID-19 data of USA [34].



Hussain et al. Advances in Difference Equations        (2020) 2020:574 Page 9 of 11

Table 1 Values of the stochastic parameters calculated from data of USA during COVID-19 for four
months

Month γ λ η

April 2.794370191 8.161600786 83.71889805
May 1.844039647 2.211604232 348.0864949
June 2.820176949 0.48994873 318.1660605
July 11.76093832 0.325367682 706.6299277

In Table 1 the parameter γ is calculated from

γ t =
t∑

i=1

Xi × Xi

Total susceptibles at (i – 1)th day
.

Similarly, the parameters λ and η are calculated from

λt =
t∑

i=1

Yi × Yi

Total active cases at (i – 1)th day

and

ηt =
t∑

i=1

Zi × Zi

Total active cases at (i – 1)th day
.

From the Table it is clear that the condition of Theorem 4 is not satisfied for every month,
and therefore the value of I(t) increases (see the data of the months of April, May, June,
and July 2020 in [34]).

3 Conclusion
In this work, we analyze a stochastic model on the spread and control of coronavirus. First,
we considered an SIR model to understand the spread and control of current infectious
disease, then investigated the stability of the proposed model. Further, we investigated an
inequality managing of which leads to decrease of the number of infected individuals. Af-
ter this, we presented the nonnegative unique strong solution of the stochastic model and
showed an inequality among some parameters of the model through martingale theory,
managing of which leads to minimizing the number of COVID-19 patience. We found
that decreasing the number of susceptible individuals, transmission, and contact parame-
ters and increasing the recover parameter strick the inequalities. We found that applying
lock down, use of sanitizer, washing hands, keeping social distance and awareness cam-
paign decrease the value of susceptible individuals, transmission, and contact parameters,
whereas a strong immunity system of the body and good treatment increase the value of
recover parameter. We concluded that managing these terms leads to dropping the num-
ber of COVID-19 patients. The results are verified through the data of USA and shown in
Fig. 3, and the managing parameters are calculated in the Table 1. Analysis of the results
leads to understanding the flow and control of coronavirus in a clear way.
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Figure 3 The sketch of Infected class of coronavirus
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