
Liu and Kong Advances in Difference Equations        (2020) 2020:581 
https://doi.org/10.1186/s13662-020-03035-8

R E S E A R C H Open Access

https://doi.org/10.1186/s13662-020-03035-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-03035-8&domain=pdf
http://orcid.org/0000-0001-5482-1726
mailto:584901858@qq.com


Liu and Kong Advances in Difference Equations        (2020) 2020:581 Page 2 of 22

where variables x, y, and v represent the densities of the healthy cells, the infected cells,
and the virus at time t , respectively. Here a mass action infection mechanism is adopted.
The parameters � and � stand for the infection and constant growth rates of the healthy
cell, respectively. System (1.1) and its variations have been investigated in many papers
[11–16]. Stephen et al. [17] recently added the term � TV

C+V incorporating the homeostatic
proliferation of T-cells, which leads to interesting dynamic results, such as bistability and
Hopf bifurcation.

It is well-known that it takes a long period for an HIV to become an AIDS, and in the
medical literature [18], it was pointed out that the latent reservoir (i.e., latent infection)
was the main obstacle to eradicate the virus. Therefore the four-dimensional mathematical
model including the latent infection seems more reasonable [19, 20]. In recent years, latent
cells were considered in many models, such as Beddington–DeAngelis function response
with delay [20], Crowley–Martin function response [21], and general infection function
with CTC and VTC transmission [22].

To recover from a viral infection, the cytotoxic T lymphocyte (CTL), which can clear
away the infected cells to prevent further viral replications, plays a particularly important
role. In 1996, Nowak and Bangham [9] proposed the well-known model with immune
response:

�
������

������

dx
dt = � – dx – � xy,
dy
dt = � xy– ay– pyz,
dv
dt = ky– uv,
dz
dt = cyz– bz,

where the variable z represents the concentration of CTLs. Many authors have studied
the infective models with different immune responses, such as lytic and nonlytic immune
responses [23, 24], cell-mediated immune mechanism or humoral immune mechanism
[25–27], delayed immune response with drug therapies [28], and general CTL immune
response with silent infected cell-to-cell spread [29].

However, after a viral infection, the CTLs that are responsible for clearing away the in-
fected cells become cytotoxic T-lymphocyte precursors (CTLp) and have receptors for de-
tecting the virus from the previous infection [30]. Upon contacting with the virus during
a subsequent infection, the precursors differentiate and become cytotoxic T-lymphocyte
effectors (CTLe), and these cells are again responsible for clearing away the invading virus.
Considering this infective mechanism, Wodarz et al. [31, 32] provided the following model
with CTL response:

�
������

������

dx
dt = � – dx – � xy,
dy
dt = � xy– ay– pyz,
dw
dt = cyw– cqyw– bw,
dz
dt = cqyw– hz,

(1.2)

where the healthy cells x and the infected cells y are described similarly as in system (1.1).
Instead of just one class of CTL response, the CTLp and CTLe are introduced. The CTLp
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and CTLe are represented by w and z. These precursors emerge at rate cywand may be-
come effectors at rate cqywor cleared away naturally at rate bw. Similarly, the effectors are
created at rate cqywand cleared at rate hz.

In model (1.2), there is no virus term whose population is assumed at a quasi-steady
state, which is proportional to infected cells. Model (1.2) is completely analyzed by
Bernard et al. [33], who have found that the system transforms from one equilibrium to
the next as the basic reproductive number R0 increases. When R0 increases further, they
show that periodic solutions may arise from the third equilibrium via Hopf bifurcation.

In fact, another model with cytotoxic T-lymphocyte memory proposed in [31, 32] is
given by

�
������

������

dx
dt = � – dx – � xy,
dy
dt = � xy– ay– pyz,
dw
dt = cxyw– cqyw– bw,
dz
dt = cqyw– hz.

(1.3)

This model assumes that the target cells are CD4+ T cells; moreover, it includes the addi-
tional feature that expansion of the CTLp population is proportional to both antigen and
the number of uninfected CD4+ T-cells capable of delivering T-cell help. The memory gen-
eration depends on CD4+ T-cell help, and infection of CD4+ T-cells results in impaired
T-cell help. We also assume that differentiation into effector functions is independent of
CD4+ T-cell help [31]. A detailed explanation of the model can be found in [31]. All the
parameters are positive.

Dynamics of system (1.3) is numerically analyzed in [31, 32]. In this paper, we provide
a rigorous analytical method of system (1.3), and the basic framework is as follows. In
Sect. 2, we establish the well-posedness of the model including nonnegativity and bound-
edness of the solutions, the existence of equilibria, and local stability of the boundary
equilibria. The local stability analysis of the positive equilibria and their bifurcations are
presented in Sect. 3. Numerical illustrations are given in Sect. 4. Finally, we discuss both
mathematical and biological perspectives of the findings in Sect. 5.

2 The equilibrium and stability of boundary equilibrium
For mathematical simplicity, we do some rescallings in system (1.3). Let x =

�
�
� x, y =

�
�
� y,

w = �
pcq

√
�� w, z = 1

p

√
�� z, t = 1√

�� � , d = d√
�� , a = a√

�� , c = c
�

�
�
� , q = cq

� , b = b√
�� , and

h = h√
�� . After changing back to the origin variables x, y, w, z, t , the scaled system is given

by

�
������

������

dx
dt = 1 – dx – xy,
dy
dt = xy– ay– yz,
dw
dt = cxyw– qyw– bw,
dz
dt = yw– hz,

(2.1)

where the horizontal lines on the heads of these parameters are removed, and the pa-
rameters d, a, c, q, b, h are replaced by d, a, c, q, b, h. Obviously, all the parameters are
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positive. The basic reproductive number of model (1.3) is R00 = ��
ad , and for system (2.1),

R00 becomes R0 = 1
ad .

Theorem 2.1 All solutions (x(t), y(t), w(t), z(t)) of system(2.1) are nonnegative for t> 0.
Moreover, if x(0) ≥ 0, y(0) ≥ 0, w(0) ≥ 0, and z(0) ≥ 0, then all solutions of system(2.1) are

ultimately bounded.

Proof By variation of constants we find the following solutions of (2.1):

�
������

������

x(t) = x(0)e–
� t

0 (d+y(s)) ds +
� t

0 e–
� t
s (d+y(u)) du ds,

y(t) = y(0)e
� t

0 (x(s)–a–z(s)) ds,

w(t) = w(0)e
� t

0 (x(s)y(s)–qy(s)–b) ds,

z(t) = e–ht(z(0) +
� t

0 y(s)w(s)ehsds),

(2.2)

which proves the nonnegativity of solutions of system (2.1).
Note that the first equation of (2.1) implies dx

dt ≤ 1 – dx. The solution is given by x(t) ≤
x(0)e–dt + 1

d , which yields lim supt→∞ x(t) ≤ 1
d . Adding the first two equations of (2.1), we

obtain

d(x + y)
dt

=
dx
dt

+
dy
dt

= 1 – dx – ay– yz≤ 1 – dx – ay≤ 1 – d1(x + y),

where d1 = min{d, a}. It has the solution x + y ≤ (x(0) + y(0))e–d1t + 1
d1

, which implies
lim supt→∞(x(t) + y(t)) ≤ 1

d1
, and thus x(t) and y(t) are bounded.

Supposing that z is unbounded, by the second equation of (2.1) we have limt→∞ y(t) = 0,
which implies limt→∞ w(t) = 0 from the third equation of (2.1). Then we get limt→∞ z(t) =
0 from the fourth equation of (2.1), which contradicts with the unboundedness of z. Thus
z must be bounded. Lastly, assume that w is unbounded. Based on the boundedness of z

and the fourth equation of (2.1), we obtain limt→∞ y(t) = 0, and from the third equation
of (2.1) it follows that limt→∞ w(t) = 0, which causes a contradiction. Hence w is bounded.
The proof is complete. �

Theorem 2.1 shows that there exists a bounded positive invariant region � ⊂ R4
+ for

the system. Thus we concentrate on � to discuss the dynamics. In fact, the infection-
free equilibrium E0 = ( 1

d , 0, 0, 0) always exists, and there exists an infectious equilibrium
without CTL, E1 = (a, d(R0 – 1), 0, 0) if R0 > 1. To find the infectious equilibrium with CTL,
it suffices to solve the system

�
������

������

1 – dx – xy = 0,

y = b
cx–q ,

w = hz
y ,

z = x – a.

(2.3)

After submitting y, w, z into the first equation of (2.3), we get the equation

f (x) := cdx2 + (b – c– dq)x + q = 0. (2.4)
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If x1, x2 are solutions of (2.4), then x1x2 = q
cd > 0 and x1 + x2 = – b–c–dq

cd . Hence, to ensure
the existence of a positive solution, we have b < c+ dq.

The determinant of (2.4) is

� = (b – c– dq)2 – 4cdq.

Then � = 0 if and only if

b = c+ dq± 2
�

cdq.

Note that c + dq – 2
�

cdq≥ 0. Combining this with the condition b < c + dq, we get that
� ≥ 0 only if 0 < b ≤ c+ dq – 2

�
cdq, and y > 0 and z > 0 imply x > q

c and x > a by (2.3).
Set

R1 = 1 +
b

d(ca– q)
. (2.5)

Noting that f ( q
c) = bq

c > 0, we obtain

f (a) = a d(ca– q)
	

1 +
b

d(ca– q)
– R0



=

ab
R1 – 1

(R1 – R0). (2.6)

Notations x2± = (c+dq–b)±
√

(b–c–dq)2–4cdq
2cd , y2± = b

cx2±–q , w2± = hz2±
y2+

, z2± = x2± – a, x20 =
c+dq–b

2cd , y20 = 2bd
c–b–dq , w20 = h(c+dq–b–2acd)(c–b–dq)

4bcd2 , z20 = c+dq–b–2acd
2cd .

The positive equilibria of model (2.1) are classified by the sign of � . Let us consider three
cases.

Case I � > 0, which is equivalent to 0 < b < c+ dq– 2
�

cdq. Here we consider three cases
by the sign of f (a).

1. f (a) < 0. In this case, � > 0 is obviously satisfied, and a > q
c is equivalent to R1 > 1, and

thus R1 < R0 by (2.6). Combining this with R1 > 1, we get that model (2.1) admits a unique
positive equilibrium E2+ = (x2+, y2+, w2+, z2+) if 1 < R1 < R0.

2. f (a) = 0. In this case, R0 = R1, which indicates that a is a solution of f (x) = 0, and the
other root is x∗ = q

acd. To get a positive equilibrium of model (2.1), x∗ = q
acd > a and a > q

c are
required, which yields q > a2cdand ac> q. Combining this with � > 0 (if and only if 0 < b <
c+ dq– 2

�
cdq), model (2.1) admits a unique positive equilibrium E2+ = (x2+, y2+, w2+, z2+)

if R1 = R0 > 1 and a2cd< q < ac.
3. f (a) > 0. Let us consider two cases.
(1) q

c ≥ a, which is equivalent to R1 ≤ 1. To ensure the positive equilibrium of model
(2.1), the following conditions are required:

�
������

������

f ( q
c) > 0,

� > 0,

– b–c–dq
2cd > q

c ,
q
c ≥ a.

(2.7)
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Note that f ( q
c) > 0 always holds, and � > 0 if and only if 0 < b < c+ dq – 2

�
cdq, whereas

– b–c–dq
2cd > q

c if 0 < b < c– dq. Intersecting these two inequalities we have c+ dq – 2
�

cdq<
c – dq if c > dq, which is required to ensure that b > 0. Note that c ≤ q

a , Combining this
with c> dq, we have ad < 1 to ensure that the intersection is nonempty, and hence model
(2.1) admits two positive equilibria E2+ = (x2+, y2+, w2+, z2+) and E2– = (x2–, y2–, w2–, z2–) if
R0 > 1 ≥ R1, dq < c, and 0 < b < c+ dq – 2

�
cdq.

(2) q
c < a, which is equivalent to R1 > 1. Model (2.1) admits two positive equilibria if the

following conditions are satisfied:

�
������

������

f (a) > 0,

� > 0,

– b–c–dq
2cd > a,

q
c < a.

(2.8)

Note that f (a) > 0 if and only if R1 > R0 by (2.6) and R1 > 1, and – b–c–dq
2cd > a is equivalent to

0 < b < c+ dq– 2acd; � > 0 if and only if 0 < b < c+ dq– 2
�

cdq. Note that c+ dq– 2
�

cdq≤
c+ dq – 2acd if and only if q ≥ a2cd, whereas c+ dq – 2

�
cdq> c+ dq – 2acd if and only

if q < a2cd, and hence model (2.1) admits two positive equilibria if one of the following
conditions holds: (i) R1 > 1, R1 > R0, q ≥ a2cd, and 0 < b < c + dq – 2

�
cdq; (ii) R1 > 1,

R1 > R0, q < a2cd, and 0 < b < c+ dq – 2acd.

Case II � = 0 if and only if b = c+ dq – 2
�

cdq, and model (2.1) admits a unique positive
equilibrium if

�
���

���

� = 0,

– b–c–dq
2cd > a,

– b–c–dq
2cd > q

c .

(2.9)

Note that – b–c–dq
2cd > a if 0 < b < c + dq – 2acd, whereas – b–c–dq

2cd > q
c yields 0 < b < c – dq.

Combining these two conditions with � = 0 which is equivalent to b = c + dq – 2
�

cdq,
the following results are obtained: c + dq – 2

�
cdq< c + dq – 2acd if q > a2cd,while c +

dq – 2
�

cdq< c– dq if c > dq, therefore model (2.1) admits a unique positive equilibrium
if b = c+ dq – 2

�
cdq, q > a2cd, and c> dq.

Case III If � < 0, then there is no positive equilibrium, because f (x) = 0 has no real root.
The following theorem summarizes all positive equilibria of system (2.1).

Theorem 2.2 (1) Model (2.1) admits a unique positive equilibrium E2+ = (x2+, y2+, w2+, z2+)
if one of the following conditions is satis“ed: (i) 1 < R1 < R0; (ii) R1 = R0 > 1 and a2cd< q < ac.

(2) Model (2.1) admits two positive equilibria E2+ = (x2+, y2+, w2+, z2+) and E2– = (x2–, y2–,
w2–, z2–) if one of the following conditions is satis“ed: (i) R0 > 1 ≥ R1, dq < c, and 0 < b <
c + dq – 2

�
cdq; (ii) R1 > 1, R1 > R0, q ≥ a2cd, and 0 < b < c + dq – 2

�
cdq; (iii) R1 > 1,

R1 > R0, q < a2cd, and 0 < b < c+ dq – 2acd.
(3) Model (2.1) admits a unique positive equilibrium E20 = (x20, y20, w20, z20) if b = c+dq–

2
�

cdq, q > a2cd, and c> dq.
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Next, we discuss the local stability and global stability of the boundary equilibria. The
stability of the equilibria is based on the Jacobian matrix of model (2.1):

J(x, y, w, z) =

�

�
�
�



–d – y –x 0 0
y x– a – z 0 –y

cyw cxw– qw cxy– qy– b 0
0 w y –h

�

�
�
�
�

. (2.10)

The characteristic roots at the equilibrium E0 are given by

s1 = –d < 0, s2 = –b < 0, s3 = –h < 0, s4 =
1 – da

d
,

and s4 = 1–da
d = a(R0 – 1) < 0 is equivalent to R0 < 1. Hence the local stability of equilibrium

E0 is given by the following theorem.

Theorem 2.3 The infection-free equilibrium E0 is asymptotically stable if R0 < 1 and is

unstable if R0 > 1.

Theorem 2.4 If R0 < 1, then the infection-free equilibrium E0 is globally asymptotically

stable.

Proof To show the global stability of equilibrium E0, we use the method of fluctuation
lemma employed by Hirsch et al. [34–36]. We introduce some notations. For a continuous
bounded function g : [0,∞] → R, let

g∞ = lim sup
t→∞

g(t), g∞ = lim inf
t→∞ g(t),

By Theorem 2.1 the solutions x(t), y(t), w(t), and z(t) are always nonnegative and bounded
for any nonnegative initial conditions, and the limits lim supt→∞ and lim inft→∞ always
exist for each of these solutions. By the fluctuation lemma there exists a sequence tn such
that

lim
n→∞ x(tn) = x∞, lim

n→∞ ẋ(tn) = 0.

Set t = tn. Then the first equation of model (2.1) gives ẋ(tn) + dx(tn) + x(tn)y(xn) = 1.
Letting n → ∞, it follows that

d lim
n→∞ x(tn) + lim

n→∞ x(tn) lim
n→∞ y(tn) = 1,

which yields

dx∞ ≤ dx∞ + dx∞y∞ = dx∞(1 + y∞) ≤ dx∞�
1 + y∞�

= 1. (2.11)

By a similar argument, for the remaining three equations in model (2.1), we get

ay∞ ≤ y∞(a + z∞) ≤ x∞y∞, (2.12)
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bw∞ ≤ w∞(b + qy∞) ≤ cx∞y∞w∞, (2.13)

hz∞ ≤ y∞w∞. (2.14)

We claim that y∞ = 0. Otherwise, y∞ > 0; then it follows from (2.11) and (2.12) that ay∞ ≤
x∞y∞ ≤ y∞

d , that is, (a – 1
d )y∞ = a(1 – R0)y∞ ≤ 0. Therefore R0 ≥ 1, which contradicts the

condition R0 < 1, and thus y∞ = 0. And from equations (2.13) and (2.14) we get that w∞ = 0
and z∞ = 0. The conditions y∞ = 0, w∞ = 0, and z∞ = 0 imply that y(t) → 0, w(t) → 0,
and z(t) → 0 as t → ∞, respectively. Thus from the first equation of model (2.1) we have
the asymptotic differential equation ẋ = 1 – dx. By simple calculation we get the solution
x(t) = x(0)e–dt + 1

d , which clearly shows that the solution x(t) → 1
d as t → ∞ by the theory

of asymptotically autonomous systems. The proof is complete. �

The characteristic equation of model (2.1) at E1 is

�
(s+ d + y1)(s– x1 + a) + x1y1

�
(s– cx1y1 + qy1 + b)(s+ h) = 0. (2.15)

Letting (s+ d + y1)(s– x1 + a) + x1y1 = 0, we have s2 + (d + y1)s+ ay1 = 0. Note that s1 +
s2 = –(d + y1) < 0 and s1s2 = ay1 > 0, which imply that s1 and s2 have negative real parts.
Obviously, s3 = –h has a negative real part. In order for all the roots of equation (2.15) to
have negative real parts, it is required that

s4 = cx1y1 – qy1 – b = d(R0 – 1)(ca– q) – b =
b(R0 – R1)

R1 – 1
< 0,

which implies R1 > R0 > 1 or R0 > 1 > R1.

Theorem 2.5 Equilibrium E1 is locally asymptotically stable for1 < R0 < R1 or R0 > 1 > R1

and is unstable for1 < R1 < R0.

Remark Note that f (a) = ab
(R1–1) (R1 – R0) = –as4, from which it follows that E1 is locally

asymptotically stable, whereas system (2.1) may have positive equilibrium under certain
conditions by Theorem 2.2 (case I.3). Moreover, system (2.1) may have both stable positive
equilibrium and stable boundary equilibrium E1.

3 Stability of positive equilibria and their bifurcations
By an easy calculation the characteristic equation of the positive equilibrium follows:

s4 + � 1s3 + � 2s2 + � 3s+ � 4 = 0, (3.1)

where

�
������

������

� 1 = h + 1
x ,

� 2 = xy+ h
x + yw,

� 3 = hxy+ yw
x + byw,

� 4 = byw
x – cwxy3.

(3.2)



Liu and Kong Advances in Difference Equations        (2020) 2020:581 Page 9 of 22

Here x, y, w, z are the coordinates of the positive equilibria. Obviously, � 1 > 0, � 2 > 0, and
� 3 > 0, and we only need to judge the sign of � 4.

Firstly, we focus on the positive equilibrium E20. By calculation we have

� 4 =
by20w20

x20
– cw20x20y3

20 =
w20y20(b – cx2

20y2
20)

x20
.

Note that 1 – dx20 – x20y20 = 0, and it follows that

b – cx2
20y2

20 = –cd2x2
20 + 2cdx20 + b – c=

4dcq– (c+ dq – b)2

4c
= –

�
4c

= 0, (3.3)

which indicates that � 4 = 0, and the characteristic equation of equilibrium E20 becomes

s
�
s3 + � 1s2 + � 2s+ � 3

�
= 0.

It has a characteristic root s1 = 0, and s2, s3, s4 are determined by the equation

s3 + � 1s2 + � 2s+ � 3 = 0, (3.4)

where

�
���

���

� 1 = h + 1
x20

> 0,

� 2 = x20y20 + h
x20

+ y20w20 > 0,

� 3 = hx20y20 + y20w20
x20

+ by20w20 > 0.

(3.5)

Note that � i > 0, i = 1, 2, 3, and according to the Routh–Hurwitz criterion, s2, s3, and s4

have negative real parts only if � 20 = � 1� 2 – � 3 = h2

x20
+ y20 + h

x2
20

+ (h – b)y20w20 > 0.
Next, we focus on s1 = 0. Transforming the equilibrium E20 to the origin by x = x – x20,

y = y – y20, w = w – w20, z = z – z20, system (2.1) becomes

�
������

������

dx
dt = – 1

x20
x – x20y – xy,

dy
dt = y20x – y20z + xy– yz,
dw
dt = cxyw+ cw20xy+ cy20xw + cy20w20x + byw

y20
+ bw20y

y20
,

dz
dt = y20w + w20y – hz+ yw,

(3.6)

where the horizontal lines on the heads of these letters are removed, and we still denote
x, y, w, z by x, y, w, z. Set

u =

�

�
�
�



1 0 0 0
0 1 0 0

bw20
x20y20

0 1 0
0 0 0 1

�

�
�
�
�

.
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Under the transformations (x, y, w, z)T = u(x, y, w, z)T , model (3.6) becomes

�
�������

�������

dx
dt = – 1

x20
x – x20y – xy,

dy
dt = y20x – y20z + xy– yz,
dw
dt = – bcw20

x20
x2 + ( qw20

x20
– b2w20

x20y2
20

)xy+ cy20xw + b
y20

yw+ cxyw– bcw20
x20y20

x2y,
dz
dt = y20w + w20y – hz+ yw– bw20

x20
x – bw20

x20y20
xy,

(3.7)

where the horizontal lines on the heads of these letters are removed, and we still denote
x, y, w, z by x, y, w, z. The third equation of model (3.7) has no linear term, and then the
center manifold is a curve tangent to the w-axis.

To obtain an approximative expression of the center manifold, we set

�
���

���

x = m1w + m2w2 + o(w2),

y = n1w + n2w2 + o(w2),

z = p1w + p2w2 + o(w2),

(3.8)

where m1, n1, p1, m2, n2, p2 are undetermined coefficients. It follows that

�
���

���

dx
dt = m1

dw
dt + [2m2w + o(w)] dw

dt ,
dy
dt = n1

dw
dt + [2n2w + o(w)] dw

dt ,
dz
dt = p1

dw
dt + [2p2w + o(w)] dw

dt .

(3.9)

To find the unknown coefficients m1, m2, n1, n2, p1, p2, we substitute (3.7) and (3.8) into
(3.9), compare the coefficients at w and w2, and obtain

�
����������������������

����������������������

1
x20

m1 + n1x20 = 0,

–( m2
x20

+ n2x20 + m1n1)

= [– bcm2
1w20

x20
+ ( qw20

x20
– b2w20

x20y2
20

)m1n1 + cm1y20 + b
y20

n1]m1,

y20m1 – y20p1 = 0,

y20m2 – y20p2 + m1n1 – n1p1

= n1[– bcm2
1w20

x20
+ ( qw20

x20
– b2w20

x20y2
20

)m1n1 + cm1y20 + b
y20

n1],

y20 + n1w20 – hp1 – bw20
x20

m1 = 0,

n2w20 – hp2 + n1 – bw20m2
x20

– bw20m1n1
x20y20

= p1[– bcm2
1w20

x20
+ ( qw20

x20
– b2w20

x20y2
20

)m1n1 + cm1y20 + b
y20

n1].

(3.10)

According to (3.8) and (3.9), we have

dw
dt

=
	

–
bcm2

1w20

x20
+

�
qw20

x20
–

b2w20

x20y2
20

�
m1n1 + cm1y20 +

b
y20

n1



w2 + o

�
w2�

. (3.11)

Note that dw
dt is only related to m1, n1, and p1, and it follows that (by (3.10))

m1 =
y20x2

20
hx2

20 + w20 + bw20x20
, p1 =

y20x2
20

hx2
20 + w20 + bw20x20

,
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n1 = –
y20

hx2
20 + w20 + bw20x20

.

Substituting m1, p1, and n1 into (3.11) and noting that b – cx2
20y2

20 = 0, we have

dw
dt

=
�

bw20x20(b – cx2
20y2

20) – qw20x20y2
20

(w20 + hx2
20 + bw20x20)2 +

cx2
20y2

20 – b
w20 + hx2

20 + bw20x20

�
w2 + o

�
w2�

= –
qw20x20y2

20
(w20 + hx2

20 + bw20x20)2 w2 + o
�
w2�

.

The coefficient of w2 is – qw20x20y2
20

(w20+hx2
20+bw20x20)2 < 0. Hence the equilibrium E20 is a saddle-node.

Theorem 3.1 If h2

x20
+ y20 + h

x2
20

+ (h – b)y20w20 > 0, then the infectious equilibrium E20 is a

saddle-node.

For the equilibria E2– and E2+, we have the following properties.

Proposition 3.1 When the equilibria E2– and E2+ exist, then det(J(E2–)) < 0 and

det(J(E2+)) > 0.

Proof Similarly to the analysis of equilibrium E20, we obtain � 4 = byw
x – cwxy3 = yw

x (b –
cx2y2). Set

g(x) .= b – cx2y2 = –cd2x2 + 2cdx+ b – c,

which is strictly increasing in (–∞, 1
d ). Suppose x2+ < 1

d . Submitting x2+ into this inequality
and simplifying it, we have c+ b – dq >

√
� . Note that c+ b – dq > 0. Squaring both sides

and simplifying, we obtain 4bc> 0, which implies x2– < c+dq–b
2cd < x2+ < 1

d .
An easy calculation shows that g( c+dq–b

2cd ) = – �
4c by (3.3). Then g( c+dq–b

2cd ) < 0 when � > 0.
It follows that g(x2–) < g( c+dq–b

2cd ) < 0, which yields det(J(E2–)) = � 4 = y2–w2–
x2–

g(x2–) < 0.
Solving g(x) = 0, we obtain the roots x+ = c+

√
bc

cd , x– = c–
√

bc
cd . In fact, x– < 1

d < x+. Suppose
x– < x2+, that is, c+dq–b+

√
�

2cd > c–
√

bc
cd . By direct calculation we have

√
� > c+ b – dq – 2

√
bc.

If c+ b – dq – 2
√

bc≤ 0, then it holds. If c+ b – dq – 2
√

bc> 0, after squaring both sides
and simplifying, we obtain (b – c – dq)2 – (c + b – dq)2 > 4dcq+ 4bc– 4

√
bc(c + b – dq),

which gives b+ c– dq– 2
√

bc> 0. It follows that 1
d > x2+ > x–, and hence g(x2+) > g(x–) = 0,

which in turn yields det(J(E2+)) = � 4 = y2+w2+
x2+

g(x2+) > 0. This completes the proof. �

Theorem 3.2 The infectious equilibrium E2– is unstable once it exists.

Proof Since the determinant det(E2–) < 0, there is at least one characteristic root that has
no negative real part. Therefore E2– is unstable. �

Next, we discuss the stability of equilibria E2+. By (3.2) the characteristic equation at E2+

is given by

s4 + � 1s3 + � 2s2 + � 3s+ � 4 = 0,
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where

�
������

������

� 1 = h + 1
x2+

,

� 2 = x2+y2+ + h
x2+

+ y2+w2+,

� 3 = hx2+y2+ + y2+w2+
x2+

+ by2+w2+,

� 4 = by2+w2+
x2+

– cw2+x2+y3
2+.

Note that � 1 > 0, � 2 > 0, and � 3 > 0, and according to the proof of Propositiony 3.1, we
know that � 4 > 0. The relevant Routh–Hurwitz determinants are

�
������

������

� 1 = � 1,

� 2 = � 1� 2 – � 3,

� 3 = � 3� 2 – � 2
1 � 4,

� 4 = � 4� 3.

(3.12)

Note that � 1 > 0 and the sign of � 4 is the same as � 3. By the formulas of x2+, y2+, and
z2+, � 2 and � 3 can be written more explicitly as

�
�

�

� 2 = A2h2 + B2h + C2,

� 3 = h
x3

2+
[A3h2 + B3h + C3],

(3.13)

where

�
������������

������������

A2 = 1
x2+

+ z2+,

B2 = 1
x2

2+
– bz2+,

C2 = y2+,

A3 = x3
2+y2+ + x2+z2+ + x4

2+y2+z2+ + x2
2+z2

2+ + bz2
2+x3

2+ + cz2+x4
2+y2

2+,

B3 = x2
2+y2+ + z2+ + 2cx3

2+z2+y2
2+ – bx4

2+y2+z2+ – bx2
2+z2

2+ – b2z2
2+x3

2+ – bz2+x2+,

C3 = x4
2+y2

2+ + x2
2+y2+z2+ + bx3

2+y2+z2+ + cx2
2+z2+y2

2+ – bz2+.

Next, we give the following lemma to show that if both � 2 and � 3 can become zero, then
� 3 will cross zero before � 2 does.

Lemma 3.1 If E2+ exists, then � 2 is positive when� 3 crosses zero for some change in pa-

rameters.

Remark The proof is similar to that in [33], so here we omit it.

Thus, to consider the stability of the positive equilibrium E2+, we only need to consider
the possibility of � 3 = 0 (see [33]). Note that x, y, z do not contain h and � 3 = 0 is just a
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quadratic equation in terms of h. Let

�
������

������

� 4 = B2
3 – 4A3C3,

h∗
2 = –B3+

√
� 4

2A3
,

h∗
1 = –B3–

√
� 4

2A3
,

h∗ = – B3
2A3

.

(3.14)

Obviously, h∗
1 < h∗ < h∗

2, and thus we have the following theorem.

Theorem 3.3 Suppose the infectious equilibrium E2+ exists.
(1) If C3 < 0, then E2+ is locally asymptotically stable when h∈ (h∗

2, +∞) and is unstable

when h∈ (0, h∗
2).

(2) If C3 > 0, then

(i) E2+ is always locally asymptotically stable when B3 ≥ 0, and

(ii) if B3 < 0, then E2+ is always locally asymptotically stable when� 4 < 0. Moreover, if

� 4 = 0, then E2+ is locally asymptotically stable when h
= h∗; if � 4 > 0, then E2+ is locally

asymptotically stable when h∈ (0, h∗
1) ∪ (h∗

2, +∞) and unstable when h∈ (h∗
1, h∗

2).
(3) If C3 = 0, then E2+ is always locally asymptotically stable when B3 ≥ 0, and if B3 <

0, then E2+ is locally asymptotically stable when h∈ (– B3
A3

, +∞) and unstable when h∈
(0, – B3

A3
).

Remarks1. The proof is straightforward by considering the sign of the quadratic poly-
nomial A3h2 + B3h + C3, and the detailed proof is contained in Theorem 3.4, so we omit
it.

2. If we use the computing method of paper [33], then � 2 and � 3 can be written more
explicitly as

�
�

�
� 2 = A22(h – b)2 + B22(h – b) + C22,

� 3 = A33(h – b)2 + B33(h – b) + C33,
(3.15)

where

�
�������������

�������������

A22 = 1
x2+

+ z2+,

B22 = 2b
x2+

+ bz2+ + 1
x2

2+
,

C22 = b2

x2+
+ b

x2
2+

+ y2+,

A33 = 1
x2+

(x2+y2+ + z2+
x2+

) + z2+(x2+y2+ + z2+
x2+

+ bz2+) + cz2+x2
2+y2

2+
x2+

,

B33 = 2by2+ + ( 1
x2

2++bz2+
)(x2+y2+ + z2+

x2+
+ bz2+) + 2bcz2+x2+y2

2+ + 2cz2+y2
2+,

C33 = b2y2+ + by2+
x2+

+ y2+(x2+y2+ + z2+
x2+

+ bz2+) + cx2
2+y2

2+( b2z2+
x2+

+ 2bz2+
x2

2+
+ z2+

x3
2+

).

Obviously, A22 > 0, B22 > 0, C22 > 0, A33 > 0, B33 > 0, and C33 > 0, which indicates that
� 22 > 0 and � 33 > 0 as long as h > b. As in [33], the infectious equilibrium E2+ with CTL
response is always stable if the death rate of the CTLe is higer than that of the CTLp.

Theorem 3.4 Consider the infectious equilibrium E2+(here E2+ exists).
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(1) If C3 < 0, then a Hopf bifurcation occurs at h= h∗
2.

(2) If C3 > 0, B3 < 0, and � 4 > 0, then two Hopf bifurcations occur at h= h∗
1 and h = h∗

2.
(3) If C3 = 0 and B3 < 0, then a Hopf bifurcation occurs at h= – B3

A3
.

Proof As in [37], a four-dimensional model has a Hopf bifurcation if � 1 > 0, � 2 > 0, and
� 3 = 0. Obviously, � 1 > 0 always holds by (3.12), and according to Lemma 3.1, � 2 > 0
as � 3 crosses zero for some change of parameters. Therefore a Hopf bifurcation occurs
as � 3 = 0, which is equivalent to finding the roots of the quadratic polynomial equation
A3h2 + B3h + C3 = 0, where A3, B3, C3 are independent of h by (3.13) and (3.14). Hence
A3h2 + B3h + C3 = 0 is a quadratic equation of h. Note that if C3 < 0, then a positive root
h∗

2 = –B3+
√

� 3
2A3

exists, which indicates that E2+ is stable for h ∈ (0, h∗
2) and E2+ is unstable for

h ∈ (h∗
2, +∞), whereas � 3 = 0 if h = h∗

2. Hence by [37] a Hopf bifurcation occurs at h = h∗
2.

However, if C3 > 0 and B3 < 0, then � 3 > 0 as h ∈ (0, h∗
1) ∪ (h∗

2, +∞), which implies that
E2+ is stable, whereas � 3 < 0 as h ∈ (h∗

1, h∗
2), which ensures that E2+ is unstable, and � 3 = 0

as h = h∗
2 or h = h∗

1. Hence by [37] two Hopf bifurcations occur at h = h∗
2 and h = h∗

1.
If C3 = 0 and B3 < 0, then � 3 > 0 as h ∈ (– B3

A3
, +∞), which implies that E2+ is stable,

whereas � 3 < 0 as h ∈ (0, – B3
A3

), which ensures that E2+ is unstable, and � 3 = 0 as h = – B3
A3

.
Thus by [37] a Hopf bifurcation occurs at h = – B3

A3
. �

Remark Since the expressions of x, y, w, z are very complicated, it is too complicate to
directly discuss the sign of � 4 = B2

3 – 4A3C3. In the next section, by numerical calculations
we will demonstrate that the three cases � 4 > 0, � 4 = 0, and � 4 < 0 are possible.

4 Numerical illustrations
In this section, we demonstrate the theoretical results by numerical simulations. For con-
venience, we will work on the scaled model (2.1) instead of the original model (1.3).

The values of � used for simulations in [32] are � = 1 and � = 10, and as a bifurcation
in [33], this indicates that the values of � have a fairly large variation; therefore we take
� = 0.5657. Note that � = 0.5 and � = 0.001 were used in [32], whereas � = 3

400 was used
in [33], and hence choosing � = 0.0707 is reasonable. The parameter q ∈ [0, 1] represents
the decomposition rate; here we choose q = 0.7071. The same parameter values as in [32]
are taken, and appropriate value for h is chosen:

d = 0.1, p = 1, c= 0.1, b = 0.1, h = 0.06.

According to the relationship between the parameters of the original model (1.3) and the
scaled model (2.1), the parameter values in the scaled model (2.1) are chosen as follows:

c= 4, b = 0.5, q = 1, h = 0.3, d = 0.5.

Choose a as the bifurcation parameter. With these parameter values, we obtain

R0 =
1

ad
=

1
0.5a

=
2
a

, R1 = 1 +
b

d(ca– q)
= 1 +

0.5
0.5(4a – 1)

= 1 +
1

4a – 1
.

To get R0 < 1, a > 2 is required, which in turn yields that the infection-free equilibrium
E0 = ( 1

d , 0, 0, 0) = (2, 0, 0, 0) is globally stable by Theorem 2.4. For a = 3, system (2.1) has a
globally stable infection-free equilibrium E0, which is shown in Fig. 1.
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Figure 1 Figure 1(a) is the diagram of time series of x, y, w, and z at a = 3 with the initial value (3, 1, 1, 2).
Figure 1(b) is the phase diagram of x and y with different initial values

Figure 2 Figure 2(a) is the diagram of time series of x, y, w, and z at a = 0.27 with initial value
(1, 3.2, 0.001, 0.002). Figure 2(b) is the phase diagram of x, y, and z with the same initial value

As shown in Fig. 1, the healthy and infected cells decrease and converge to the equi-
librium E0 directly, whereas CTLe and CTLp firstly increase, then decrease, and finally
converge to zero, which revels that the infected cells CTLp and CTLe die out directly af-
ter a brief fluctuation.

As a decreases to the critical value ac
1

.= 2, R0 increases and passes the threshold 1, which
reveals that E0 becomes unstable. However, the infectious equilibrium E1 = (a, d(R0 –
1), 0, 0) = (a, 0.5( 2

a – 1), 0, 0) without CTL appears. As stated in Theorem 2.5, E1 is sta-
ble if 1 < R0 < R1 or R0 > 1 > R1. By direct calculation we have R0 < R1 if 2a2 – 4a + 1 =
(a– 2+

√
2

2 )(a– 2–
√

2
2 ) > 0, which implies that 1 < R0 < R1 is equivalent to 1.707 ≈ 2+

√
2

2 < a < 2
or 1

4 < a < 2–
√

2
2 ≈ 0.2930, whereas R0 > 1 > R1 is equivalent to 0 < a < 1

4 . Adding the second
case together, we conclude that E1 is stable if a ∈ (0, 1

4 ) ∪ ( 1
4 , 2–

√
2

2 ) ∪ ( 2+
√

2
2 , 2).

Let a = 0.27. Obviously, E1 = (a, d(R0 – 1), 0, 0) = (0.27, 173
54 , 0, 0) is stable, as shown in

Fig. 2.
As shown in Figs. 2(a) and 2(b), all cells converge to the equilibrium E1 after a short time.
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According to Theorem 2.2, system (2.1) admits a unique positive equilibrium

E2+ = (x2+, y2+, w2+, z2+)

=
�

1 +
1
2
√

2,
3
2

–
√

2, –
3

10
(3 + 2

√
2)(–2 –

√
2 + 2a), 1 +

1
2
√

2 – a
�

if 2–
√

2
2 < a < 2+

√
2

2 (Theorem 2.2 (1)(i)). If a ∈ (0, 1
4 ) ∪ ( 1

4 , 2–
√

2
2 ) (Theorem 2.2 (2)(i),2(ii)),

then system (2.1) admits two positive equilibria E2+ = (x2+, y2+, w2+, z2+) and

E2– =
�

1 –
1
2
√

2,
3
2

+
√

2,
3

10
(–3 + 2

√
2)(–2 +

√
2 + 2a), 1 –

1
2
√

2 – a
�

,

which is unstable once it exists.
Next, we will prove Theorem 3.3 numerically. By direct calculation the characteristic

equation at E2+ in term of a is (here h = 0.3 is a constant)

P(s) = s4 + � 1s3 + � 2s2 + � 3s+ � 4 = 0,

where

�
������

������

� 1 = 23
10 –

√
2,

� 2 = 7
5 – 2

5

√
2 – 3

10 a,

� 3 = 3
340 (–5 + 2

√
2)(–20 + 17a – 8

√
2),

� 4 = – 3
20 (–4 + 3

√
2)(–2 –

√
2 + 2a).

(4.1)

It follows that the existence conditions of positive equilibrium E2+ (a ∈ (0, 1
4 ) ∪ ( 1

4 , 2–
√

2
2 )

or a ∈ ( 2–
√

2
2 , 2+

√
2

2 )) directly guarantee that � i > 0, i = 1, 2, 3, 4.
According to formulas (3.13), we obtain the Routh–Hurwitz determinants:

�
�

�
� 2(a) = 171

50 – 58
25

√
2 + 3

50 a,

� 3(a) = 3
17,000 (–5 + 2

√
2)(a – a–)(a – a+),

(4.2)

where a± = 3593
34

√
2 – 15,119

102 ± 1
102

�
461,988,655 – 326,669,598

√
2. Note that � 2(a) > 0 for

all a > 0 by (4.2), whereas if a < a–, or a > a+, then we have � 3(a) > 0. Thus E2+ is locally
stable by the Routh–Hurwitz theorem if a– < a < 2+

√
2

2 . Let a = 1. By simple calculation we
obtain E2+ = (1 + 1

2

√
2, 3

2 –
√

2, 3
10

√
2(3 + 2

√
2), 1

2

√
2) and � 1E2+ ≈ 0.8858, � 2E2 ≈ 0.5343,

� 3E2 ≈ 0.2743, � 4E2 ≈ 0.0515, � 2E2 ≈ 0.1990, � 3E2 ≈ 0.0142 by (4.1) and (4.2). Therefore
it is locally stable, as shown in Fig. 3.

As can be seen in Fig. 3(a) and Fig. 3(b), each cell first shocks and then settles to equi-
librium E2+.
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Figure 3 Figure 3(a) is the diagram of time series of x, y, w, and z at a = 1, and the initial value is
(1.2, 0.2, 1.3, 1), whereas Fig. 3(b) is the phase diagram of x and y with different initial values

Now we verify the Hopf bifurcation by Theorem 3.4. The formulas given by (3.14) are

�
���������������

���������������

A2 = 3 – 1
2

√
2 – a,

B2 = 11
2 – 17

4

√
2 + 1

2 a,

C2 = 3
2 –

√
2,

A3 = – 87
8 a + 21

2 + 29
4

√
2 – 29

4

√
2a + 11

4 a2 + 15
8

√
2a2,

B3 = – 1
544 (15

√
2 + 22)[a – (– 407

34 + 657
68

√
2 – 1

68

�
1,566,150 – 1,107,132

√
2)]

× [a – (– 407
34 + 657

68

√
2 + 1

68

�
1,566,150 – 1,107,132

√
2)],

C3 = – 1
272 (–22 + 15

√
2)(16

√
2 + 28 – 17a).

(4.3)

It follows that the existence conditions of positive equilibrium E2+ (a ∈ (0, 1
4 ) ∪ ( 1

4 , 2–
√

2
2 )

or a ∈ ( 2–
√

2
2 , 2+

√
2

2 )) also directly guarantee that A3 > 0 and C3 > 0 (Theorem 3.4 (2)).
Since B3 < 0 (Theorem 3.4 (2)), we have

a > –
407
34

+
657
68

√
2 +

1
68

�
1,566,150 – 1,107,132

√
2 ≈ 2.155

or

0 < a < –
407
34

+
657
68

√
2 –

1
68

�
1,566,150 – 1,107,132

√
2 ≈ 1.225.

Moreover, according to (3.14), we obtain

� 4 =
1

36,992
(467 + 330

√
2)(–20 + 17a – 8

√
2)2

×
	
a –

�
–135 +

193
2

√
2 + 2

�
9184 – 6494

√
2
�


×
	
a –

�
–135 +

193
2

√
2 – 2

�
9184 – 6494

√
2
�


,

(4.4)
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whereas � 4 = 0 yields

a = –135 +
193

2
√

2 ± 2
�

9184 – 6494
√

2,
8
√

2 + 20
17

,
8
√

2 + 20
17

≈ 2.0949, 0.8483, 1.8420, 1.8420.

Denote a∗ = –135 + 193
2

√
2 – 2

�
9184 – 6494

√
2 ≈ 0.8483 (∈ ( 2–

√
2

2 , 2+
√

2
2 )). Intersecting

with the existence condition of equilibrium E2+ and B3 < 0, we obtain � 4 < 0 for a ∈
(a∗, 2+

√
2

2 ) and � 4 = 0 for a = a∗, whereas � 4 > 0 for a ∈ (0, 1
4 ) ∪ ( 1

4 , 2–
√

2
2 ) ∪ ( 2–

√
2

2 , a∗),
which implies that the two roots of � 3 = 0 are (by (3.13))

h∗
1 =

–B3 –
√

� 4

2A3
, h∗

2 =
–B3 +

√
� 4

2A3
, (4.5)

where A3 and B3 are given in (4.3), and � 4 is given in (4.4). By Theorem 3.3, E2+ is
stable if h ∈ (0, h∗

1) ∪ (h∗
2, +∞). Submitting a = 0.5 into (4.5), we get h∗

1 ≈ 0.03872 and
h∗

2 ≈ 0.2728, and therefore E2+ is stable if h = 0.3 (given number) > h∗
2. For a = 0.31, we have

h∗
1 ≈ 0.029245 and h∗

2 ≈ 0.304727, which implies that h = 0.3 (given number) ∈ (h∗
1, h∗

2),
and thus E2 is unstable.

Fix a = 0.31 and take h as the bifurcation parameter. By Theorem 3.4 there are two
Hopf bifurcations at h = h∗

1 ≈ 0.029245 and h = h∗
2 ≈ 0.304727, which implies that two

limit cycles occur. With the help of Matcont [38], we obtain that the first Lyapunov coef-
ficient is –0.07004781 as h = h∗

1 ≈ 0.029245, whereas another first Lyapunov coefficient is
–0.001386494 as h = h∗

2 ≈ 0.304727, and thus the two Hopf bifurcations are supercritical,
and the limit cycles are stable. The phrase diagrams of system are shown in Fig. 4.

As can be seen in Figs. 4(a), 4(b), and 4(c), a stable limit cycle appears, and stable periodic
solutions bifurcate from it.

We must point out that when a ∈ (0, 1
4 )∪ ( 1

4 , 2–
√

2
2 ), the infectious equilibrium E1 without

CTL is stable, whereas the infectious equilibrium E2+ with CTL exists. To display this
case, let a = 0.27 and h = 0.4, which indicates that both E1 and E2+ are stable. By direct
calculation we obtain E1 ≈ (0.27, 3.2037, 0, 0) and E2+ ≈ (1.7071, 0.0858, 1.4371, 6.7009),
and we draw the diagrams with different initial values.

As shown in Figs. 5(a) and 5(b), there are two stable equilibria E1 and E2+, that is, bistabil-
ity occurs, and the infected cells converge to one of them depending on the initial values.

Besides, when equilibrium E2+ is unstable, then a stable limit cycle occurs, and E1 is
still stable. To display this phenomenon directly, letting a = 0.1 and h = 0.3, we draw the
diagrams with different initial values.

As shown in Figs. 6(a) and 6(b), a stable equilibrium E1, an unstable equilibrium E2+, and
a stable limit cycle, which is bifurcated from E2+, appear, and the infected cells converge
to one of them depending on the initial values.

For the case of C3 < 0, in Theorems 3.3 and 3.4, we give another set of parameters d =
3.6 = b, q = 1, c= 28.8, h = 0.8. We do not discuss it now.

5 Discussion
This paper studies an HIV model proposed by Wodarz et al. [31, 32] to describe the inter-
action between healthy cells and infected cells as well as primary and secondary immune
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Figure 4 Figure 4(a) is the diagram of time series of y at a = 0.31 with initial value (3, 1, 2, 4). Figure 4(b) is a
part of the phase diagram about x and y with the same initial values. Figure 4(c) is the phase diagram with
different initial values

Figure 5 Figure 5(a) is the diagram of time series of y at a = 0.27 and h = 0.4 with different initial values.
Figure 5(b) is the phase diagram of x and y with different initial values

response. Compared with [33], in this model, we assume that the production of primary
immune response is not only connected with infected cells but also with healthy cells. We
also assume that virus at its steady state is proportional to infected cells. The structure
of equilibria is analyzed in [31, 32]. But for a higher-dimensional system, stability and bi-
furcation analysis is important and complex for the full range of possibilities. Because of
adding the healthy cells to the produced CTLp, the model shows rich dynamic behavior
on stability and bifurcations.
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Figure 6 Figure 6(a) is the diagram of time series of y at a = 0.1 and h = 0.3 with different initial values.
Figure 6(b) is the phase diagram of x and y with different initial values. Figure 6(c) is the diagram of time series
of y with different initial values

It is interesting that this model displays the bistability phenomenon, that is, two stable
equilibria E1 and E2+ or a stable equilibrium E1 and a stable limit cycle, which is bifurcated
from the unstable equilibrium E2+. Which one is stable not only depends on relationship of
parameters but also depends on the initial values of cells. As shown in Figs. 5(a) and 5(b),
high initial virus load close to E1 leads to the convergence to E1, which means that CTL
memory fails to establish. Low initial virus load close to E2+ leads to the convergence to E2+,
CTL memory successfully establishes, and the virus load first increases and then decreases
to stay at a low level. Therefore we must increase dosage to inhibit the virus replication in
a brief period and help the immune response establish. As shown in Fig. 6(a), if the initial
healthy cells and virus load are the same, and high initial CTL account means that the CTL
response establishes, virus load may decrease at primary process, which was considered
as the CTL clear away some virus, but over time, it oscillates and cannot be completely
eradicated. This phenomenon can be viewed as an individual having a chronic disease
that may flare up from time to time, and it is a long struggle between virus and immune
response. Initial values with little CTL lead to high virus load. As can been in Fig. 6(c), high
or low initial healthy cells do not change the development of disease. However, high initial
healthy cells first lead to decreasing the virus load to a very low state, which is almost clear
away the virus, which means that the healthy cells play an important role in clearing away
the virus under certain circumstances.
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The interaction of virus and the host immune system is a complicated and long process
as HIV has a long latent period, and the disease cannot cure completely. We have shown
rich dynamic patterns, but the model considered here is just a simple one. It is easy to im-
prove and expand the model. For example, we can add the virus equation in model (1.3)
(see a more detailed description in [32]), we may consider delay in this model as in [39],
drug treatment [13], or latent cells [40] mentioned in the introduction. Such modifica-
tions should more precisely react the reality and give us more advice in understanding the
infection process, which leads to a more challenging mathematical analysis.
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