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Abstract
Humans are always exposed to the threat of infectious diseases. It has been proven
that there is a direct link between the strength or weakness of the immune system
and the spread of infectious diseases such as tuberculosis, hepatitis, AIDS, and
Covid-19 as soon as the immune system has no the power to fight infections and
infectious diseases. Moreover, it has been proven that mathematical modeling is a
great tool to accurately describe complex biological phenomena. In the recent
literature, we can easily find that these effective tools provide important contributions
to our understanding and analysis of such problems such as tumor growth. This is
indeed one of the main reasons for the need to study computational models of how
the immune system interacts with other factors involved. To this end, in this paper, we
present some new approximate solutions to a computational formulation that
models the interaction between tumor growth and the immune system with several
fractional and fractal operators. The operators used in this model are the
Liouville–Caputo, Caputo–Fabrizio, and Atangana–Baleanu–Caputo in both fractional
and fractal-fractional senses. The existence and uniqueness of the solution in each of
these cases is also verified. To complete our analysis, we include numerous numerical
simulations to show the behavior of tumors. These diagrams help us explain
mathematical results and better describe related biological concepts. In many cases
the approximate results obtained have a chaotic structure, which justifies the
complexity of unpredictable and uncontrollable behavior of cancerous tumors. As a
result, the newly implemented operators certainly open new research windows in
further computational models arising in the modeling of different diseases. It is
confirmed that similar problems in the field can be also be modeled by the
approaches employed in this paper.
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1 Introduction
The immune system is a real masterpiece that does extraordinary things every day while
we do not realize such numerous activities. The job of the immune system is protecting
our bodies against invading factors such as bacteria and viruses. Many factors such as low
nutrient intake, lack of sleep, and high stress weaken a person’s immune system. On the
other hand, people with cancer are also at risk for infectious diseases since they usually
undergo special chemotherapy treatments using special drugs that weaken their immune
system. The main purpose of these special drugs is destroying diseased cells without dam-
aging adjacent tissues. Unfortunately, some healthy cells and tissues in the body may also
be affected during this treatment.

Nowadays, with the pandemic outbreak of the dangerous infectious disease COVID-19
all over the world, infectious disease specialists and epidemiologists constantly emphasize
the strengthening of the immune system as one of the most important ways to prevent this
deadly disease.

In this paper, we provide some novel approximate solutions to a computational model
that formulates the interaction between tumor growth and the immune system, including
several fractional and fractal operators. The model consists of three state variables, each
representing the number of specific cells in the problem. The interaction between these
variables is presented by Itik and Banks [26] through following nonlinear differential equa-
tion system:

dT(τ )
dτ

= k′
1T(τ )

(
1 –

T(τ )
s1

)
– β ′

12T(τ )H(τ ) – β ′
13T(τ )E(τ ),

dH(τ )
dτ

= k′
2H(τ )

(
1 –

H(τ )
s2

)
– β ′

21T(τ )H(τ ),

dE(τ )
dτ

=
k3T(τ )E(τ )
T(τ ) + s3

– β ′
31T(τ )E(τ ) – c′

3E(τ ),

(1)

subject to initial conditions (T(0), H(0), E(0)) = (T0, H0, E0) ≥ 0.
In this model, T(τ ) is used to count the number of tumor cells at time τ , H(τ ) represents

the number of healthy host cells, and E(τ ) refers to the number of effector immune cells
in the single tumor-site compartment. Moreover, τ represents the rate of change in the
population of the tumor cells, k′

1 describes the growth of the tumor cells, and s′
1 is their

maximum carrying capacity. The first term of Eq. (1) expresses to the logistic growth of
the tumor cells in the absence of any effect from other cell populations. The competition
between the host cells H(τ ) and the tumor cells T(τ ), which results in the loss of the tumor
cell population, is given by the term β ′

12T(τ )H(τ ). Moreover, β ′
12 refers to the tumor cell

killing rate by the effector cells E(τ ). In the second equation of system (1) the healthy tissue
cells also grow logistically with the growth rate k′

2 and maximum carrying capacity s′
2.

We assume that the cancer cells proliferate faster than the healthy cells, and thus k′
1 > k′

2.
The tumor cells also inactivate the healthy cells at the rate β ′

21. Also, the third equation
of system (1) illustrates the stimulation of the immune system by the tumor cells with
tumor specific antigens. One of the other assumptions considered in the model is that
the immune system depends directly on the number of tumor cells a the rate of positive
constants k′

3 and s′
3. Finally, β ′

31 is the rate of change corresponding to the inactivated
effector cells by the tumor cells, and c′

3 is their rate of natural death. All parameters in the
model are positive constants.
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For simplicity of analysis, we first nondimensionalize system (1) by employing the defi-
nitions

T (t) =
T(τ )

s1
, H(t) =

H(τ )
s2

, E(t) =
E(τ )

s3
, t = k1τ . (2)

In addition, we use the following new parameters:

β31 =
β ′

31s1

k1
, β13 =

β ′
13s3

k1
, β12 =

β ′
12s2

k1
, β31 =

β ′
31s1

k1
,

k2 =
k′

2
k1

, k3 =
k′

3
k1

, s3 =
s′

3
s1

, c3 =
c′

3
k1

.
(3)

By involving the introduced changes in equations (2) and (3), we obtain a new dimension-
less form for the problem [26]:

dT (t)
dt

= T (t)
(
1 – T (t)

)
– β12T (t)H(t) – β13T (t)E(t),

dH(t)
dt

= k2H(t)
(
1 – H(t)

)
– β21T (t)H(t),

dE(t)
dt

=
k3T (t)E(t)
T (t) + s3

– β31T (t)E(t) – c3E(t).

(4)

Due to the great importance of model (4), many researchers have shown interest in exam-
ining various technical and computational aspects of this model. The authors explain the
biological relevance of model (7). In [41] the authors have utilized the localization of com-
pact invariant sets (LCIS) method and Lyapunov stability theory to investigate the global
dynamics of model (4). In [28] the authors have focused on the mathematical points of
view, such as the existence of Hopf bifurcations corresponding to the model. In [24] the au-
thors considered the model using the Caputo–Fabrizio–Caputo and new fractional deriva-
tive with Mittag-Leffler kernel in the Liouville–Caputo sense. Starko and Coria [40] pro-
vided sufficient conditions on model parameters and treatment parameters under which
all trajectories in the positive orthant tend to the tumor-free equilibrium point. The au-
thors in [32] have developed an efficient methodology of partial control and applied it to
avoid the extinction of the healthy tissue. In [42], taking impulsive differential equations
into account, the authors have presented a mathematical formulation of tumor–immune
interaction with periodically pulsed immunotherapy. In [3], model (4) was modified to
include three delay parameters in the problem.

Fractional calculus has a relatively long history almost as long as a integer-order differ-
ential account. However, in recent decades, the implementations of these concepts was
neglected compared to standard calculus. This trend seems to have changed in the past
years in general. A defining sign of this change is the increasing use of these tools in the
literature. Thanks to the researchers’ efforts, many differentiated and integral operators
based on different approaches were proposed and then successfully implemented in the
past few years [1, 4, 5, 10, 13, 23, 25, 30]. From the perspective of numerical aspects, a
wide range of new mathematical methods was successfully applied in various branches of
science [6, 13, 16–19, 27, 29, 35, 37, 39]. For example, in [9] the authors have developed
an efficient numerical treatment for ordinary fractional and fractal-fractional differential
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differential equations, which is based on Newton polynomials. In [8], Atangana and his
collaborator have successfully applied a new numerical algorithm to approximate a mod-
ified version of the Chua attractor model with both fractional and fractal-fractional oper-
ators. An efficient numerical technique, the Atangana–Seda numerical scheme, based on
Newton polynomials, is utilized in [7] to handle a chaotic problem with fractional oper-
ators, which include the exponential decay, power law, and Mittag-Leffler kernel. In [23]
the author has employed some novel differential and integral operators of fractional order
and fractal dimension using he uville–Caputo and Atangana–Baleanu definitions to ob-
tain multiple attractors and periodicity on the Vallis model for El Niño/La Niña-Southern
oscillation model. A new fractional-order compartmental SEIRS model with Caputo-type
fractional-order derivative was also studied in [25]. Chaotic systems are almost one of the
most important and applicable types of nonlinear equations [12, 21, 34, 36, 38]. There-
fore in many cases the exact solution is not available for such equations. On the other
hand, the use of new derivative operators in structures of chaotic systems has made signif-
icant development in this field [2, 22]. In some cases the researchers have obtained desir-
able attractors, which were not achievable by common integer-order operators. This fact
highlights the importance of new derivative operators in other real-world models. Moti-
vated by these achievements, especially following the work [24], we intend to investigate
the model presented in equation (4) using some new efficient fractional and fractional-
fractional operators.

To reach this goal, the subsequent parts of the paper are structured as follows. The anal-
ysis of model equilibrium points is presented in Sect. 2. This model is examined in the
next section via the Liouville–Caputo fractional-order derivative. This section also con-
firms that under appropriate assumptions, the model always possesses a unique solution.
Then a numerical method corresponding to this structure is designed and then utilized.
Besides, detailed numerical simulations are presented. Similar processes will be followed
in Sects. 4 and 5 of the paper, with the Caputo–Fabrizio–Caputo and Atangana–Baleanu–
Caputo fractional derivative operators, respectively. In Sect. 6, we examine the model via
several fractal-fractional operators. This section also presents the numerical methods cor-
responding to each of these operators. To investigate the dynamic behavior of the results,
we added several numerical simulations. Finally, in Sect. 7, we present a summary of the
results and achievements of the paper.

2 Investigation of stability of equilibrium points of models
In this section, we analyze the equilibrium points of the considered model (4). These
points are in fact the roots of the nonlinear algebraic system that is contracted on the
right-hand side of the model. By solving this system, we determine six possible equilib-
rium points for the model [28].

Point 1: the no “living cell” singular point P1 = (0, 0, 0).
Point 2: The tumor-free fixed point P2 = (0, 1, 0).
Point 3: The fixed point P3 = (1, 0, 0), which implies the existence of tumor cells in the

model.
Point 4: The fixed point P4 = (T ∗, 0, 1–T ∗

β13
). The first coordinate T ∗ is determined by

finding the nonnegative root(s) of the characteristic equation

β13T ∗2 + T ∗(c3 + s3β31 – k3) + s3c3 = 0. (5)
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This equation has the acceptable root

T ∗ =
k3 – c3 – s3β31 +

√
(k3 – c3 – s3β31)2 – 4s3c3β31

2β31
.

Necessary conditions for the existence of this equilibrium point are

k3 > c3 + s3β31, T ∗ < 1.

Point 5: The singular point P5 = ( k2(β12–1)
β12β21–k2 , β21–k2

β12β21–k2 , 0), which implies the coexistence of
cancer and host cells. The necessary conditions for the existence of this equilibrium point
are

β21 > k2, β12 > 1, β12β21 > k2.

It should also be noted that for β12 = 1, this equilibrium point becomes the equilibrium
point P2.

Point 6: The interior fixed point P6 = (T ∗, k2–β21T ∗
k2

, k2(1–β12)+T ∗(β21β12–k2)
k2β13

), where T ∗ is a
positive root of β13T ∗2 + T ∗(c3 + s3β31 – k3) + s3c3 = 0, as mentioned earlier. In this case,
all three cell populations are present in the problem. The necessary conditions for the
existence of this equilibrium point are

k3 > c3 + s3β31, β12 < 1, β12β21 > k2, β21 > k2, T ∗ <
k2

β21
.

Moreover, the Jacobi matrix corresponding to this system is

J
(
T ∗,H∗,E∗)

=

⎡
⎣–β12H∗ – β13E∗ – 2T ∗ + 1 –β12T ∗ –β13T ∗

–H∗β21 k2(1 – H∗) – k2H∗ – β21T ∗ 0
k3E∗
T ∗+s3

– k3T ∗E∗
(T ∗+s3)2 – β31E∗ 0 k3T ∗

T ∗+s3
– β31T ∗ – c3

⎤
⎦ .

(6)

3 The model via the Liouville–Caputo fractional derivative
In this section, we consider model (4) with the Liouville–Caputo (LC) fractional derivative,

LC
0 Dα

t T (t) = T (t)
(
1 – T (t)

)
– β12T (t)H(t) – β13T (t)E(t),

LC
0 Dα

t H(t) = k2H(t)
(
1 – H(t)

)
– β21T (t)H(t),

LC
0 Dα

t E(t) =
k3T (t)E(t)
T (t) + s3

– β31T (t)E(t) – c3E(t),

(7)

where the LC fractional derivative is defined as [14]

LC
0 Dα

t T (t) =
1

�(α)

∫ t

0
(t – η)α–1φ′(η) dη, 0 < α ≤ 1. (8)
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Utilizing the Laplace transform on the LC derivative (8), we get

L
{LC

0 Dα
t φ(t)

}
= sαL

{
φ(t)

}
–

m–1∑
k=0

sα–k–1φ(k)(0), m = �α�. (9)

Taking (9) into account and then utilizing the inverse Laplace transform on Eq. (7), we get

T (t) = T (0) + L–1
{

1
sα
L

[
T (t)

(
1 – T (t)

)
– β12T (t)H(t) – β13T (t)E(t)

]}
,

H(t) = H(0) + L–1
{

1
sα
L

[
k2H(t)

(
1 – H(t)

)
– β21T (t)H(t)

]}
,

E(t) = E(0) + L–1
{

1
sα
L

[
k3T (t)E(t)
T (t) + s3

– β31T (t)E(t) – c3E(t)
]}

.

(10)

From (10) we suggest the following iterative schemes:

Tn(t) = T0 + L–1
{

1
sα
L

[
Tn–1(t)

(
1 – Tn–1(t)

)
– β12Tn–1(t)Hn–1(t) – β13xn–1(t)En–1(t)

]}
,

Hn(t) = H0 + L–1
{

1
sα
L

[
k2Hn–1(t)

(
1 – Hn–1(t)

)
– β21Tn–1(t)yn–1(t)

]}
,

En(t) = E0 + L–1
{

1
sα
L

[
k3Tn–1(t)En–1(t)
Tn–1(t) + s3

– β31Tn–1(t)En–1(t) – c3E(t)
]}

,

(11)

where

T0 = T (0), H0 = H(0), E0 = E(0). (12)

The desired approximate solutions can be obtained by computing the limits

T (t) = lim
n→∞Tn(t), H(t) = lim

n→∞Hn(t), E(t) = lim
n→∞En(t). (13)

3.1 Existence and uniqueness
Let us assume that a Banach space like � has a closed convex bounded subset 	 that
contains a fixed point of �. Moreover, let ω : 	 → 	 be a condensing map. Moreover, let us
assume that there exists � ∈ (0, ξ ) such that X,Y,Z ∈ L1/�([0, T], R+). The exist functions
X

∗,Y∗,Z∗ ∈ (R,�) ∩ L1
loc(R,�) such that X = X

∗ +X
∗∗, Y = Y

∗ +Y
∗∗, and Z = Z

∗ + Z
∗∗. Then

we have:
1. X∗, Y∗, and Z∗ are Lipschitz and bounded.
2. X

∗∗, Y∗∗, and Z
∗∗ are compact and bounded.

3. |R(t, m) – R(t, z)| ≤ L1(t)‖m – z‖.
With the help of the Riemann–Liouville integral, Eq. (7) is written as

X(t) = X(0) +
1

�(ρ)

∫ t

0
(t – η)ρ–1X∗(η,X(η)

)
dη +

1
�(ρ)

∫ t

0
(t – η)ρ–1X∗∗(η,X(η)

)
dη,

Y(t) = Y(0) +
1

�(ρ)

∫ t

0
(t – η)ρ–1Y∗(η,Y(η)

)
dη +

1
�(ρ)

∫ t

0
(t – η)ρ–1Y∗∗(η,Y(η)

)
dη,

Z(t) = Z(0) +
1

�(ρ)

∫ t

0
(t – η)ρ–1Z∗(η,Z(η)

)
dη +

1
�(ρ)

∫ t

0
(t – η)ρ–1Z∗∗(η,Z(η)

)
dη. (14)
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Theorem 1 As soon as

ψ =
υ‖L‖1/�TM

�(ρ)
< 1, (15)

then under two properties 1 and 2, the existence of a solution to the problem is guaranteed.

Proof Let us take χ such that τ (0) + 1
�(ρ)υ(‖H1‖1/� + ‖H2‖1/�)TM ≤ χ , and let 	μ = {m :

‖m‖ ≤ χ} be a closed set in the Banach space ([0, T],�) equipped with the norm of sup‖·‖.
Then, by the definition m : 	χ → ([0, T],�), m → X

∗m + X
∗∗m, we have

X
∗(t) = X

∗(0) +
1

�(ρ)

∫ t

0
(t – η)ρ–1X∗(η, m(η)

)
dη,

X∗∗(t) = X∗∗(0) +
1

�(ρ)

∫ t

0
(t – η)ρ–1X∗∗(η, m(η)

)
dη,

Y
∗(t) = Y

∗(0) +
1

�(ρ)

∫ t

0
(t – η)ρ–1Y∗(η, m(η)

)
dη,

Y∗∗(t) = Y∗∗(0) +
1

�(ρ)

∫ t

0
(t – η)ρ–1Y∗∗(η, m(η)

)
dη,

Z
∗(t) = Z

∗(0) +
1

�(ρ)

∫ t

0
(t – η)ρ–1Z∗(η, m(η)

)
dη,

Z∗∗(t) = Z∗∗(0) +
1

�(ρ)

∫ t

0
(t – η)ρ–1Z∗∗(η, m(η)

)
dη. (16)

Hence we obtain that X, Y, Z, and W are condensing, and the fixed points of X, Y, Z, and
W are verified.

I) Let us show that X(	χ ) ⊂ 	χ . For m ∈ 	χ , we have

∥∥X(t)
∥∥ ≤ ∥∥X(0)

∥∥ +
1

�(ρ)

∫ t

0
(t – η)ρ–1X∗(η, m(η)

)
dη

≤ ∥∥X(0)
∥∥ +

1
�(ρ)

∫ t

0
(t – η)ρ–1X∗(η, m(η)

)
dη

+
1

�(ρ)

∫ t

0
(t – η)ρ–1X∗∗(η, m(η)

)
dη

≤ ∥∥X(0)
∥∥ +

1
�(ρ)

(∫ t

0
(t – η)

ρ–1
1–� dη

)1–�(∫ t

0
G1/�

1 (η) dη

)�

+
1

�(ρ)

(∫ t

0
(t – η)

ρ–1
1–� dη

)1–�(∫ t

0
G1/�

2 (η) dη

)�
(17)

≤ ∥∥X(0)
∥∥ +

υ1(‖G1‖1/� + ‖G2‖1/�)
�(ρ)

TM1 ≤ χ1.

Similarly, we have

∥∥Y(t)
∥∥ ≤ ∥∥Y(0)

∥∥ +
υ2(‖G3‖1/� + ‖G4‖1/�)

�(ρ2)
TM2 ≤ χ2
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and

∥∥Z(t)
∥∥ ≤ ‖Z‖ +

υ3(‖G5‖1/� + ‖G6‖1/�)
�(ρ2)

TM2 ≤ χ3, (18)

and therefore X(	χ ),Y(	χ ),Z(	χ ) ∈ 	χ .
II) Let us show that X∗, Y∗, and Z∗ are contractions. For m, z ∈ 	χ , we conclude

∥∥X∗m(t) – X
∗∗z(t)

∥∥
≤ 1

�(ρ)

∫ t

0
(t – η)ρ–1L(η)

∣∣m(η) – z(η)
∣∣dη

≤ 1
�(ρ)

(∫ t

0
(t – η)

ρ–1
1–� dη

)1–�(
L1/�(η) dη

)�‖m – z‖ ≤ �i‖m – z‖,

∥∥Y∗m(t) – Y
∗∗z(t)

∥∥
≤ 1

�(ρ)

∫ t

0
(t – η)ρ–1L(η)

∣∣m(η) – z(η)
∣∣dη

≤ 1
�(ρ)

(∫ t

0
(t – η)

ρ–1
1–� dη

)1–�(
L1/�(η) dη

)�‖m – z‖ ≤ �i‖m – z‖,

∥∥Z∗m(t) – Z∗∗z(t)
∥∥

≤ 1
�(ρ)

∫ t

0
(t – η)ρ–1L(η)

∣∣m(η) – z(η)
∣∣dη

≤ 1
�(ρ)

(∫ t

0
(t – η)

ρ–1
1–� dη

)1–�(
L1/�(η) dη

)�‖m – z‖ ≤ �i‖m – z‖,

where

�i =
σi‖L‖1/�Tμi

�(ρ)
< 1, 1 ≤ i ≤ 3. (19)

These statements confirm that X∗, Y∗, and Z∗ are contractions.
III) Let us show that X∗∗, Y∗∗, and Z∗∗ are compact. For 0 ≤ j1 ≤ j2 ≤ T , we have

∥∥X∗∗
κ(j1) – X

∗∗z(j2)
∥∥

≤ 1
�(ρ)

∣∣∣∣
∫ j2

0
(j2 – η)ρ–1X∗∗(η, m(η)

)
dη –

∫ j1

0
(j1 – η)ρ–1X∗∗(η, m(η)

)
dη

∣∣∣∣
≤ 1

�(ρ)

∫ j1

0

(
(j1 – η)ρ–1 – (j2 – η)ρ–1)G11(η) dη +

∫ j2

j1
(j2 – η)ρ–1G11(η) dη

≤ 1
�(ρ)

[∫ j1

0

(
(j1 – η)ρ–1 – (j2 – η)ρ–1) 1

1–� dη

]1–�(
G1/�

11 (η) dη
)�

+
1

�(ρ)

∫ j2

j1

(
(j2 – η)

ρ–1
1–� dη

)1–�(
G1/�

11 (η) dη
)�

≤ σi

�(ρ)
[
j
ρ–�
1–�
1 – j2

ρ–�
1–� + (j2 – j1)

ρ–�
1–�

]1–�‖G11‖1/� +
σi

�(ρ)
(j2 – j1)ρ–�‖G11‖1/� (20)
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≤ σi

�(ρ)
[
(j2 – j1)

ρ–�
1–�

]1–�‖G11‖1/� +
σi

�(ρ)
(j2 – j1)ρ–�‖G11‖1/�

≤ 2σi‖G11‖1/�
�(ρ)

(j2 – j1)ρ–�.

Similarly, we get

∥∥Y∗∗
κ(j1) – Y∗∗z(j2)

∥∥
≤ σi

�(ρ)
[
(j2 – j1)

ρ–�
1–�

]1–�‖G21‖1/� +
σi

�(ρ)
(j2 – j1)ρ–�‖G21‖1/�

≤ 2σi‖G21‖1/�
�(ρ)

(j2 – j1)ρ–�. (21)

Finally, we have

∥∥Z∗∗
κ(j1) – Z

∗∗z(j2)
∥∥ ≤ σi

�(ρ)
[
(j2 – j1)

ρ–�
1–�

]1–�‖G31‖1/� +
σi

�(ρ)
(j2 – j1)ρ–�‖G31‖1/�

≤ 2σi‖G31‖1/�
�(ρ)

(j2 – j1)ρ–�

for σi, 1 ≤ i ≤ 3.
Now by the Arzelà–Ascoli theorem [15] X∗∗(	ξ ), Y∗∗, and Z

∗∗ are relatively compact.
So X

∗∗, Y∗∗, and Z
∗∗ are compact.

SinceX∗,Y∗, Z∗, andW
∗ are contractions andX

∗∗,Y∗∗ and Z
∗∗ are compact and therefore

continuous, the maps X = X
∗ + X

∗∗, Y = Y
∗ + Y

∗∗, and Z = Z
∗ + Z

∗∗ are condensing on 	ξ .
Hence the existence of a fixed point for each point X, Y, and Z is proved.

IV) We will show that the problem has a unique solution. To this end, let us define the
map H as follows:

H
[
X(t)

]
= X(0) +

1
�(ρ)

∫ t

0
(t – η)ρ–1X

(
η,X(η)

)
dη,

H
[
Y(t)

]
= Y(0) +

1
�(ρ)

∫ t

0
(t – η)ρ–1Y

(
η,Y(η)

)
dη,

H
[
Z(t)

]
= Zh(0) +

1
�(ρ)

∫ t

0
(t – η)ρ–1Z

(
η,Z(η)

)
dη. (22)

For X∗(t), X∗∗(t), Y∗(t), Y∗∗(t), Z∗(t), Z∗∗(t), we obtain

∣∣H[
X

∗(t)
]

– F
[
X

∗∗(t)
]∣∣ ≤ 1

�(ρ)

∫ t

0
(t – η)ρ–1L1(η)

∣∣X∗(η) – X
∗∗(η)

∣∣dη

≤ 1
�(ρ)

[∫ t

0
(t – η)

ρ–1
1–� dη

]1–�[∫ t

0
L1/�

1 (η) dη

]�
(23)

≤ σ1‖L1‖1/�TM1

�(ρ)
∥∥X∗ – X∗∗∥∥.

Besides, we have

∣∣H[
Y

∗(t)
]

– H
[
Y

∗∗(t)
]∣∣ ≤ σ2‖L2‖1/�TM2

�(ρ)
∥∥Y∗ – Y

∗∗∥∥
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and

∣∣H[
Z∗(t)

]
– H

[
Z∗∗(t)

]∣∣ ≤ σ3‖L3‖1/�TM3

�(ρ)
∥∥Z∗ – Z∗∗∥∥.

These results indicate that model (7) will always has a unique solution. �

3.2 The numerical method
In this section, we use the Adams–Bashforth–Moulton (ABM) numerical method. Here
we follow the steps to apply this method in solving the following fractional-order problem:

C
0Dα

t φ(t) = 	
(
t,φ(t)

)
, φk(0) = φk

0 , k = 0, 1, . . . , n – 1. (24)

Now taking the Liouville–Caputo fractional integration on (24) yields

φ(t) =
n–1∑
k=0

f (k)
0

tk

k!
+

1
�(α)

∫ t

0
(t – η)α–1	

(
η,φ(η)

)
dη. (25)

The following predictor–corrector form determines an approximate solution to the prob-
lem [31]:

φP
k+1 =

n–1∑
ζ=0

tζ

k+1
ζ !

φ
(ζ )
0 +

1
�(α)

k∑
ζ=0

θζ ,k+1	(tζ , fζ ),

φk+1 =
n–1∑
ζ=0

tζ

k+1
ζ !

φ
(ζ )
0 +

1
�(α)

( k∑
ζ=0

γζ ,k+1	(tζ , fζ ) + γk+1,k+1	
(
tk+1,φP

k+1
))

,

(26)

where

γζ ,k+1 =
�

α

α(α + 1)
·

⎧⎪⎪⎨
⎪⎪⎩

kα+1 – (k – α)(k + 1)α , ζ = 0,

(–ζ + k + 2)α+1 + (–ζ + k)α+1 – 2(–ζ + k + 1)α+1, 1 ≤ ζ ≤ k,

1, ζ = k + 1,

θζ ,k+1 =
�

α

α

(
(–ζ + k + 1)α – (–ζ + k)α

)
, ζ = 0, 1, 2, . . . , k. (27)

Utilizing the numerical algorithm presented in (26), we determine an approximate solu-
tion to the fractional problem (7) from the formulae

T (t) =
n–1∑
k=0

T (k)(0)
tk

k!

+
1

�(α)

∫ t

0
(t – η)α–1[T (η)

(
1 – T (η)

)
– β12T (η)H(η) – β13T (η)E(η)

]
dη,

H(t) =
n–1∑
k=0

H(k)(0)
tk

k!
+

1
�(α)

∫ t

0
(t – η)α–1[k2H(η)

(
1 – H(η)

)
– β21T (η)H(η)

]
dη,

E(t) =
n–1∑
k=0

E (k)(0)
tk

k!
+

1
�(α)

∫ t

0
(t – η)α–1

[
k3T (η)E(η)
T (η) + s3

– β31T (η)E(η) – c3E(η)
]

dη.

(28)
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3.3 Numerical simulations
Figures 1–3 demonstrate the variation of state variables in model (7) when the scheme (26)
is utilized for different values of α ∈ (0, 1]. In this simulations, we have considered the fol-
lowing values in the model: β12 = 1, β13 = 2.5, k2 = 0.6, β21 = 1.5, k3 = 4.5, s3 = 1, a31 = 0.2,
and d3 = 0.5. In our performed numerical simulations, we take tfinal = 500 and � = 0.001. In
Fig. 1, we take (T (t),H(t),E(t))|t=0 = (0.1, 0.1, 0.1). In this case the model exhibits chaotic
attractor behavior. Also, by taking into consideration (T (t),H(t),E(t))|t=0 = (0.3, 0.3, 0.3),
and β12 = 0.745 the model shows the limit cycle behavior in Fig. 2, whereas for T (0) =
0.3517, H(0) = 0.1115, E(0) = 0.4951, and β12 = 0.920, we get periodic orbit trajectories in
the solutions as depicted in Fig. 3.

Figure 1 Simulations for solving (7) using (26) along with (T (0),H(0),E (0)) = (0.1, 0.1, 0.1)

Figure 2 Simulations for solving (7) using (26) along with (T (0),H(0),E (0)) = (0.3, 0.3, 0.3) and β12 = 0.745
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Figure 3 Simulations for solving (7) using (26) along with (T (0),H(0),E (0)) = (0.3517, 0.1115, 0.4951) and
β12 = 0.92

4 The model via Caputo–Fabrizio–Caputo fractional derivative
In this section, we study the following model:

CFC
0 Dα

t T (t) = T (t)
(
1 – T (t)

)
– β12T (t)H(t) – β13T (t)E(t),

CFC
0 Dα

t H(t) = k2H(t)
(
1 – H(t)

)
– β21T (t)H(t),

CFC
0 Dα

t E(t) =
k3T (t)E(t)
T (t) + s3

– β31T (t)E(t) – c3E(t).

(29)

The fractional derivative operator CFC
0 Dα

t in this model is Caputo–Fabrizio–Caputo (CFC)
given by [13]

CFC
0 Dα

t φ(t) =
M(α)
n – α

∫ t

0
φ′(η) exp

[
–

α

1 – α
(t – η)

]
dη, 0 < α ≤ 1, (30)

where

M(α) =
2

2 – α
, 0 < α < 1. (31)

The CFC fractional integral is also defined by [33]

CFC
0 Iα

t φ(t) =
2(1 – α)

(2 – α)M(α)
φ(t) +

2α

(2 – α)M(α)

∫ t

0
φ(η) dη, t ≥ 0. (32)

4.1 Existence of the coupled solutions
Applying the CFC integral definition (29), we obtain the following relationships:

⎧⎪⎪⎨
⎪⎪⎩
T (t) – T (0) = CFC

0 Iα
t {T (t)(1 – T (t)) – β12T (t)H(t) – β13T (t)E(t)},

H(t) – H(0) = CFC
0 Iα

t {k2H(t)(1 – H(t)) – β21T (t)H(t)},
E(t) – E(0) = CFC

0 Iα
t { k3T (t)E(t)

T (t)+s3
– β31T (t)E(t) – c3E(t)}.

(33)
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Now we consider the following kernels:

⎧⎪⎪⎨
⎪⎪⎩
K1(t,T (t),H(t),E(t)) = T (t)(1 – T (t)) – β12T (t)H(t) – β13T (t)E(t),

K2(t,T (t),H(t),E(t)) = k2H(t)(1 – H(t)) – β21T (t)H(t),

K3(t,T (t),H(t),E(t)) = k3T (t)E(t)
T (t)+s3

– β31T (t)E(t) – c3E(t).

(34)

Theorem 2 The initial value problem and the kernels K1(T (t),H(t),E(t)), K2(T (t),H(t),
E(t)), and K3(T (t),H(t),E(t)) satisfy the Lipschitz condition.

Proof See [24]. �

Theorem 3 The fractional nonlinear system (29) admits at least one solution.

Proof See [24]. �

Theorem 4 The fractional nonlinear system (29) always admits a unique solution.

Proof See [24]. �

4.2 Numerical method
Now let us focus on determining an approximate solution to the following CFC fractional
Cauchy problem:

CFC
0 Dα

t φ(t) = 	
(
t,φ(t)

)
. (35)

Using the corresponding fractional integral operator yields

φ(t) – φ(0) =
1 – α

M(α)
	

(
t,φ(t)

)
+

α

M(α)

∫ t

0
	

(
η,φ(η)

)
dη. (36)

Taking t = tn+1 in (36), we have

φ(tn+1) – φ(0) =
(2 – α)(1 – α)

2
	

(
tn,φ(tn)

)
+

α(2 – α)
2

∫ tn+1

0
	

(
η,φ(η)

)
dη (37)

and

φ(tn) – φ(0) =
(2 – α)(1 – α)

2
	

(
tn–1,φ(tn–1)

)
+

α(2 – α)
2

∫ tn

0
	

(
η,φ(η)

)
dη. (38)

Inserting Eq. (38) into Eq. (37), we get

φ(tn+1) = φ(tn) +
(2 – α)(1 – α)

2
[
	

(
tn,φ(tn)

)
– 	

(
tn–1,φ(tn–1)

)]

+
α(2 – α)

2

∫ tn+1

tn

	
(
η,φ(η)

)
dη, (39)

where
∫ tn+1

tn

	
(
η,φ(η)

)
dη =

3�
2

	(tn, fn) –
�

2
	(tn–1, fn–1). (40)
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So we have

fn+1 = fn +
[

(2 – α)(1 – α)
2

+
3�
4

α(2 – α)
]
	(tn, fn)

–
[

(2 – α)(1 – α)
2

+
�

4
α(2 – α)

]
	(tn–1, fn–1). (41)

As a result, the following recursive relations are determined to approximate the CFC prob-
lem (29) as in [22]:

Tn+1(t) = T (0) +
[

(2 – α)(1 – α)
2

+
3�
4

α(2 – α)
]
	1

(
Tn(t),Hn(t),En(t), tn

)

–
[

(2 – α)(1 – α)
2

+
�

4
α(2 – α)

]
	1

(
Tn(t),Hn(t),En(t), tn

)
,

Hn+1(t) = H(0) +
[

(2 – α)(1 – α)
2

+
3�
4

α(2 – α)
]
	2

(
Tn(t),Hn(t),En(t), tn

)

–
[

(2 – α)(1 – α)
2

+
�

4
α(2 – α)

]
	2

(
Tn(t),Hn(t),En(t), tn

)
,

En+1(t) = E(0) +
[

(2 – α)(1 – α)
2

+
3�
4

α(2 – α)
]
	3

(
Tn(t),Hn(t),En(t), tn

)

–
[

(2 – α)(1 – α)
2

+
�

4
α(2 – α)

]
	3

(
Tn(t),Hn(t),En(t), tn

)
,

(42)

where 	1 = T (t)(1 – T (t)) – β12T (t)H(t) – β13T (t)E(t), 	2 = k2H(t)(1 – H(t)) –
β21T (t)H(t), and 	3 = k3T (t)E(t)

T (t)+s3
– a31T (t)E(t) – c3E(t).

4.3 Numerical simulations
Figures 4–6 are plotted to demonstrate the variation of state variables in model (29) when
the scheme (42) is employed for different values of α ∈ (0, 1]. In these simulations, we
considered the following values in the model: β12 = 1, β13 = 2.5, k2 = 0.6, β21 = 1.5, k3 = 4.5,

Figure 4 Simulations for solving (29) using (42) along with (T (0),H(0),E (0)) = (0.1, 0.1, 0.1)
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Figure 5 Simulations for solving (29) using (42) along with (T (0),H(0),E (0)) = (0.3, 0.3, 0.3) and β12 = 0.745

Figure 6 Simulations for solving (29) using (42) along with (T (0),H(0),E (0)) = (0.3517, 0.1115, 0.4951) and
β12 = 0.92

s3 = 1, a31 = 0.2, and d3 = 0.5. In our performed numerical simulations, we considered
tfinal = 500 and � = 0.001. In Fig. 4, we use (T (t),H(t),E(t))|t=0 = (0.1, 0.1, 0.1). In this case
the model exhibits chaotic attractor behavior. Also, starting from (T (t),H(t),E(t))|t=0 =
(0.3, 0.3, 0.3) and β12 = 0.745, the model shows the limit cycle behavior in Fig. 5. Further,
by taking T (0) = 0.3517, H(0) = 0.1115, E(0) = 0.4951, and β12 = 0.920, we get periodic
orbit trajectories in the solutions as depicted in Fig. 6.

5 The model via Atangana–Baleanu–Caputo fractional derivative
Now let us consider the model via the Atangana–Baleanu–Caputo fractional derivative as

ABC
0 Dα

t T (t) = T (t)
(
1 – T (t)

)
– β12T (t)H(t) – β13T (t)E(t),

ABC
0 Dα

t H(t) = k2H(t)
(
1 – H(t)

)
– β21T (t)H(t), (43)
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ABC
0 Dα

t E(t) =
k3T (t)E(t)
T (t) + s3

– β31T (t)E(t) – c3E(t),

where the Atangana–Baleanu fractional integral of order α of a function φ(t) is defined as
[10]

ABC
0 Dα

t φ(t) =
B(α)
n – α

∫ t

0
φ′(η)Eα

[
–

α

n – α
(t – η)α

]
dη, (44)

where B(α) = 1 – α + α
�(α) is a normalization function.

The Atangana–Baleanu fractional integral of order α of a function φ(t) is also defined
as [10]

ABC
0 Iα

t φ(t) =
1 – α

B(α)
φ(t) +

α

B(α)�(α)

∫ t

0
φ(η)(t – η)α–1 dη. (45)

Taking the definition of the Atangana–Baleanu fractional integral (45) on both sides of
equations in system (43), we get the Volterra integral system

T (t) – T (0)

=
1 – α

B(α)
{
T (t)

(
1 – T (t)

)
– β12T (t)H(t) – β13T (t)E(t)

}

+
α

B(α)�(α)

∫ t

0

{
T (η)

(
1 – T (η)

)
– β12T (η)H(η) – β13T (t)E(t)

}
(t – η)α–1 dη,

H(t) – H(0)

=
1 – α

B(α)
{

k2H(t)
(
1 – H(t)

)
– β21T (t)H(t)

}

+
α

B(α)�(α)

∫ t

0

{
k2H(η)

(
1 – H(η)

)
– β21T (η)H(η)

}
(t – η)α–1 dη,

E(t) – E(0)

=
1 – α

B(α)

{
k3T (t)E(t)
T (t) + s3

– β31T (t)E(t) – c3E(t)
}

+
α

B(α)�(α)

∫ t

0

{
k3T (η)E(η)
T (η) + s3

– β31T (η)E(η) – c3E(η)
}

dη.

(46)

and the following iterative formulas:

Tn+1(t)

= T (0) +
1 – α

B(α)
{
Tn(t)

(
1 – Tn(t)

)
– β12Tn(t)Hn(t) – β13Tn(t)En(t)

}}

+
α

B(α)�(α)

∫ t

0

{
Tn(η)

(
1 – Tn(η)

)
– β12Tn(η)Hn(η) – β13Tn(η)En(η)

}
(t – η)α–1 dη,

Hn+1(t)

= H(0) +
1 – α

B(α)
{

k2Hn(t)
(
1 – Hn(t)

)
– β21Tn(t)Hn(t)

}

+
α

B(α)�(α)

∫ t

0

{
k2Hn(η)

(
1 – Hn(η)

)
– β21Tn(η)Hn(η)

}
(t – η)α–1 dη,

(47)
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En+1(t)

= E(0) +
1 – α

B(α)

{
k3Tn(t)En(t)
Tn(t) + s3

– β31Tn(t)En(t) – c3En(t)
}

+
α

B(α)�(α)

∫ t

0

{
k3Tn(η)En(η)
Tn(η) + s3

– β31Tn(η)En(η) – c3En(η)
}

(t – η)α–1 dη,

where

T0(t) = T (0), H0(t) = H(0), E0(t) = E(0). (48)

As n → ∞, Eq. (47) suggests the exact solution for the model.

Theorem 5 The initial value problem given by Eq. (43) possesses at least one solution in
the interval [0, T].

Proof First, we define

⎧⎪⎪⎨
⎪⎪⎩
E1(t,T (t)) = T (t)(1 – T (t)) – β12T (t)H(t) – β13T (t)E(t),

E2(t,H(t)) = k2H(t)(1 – H(t)) – β21T (t)H(t),

E3(t,E(t)) = k3T (t)E(t)
T (t)+s3

– β31T (t)E(t) – c3E(t),

(49)

where E1(t,T (t)), E2(t,H(t)), and E3(t,E(t)) are contractions respect to T (t), H(t), and
E(t), respectively.

Moreover, we set

N1 = sup
∥∥

�a,b1
E1

(
t,T (t)

)∥∥, N2 = sup
∥∥

�a,b2
E2

(
t,H(t)

)∥∥,

N3 = sup
∥∥

�a,b3
E3

(
t,E(t)

)∥∥,
(50)

where

⎧⎪⎪⎨
⎪⎪⎩

�a,b1 = [t – a, t + a] × [T – b1,T + b1] = A1 × B1,

�a,b2 = [t – a, t + a] × [T – b2,H + b2] = A1 × B2,

�a,b3 = [t – a, t + a] × [T – b3,E + b3] = A1 × B3.

(51)

Considering the Picard operator, we have

� : (�a,b1 ,�a,b2 ,�a,b3 ) → (�a,b1 ,�a,b2 ,�a,b3 ) (52)

defined as follows

��(t) = �0(t) +
1 – α

B(α)
�

(
t,�(t)

)
+

α

B(α)�(α)

∫ t

0
�

(
η,�(η)

)
(t – η)α–1 dη, (53)

where �(t) = (T (t),H(t),E(t)), �0(t) = (T (0),H(0),E(0)), and �(t,�(t)) = E1(t,T (t)),
E2(t,H(t)),E3(t,E(t)).
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Now we assume that all the solutions are bounded within a period of time:

∥∥�(t)
∥∥∞ ≤ max{B1, B2, B3, B4},∥∥�(t) – �0(t)

∥∥∞

≤
∥∥∥∥1 – α

B(α)
�

(
t,�(t)

)
+

α

B(α)�(α)

∫ t

0
�

(
η,�(η)

)
(t – η)α–1 dη

∥∥∥∥
≤ 1 – α

B(α)
∥∥�

(
t,�(t)

)∥∥ +
α

B(α)�(α)

∫ t

0

∥∥�
(
η,�(η)

)∥∥(t – η)α–1 dη

≤ 1 – α

B(α)�(α)
Z = max{B1, B2, B3, B4} +

α

B(α)�(α)
Zωα

≤ ωZ < B = max{B1, B2, B3, B4},

(54)

provided that

ω <
B
Z

.

The fixed point theorem of a Banach space together with the metric suggests that

‖��1 – ��2‖∞ = sup
t∈A

|�1 – �2|,

‖��1 – ��2‖

=
∥∥�

(
t,�1(t)

)
– �

(
t,�2(t)

)∥∥1 – α

B(α)

+
α

B(α)�(α)

∫ t

0

{
�

(
t,�1(t)

)
– �

(
t,�2(t)

)}
(t – η)α–1 dη‖

≤ 1 – α

B(α)
∥∥�

(
t,�1(t)

)
– �

(
t,�2(t)

)∥∥

+
α

B(α)�(α)

∫ t

0

∥∥�
(
t,�1(t)

)
– �

(
t,�2(t)

)∥∥(t – η)α–1 dη

≤ 1 – α

B(α)
η
∥∥�1(t) – �2(t)

∥∥

+
αη

B(α)�(α)

∫ t

0

∥∥�1(t) – �2(t)
∥∥(t – η)α–1 dη

≤
{

1 – α

B(α)
η +

αη

B(α)�(α)

(
aα

α

)}∥∥�1(t) – �2(t)
∥∥

≤ ηω
∥∥�1(t) – �2(t)

∥∥.

(55)

Since � is a contraction along with η < 1, we must have ωη < 1. Therefore we conclude
that � is a contraction operator. Finally, it is proved that (43) always possesses a unique
solution. �
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5.1 Numerical method
Consider the following fractional initial value problem:

ABC
0 Dα

t φ(t) = 	
(
t,φ(t)

)
,

φ(0) = φ0.
(56)

Employing the product integration rule, Ghanbari and Kumar [20] have developed an ef-
ficient scheme to obtain the approximate solution of (56), given by

φn = φ0 +
α�α

B(α)

(
pn	(t0,φ0) +

n∑
ζ=1

q–ζ+n	(tζ ,φζ )

)
, n ≥ 1, (57)

where

pn =
(n – 1)α+1 – nα(n – α – 1)

�(α + 2)
,

qj =

⎧⎨
⎩

1
�(α+2) + 1–α

α�α , j = 0,
(j–1)α+1–2jα+1+(j+1)α+1

�(α+2) , j = 1, 2, . . . , n – 1.

(58)

Using this numerical approximation, we get the following iterative scheme:

Tn = T0 +
α�α

B(α)

(
pn

[
T0(1 – T0) – β12T0H0 – β13T0E0

]

+
n∑

ζ=1

qn–i
[
Tζ (1 – Tζ ) – β12TζHζ – β13TζEζ

])
,

Hn = H0 +
α�α

B(α)

(
pn

[
k2H0(1 – H0) – β21T0H0

]

+
n∑

ζ=1

qn–i
[
k2Hζ (1 – Hζ ) – β21TζHζ

])
,

En = E0 +
α�α

B(α)

(
pn

[
k3T0E0

T0 + s3
– β31T0E0 – c3E0

]

+
n∑

ζ=1

qn–i

[
k3TζEζ

Tζ + s3
– β31TζEζ – c3Eζ

])
.

(59)

5.2 Numerical simulations
Figures 7–9 are plotted to demonstrate the variation of state variables in model (43) when
the scheme (59) is used for different values of α ∈ (0, 1]. In this simulations, we have con-
sidered the following values in the model: β12 = 1, β13 = 2.5, k2 = 0.6, β21 = 1.5, k3 = 4.5,
s3 = 1, a31 = 0.2, and d3 = 0.5. In our performed numerical simulations, tfinal = 500 and
� = 0.001. In Fig. 7, we take (T (t),H(t),E(t))|t=0 = (0.1, 0.1, 0.1). In this case the model ex-
hibits chaotic attractor behavior. Also, taking the initial conditions (T (t),H(t),E(t))|t=0 =
(0.3, 0.3, 0.3) and β12 = 0.745 the model shows the limit cycle behavior in Fig. 8. Moreover,
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Figure 7 Simulations for solving (43) using (59) along with (T (0),H(0),E (0)) = (0.1, 0.1, 0.1)

Figure 8 Simulations for solving (43) using (59) along with (T (0),H(0),E (0)) = (0.3, 0.3, 0.3) and β12 = 0.745

Figure 9 Simulations for solving (43) using (59) along with (T (0),H(0),E (0)) = (0.3517, 0.1115, 0.4951) and
β12 = 0.92
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for T (0) = 0.3517, H(0) = 0.1115, E(0) = 0.4951, and β12 = 0.920, we get periodic orbit
trajectories in the solutions as depicted in Fig. 9.

6 The model via fractal-fractional derivative involving different laws
In this section, we will use several well-known fractal-fractional derivatives in model (4).

6.1 Power-law fractal-fractional derivative
In this subsection, we replace the derivative in (4) by the fractal-fractional derivative with
power-law:

FF–P
0 Dα,τ

t T (t) = T (t)
(
1 – T (t)

)
– β12T (t)H(t) – β13T (t)E(t),

FF–P
0 Dα,τ

t H(t) = k2H(t)
(
1 – H(t)

)
– β21T (t)H(t),

FF–P
0 Dα,τ

t E(t) =
k3T (t)E(t)
T (t) + s3

– β31T (t)E(t) – c3E(t),

(60)

where the fractal-fractional derivative with power-law of function φ(t) is defined as [11]

FF–P
0 Iα,ψ

t φ(t) =
1

�(n – α)
d

dtψ

∫ t

0

φ(η) dη

(t – η)1–n+α
, n – 1 < α,ψ ≤ n ∈ N, (61)

and

d
dtψ

φ(u) = lim
n→∞

φ(t) – φ(u)
tψ – uψ

. (62)

By employing the corresponding inverse operator in Eq. (60) and then placing t = tn+1 in
the resultant we obtain the following recursive form:

Tn+1(t) = T1(0)

+
τ

�(α)

n∑
j=0

∫ tj+1

tj

ητ–1(T (η)
(
1 – T (η)

)
– β12T (η)H(η) – β13T (η)E(η)

)
dη,

Hn+1(t) = H2(0) +
τ

�(α)

n∑
j=0

∫ tj+1

tj

ητ–1(η1
[
k2H(η)

(
1 – H(η)

)
– β21T (η)H(η)

])
dη,

En+1(t) = E3(0) +
τ

�(α)

n∑
ζ=0

∫ tζ+1

tζ
ητ–1

(
k3T (η)E(η)
T (η) + s3

– β31T (η)E(η) – c3E(η)
)

dη.

Now let us define the functions

K1(η) = ητ–1(T (η)
(
1 – T (η)

)
– β12T (η)H(η) – β13T (η)E(η)

)
,

K2(η) = ητ–1(η1
[
k2H(η)

(
1 – H(η)

)
– β21T (η)H(η)

])
,

K3(η) = ητ–1
(

k3T (η)E(η)
T (η) + s3

– β31T (η)E(η) – c3E(η)
)

.

(63)

These functions can be interpolated in [tζ , tζ+1] as

Ki(η) =
η – tζ–1

tζ – tζ–1
Ki(tζ ) –

η – tj

tζ – tζ–1
Ki(tζ–1). (64)
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Thus we obtain

Tn+1 = T0 +
τ (�t)α

�(α + 2)

n∑
ζ=0

[
K1(tζ )

[
(–ζ + 1 + n)α(–ζ + n + α + 2)

– (–ζ + n)α(–ζ + n + 2α + 2)
]

(65)

– K1(tζ–1)
[
(–ζ + 1 + n)α+1 – (–ζ + n)α(–ζ + n + α + 1)

]]
,

Hn+1 = H0 +
τ (�t)α

�(α + 2)

n∑
ζ=0

[
K2(tζ )

[
(–ζ + 1 + n)α(–ζ + n + α + 2)

– (–ζ + n)α(–ζ + n + 2α + 2)
]

(66)

– K2(tζ–1)
[
(–ζ + 1 + n)α+1 – (–ζ + n)α(–ζ + n + α + 1)

]]
, (67)

En+1 = E0 +
τ (�t)α

�(α + 2)

n∑
ζ=0

[
K3(tζ )

[
(–ζ + 1 + n)α(–ζ + n + α + 2)

– (–ζ + n)α(–ζ + n + 2α + 2)
]

(68)

– K3(tζ–1)
[
(–ζ + 1 + n)α+1 – (–ζ + n)α(–ζ + n + α + 1)

]]
,

where Kj, ζ = 1, 2, 3, are given in (63).

6.2 Numerical simulations
Figures 10–12 demonstrate the variation of state variables in model (60) while applying
scheme (65) for different values of τ ∈ (0, 1], and α = 0.95. In this simulations, we consid-
ered the following values in the model: β12 = 1, β13 = 2.5, k2 = 0.6, β21 = 1.5, k3 = 4.5, s3 = 1,
a31 = 0.2, and d3 = 0.5. In our numerical simulations, tfinal = 500 and � = 0.001. In Fig. 10,
we put (T (t),H(t),E(t))|t=0 = (0.1, 0.1, 0.1). In this case the model exhibits chaotic attractor
behavior. Also, by imposing the initial conditions (T (t),H(t),E(t))|t=0 = (0.3, 0.3, 0.3) and
β12 = 0.745 the model shows the limit cycle behavior in Fig. 11. Further, for T (0) = 0.3517,

Figure 10 Simulations for solving (60) using (65) along with (T (0),H(0),E (0)) = (0.1, 0.1, 0.1)
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Figure 11 Simulations for solving (60) using (65) along with (T (0),H(0),E (0)) = (0.3, 0.3, 0.3) and β12 = 0.745

Figure 12 Simulations for solving (60) using (65) along with (T (0),H(0),E (0)) = (0.3517, 0.1115, 0.4951) and
β12 = 0.92

H(0) = 0.1115, E(0) = 0.4951, and β12 = 0.920, Fig. 12 confirms the periodic orbit trajecto-
ries in the solutions.

6.3 Exponential decay-law fractal-fractional derivative
In this part, we replace the derivative in (4) by the fractal-fractional derivative with expo-
nential decay-law:

FF–E
0 Dα,τ

t T (t) = T (t)
(
1 – T (t)

)
– β12T (t)H(t) – β13T (t)E(t),

FF–E
0 Dα,τ

t H(t) = k2H(t)
(
1 – H(t)

)
– β21T (t)H(t),

FF–E
0 Dα,τ

t E(t) =
k3T (t)E(t)
T (t) + s3

– β31T (t)E(t) – c3E(t),

(69)



Ghanbari Advances in Difference Equations        (2020) 2020:585 Page 24 of 32

where the fractal-fractional derivative with exponential decay law of a function φ(t) is
defined as [11]

FF–E
0 Iα,ψ

t φ(t) =
M(α)
n – α

d
dtψ

∫ t

0
φ(η) exp

[
–

α

n – α
(t – η)

]
dη, n – 1 < α,ψ ≤ n ∈N, (70)

and d
dtψ φ(u) is introduced in (62).

Applying the Caputo–Fabrizio integral to Eq. (69), we obtain

T (t) = T (0) +
γ1

M(α)
F1

(
t,T (t),H(t),E(t), x4(t)

)

+
γ1α

M(α)

∫ t

0
F1

(
η,T (η),H(η),E(η)

)
dη,

H(t) = H(0) +
γ2

M(α)
F2

(
t,T (t),H(t),E(t), x4(t)

)

+
γ2α

M(α)

∫ t

0
F2

(
η,T (η),H(η),E(η)

)
dη,

E(t) = E(0) +
γ3

M(α)
F3

(
t,T (t),H(t),E(t), x4(t)

)

+
γ3α

M(α)

∫ t

0
F3

(
η,T (η),H(η),E(η)

)
dη.

(71)

Setting t = tn+1 in (71), based on the proposed scheme in [11], we get

Tn+1 = T (0) +
τ

M(α)
F1(tn,Tn,Hn,En) +

τα

M(α)

∫ tn+1

0
F1

(
η,T (η),H(η),E(η)

)
dη,

Hn+1 = H(0) +
τ

M(α)
F2(tn,Tn,Hn,En) +

τα

M(α)

∫ tn+1

0
F2

(
η,T (η),H(η),E(η)

)
dη,

En+1 = E(0) +
τ

M(α)
F3(tn,Tn,Hn,En) +

τα

M(α)

∫ tn+1

0
F3

(
η,T (η),H(η),E(η)

)
dη.

(72)

Taking the difference between Tn+1 and Tn yields

Tn+1 – Tn =
τ

M(α)
[
F1(tn,Tn,Hn,En) – F1(tn–1,Tn–1,Hn–1,En–1)

]

+
τα

M(α)

∫ tn+1

tn

F1
(
η,T (η),H(η),E(η)

)
dη,

Hn+1 – Hn =
τ

M(α)
[
F2(tn,Tn,Hn,En) – F2(tn–1,Tn–1,Hn–1,En–1)

]

+
τα

M(α)

∫ tn+1

tn

F2
(
η,T (η),H(η),E(η)

)
dη,

En+1 – En =
τ

M(α)
[
F3(tn,Tn,Hn,En) – F3(tn–1,Tn–1,Hn–1,En–1)

]

+
τα

M(α)

∫ tn+1

tn

F3
(
η,T (η),H(η),E(η)

)
dη.

(73)
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Therefore the approximate solution to the problem can be determined using the following
iterative procedures:

Tn+1 = Tn +
τ

M(α)
[
F1(tn,Tn,Hn,En) – F1(tn–1,Tn–1,Hn–1,En–1)

]

+
τα

M(α)

[
3�

2
F1(tn,Tn,Hn,En) –

�

2
F1(tn–1, xn–1,Hn–1,En–1)

]
,

Hn+1 = Hn +
τ

M(α)
[
F2(tn,Tn,Hn,En) – F2(tn–1,Tn–1,Hn–1,En–1)

]

+
τα

M(α)

[
3�

2
F2(tn,Tn,Hn,En) –

�

2
F2(tn–1,Tn–1, yn–1,En–1)

]
,

En+1 = En +
τ

M(α)
[
F3(tn,Tn,Hn,En) – F3(tn–1,Tn–1,Hn–1,En–1)

]

+
τα

M(α)

[
3�

2
F3(tn,Tn,Hn,En) –

�

2
F3(tn–1,Tn–1,Hn–1,En–1)

]
,

(74)

where Fj, ζ = 1, 2, 3, are given in (63).

6.4 Numerical simulations
Figures 13–15 demonstrate the variation of state variables in model (69) when scheme
(74) is applied for different values of τ ∈ (0, 1] and α = 0.95. In this simulations, we con-
sidered the following values in the model: β12 = 1, β13 = 2.5, k2 = 0.6, β21 = 1.5, k3 = 4.5,
s3 = 1, a31 = 0.2, and d3 = 0.5. In our numerical simulations, tfinal = 500 and � = 0.001. In
Fig. 13, we take (T (t),H(t),E(t))|t=0 = (0.1, 0.1, 0.1). In this case the model exhibits chaotic
attractor behavior. Further, for (T (t),H(t),E(t))|t=0 = (0.3, 0.3, 0.3) and β12 = 0.745, the
model shows the limit cycle behavior in Fig. 14. Also, letting T (0) = 0.3517, H(0) = 0.1115,
E(0) = 0.4951, and β12 = 0.920, Fig. 15 confirms the periodic orbit trajectories in the solu-
tions.

Figure 13 Simulations for solving (69) using (74) along with (T (0),H(0),E (0)) = (0.1, 0.1, 0.1)
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Figure 14 Simulations for solving (69) using (74) along with (T (0),H(0),E (0)) = (0.3, 0.3, 0.3) and β12 = 0.745

Figure 15 Simulations for solving (69) using (74) along with (T (0),H(0),E (0)) = (0.3517, 0.1115, 0.4951) and
β12 = 0.92

6.5 Mittag-Leffler-law fractal-fractional derivative
In this subsection, we use the fractal-fractional derivative with Mittag-Leffler law in (4).
So, we achieve

FF–ABC
0 Dα,τ

t T (t) = T (t)
(
1 – T (t)

)
– β12T (t)H(t) – β13T (t)E(t),

FF–ABC
0 Dα,τ

t H(t) = k2H(t)
(
1 – H(t)

)
– β21T (t)H(t),

FF–ABC
0 Dα,τ

t E(t) =
k3T (t)E(t)
T (t) + s3

– β31T (t)E(t) – c3E(t),

(75)
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where the fractal-fractional derivative with Mittag-Leffler law of a unction φ(t) is defined
as [11]

0FF–ABCDα,τ
t φ(t)

=
B(α)
n – α

d
dtψ

∫ t

0
φ(η)Eα

[
–

α

n – α
(t – η)α

]
dη, n – 1 < α,ψ ≤ n ∈ N, (76)

and d
dtψ φ(u) is introduced in (62).

Applying the Atangana–Baleanu integral to (75), we obtain

T (t) = T (0) +
τ tτ–1(1 – α)

�(α)
F1

(
t,T (t),H(t),E(t), x4(t)

)

+
τα

�(α)B(α)

∫ t

0
δτ–1F1

(
η,T (η),H(η),E(η)

)
(t – η)α–1 dη,

H(t) = H(0) +
τ tτ–1(1 – α)

�(α)
F2

(
t,T (t),H(t),E(t), x4(t)

)

+
τα

�(α)B(α)

∫ t

0
δτ–1F2

(
η,T (η),H(η),E(η)

)
(t – η)α–1 dη,

E(t) = E(0) +
τ tτ–1(1 – α)

�(α)
F3

(
t,T (t),H(t),E(t), x4(t)

)

+
τα

�(α)B(α)

∫ t

0
δτ–1F3

(
η,T (η),H(η),E(η)

)
(t – η)α–1 dη.

(77)

Based on the scheme proposed in [11], we get

Tn+1 = T0 +
τ tα–1

n (1 – α)
�(α)

F1(tn,Tn,Hn,En)

+
τα

�(α)B(α)

n∑
ζ=0

∫ tj+1

tζ
δτ–1F1

(
η,T (η),H(η),E(η)

)
(tn+1 – η)α–1 dη,

Hn+1 = H0 +
τ tα–1

n (1 – α)
�(α)

F2(tn,Tn,Hn,En)

+
τα

�(α)B(α)

n∑
ζ=0

∫ tj+1

tζ
δτ–1F2

(
η,T (η),H(η),E(η)

)
(tn+1 – η)α–1 dη,

(78)

En+1 = E0 +
τ tα–1

n (1 – α)
�(α)

F3(tn,Tn,Hn,En)

+
τα

�(α)B(α)

n∑
ζ=0

∫ tj+1

tζ
δτ–1F3

(
η,T (η),H(η),E(η)

)
(tn+1 – η)α–1 dη.

Now using the Lagrange polynomial piecewise interpolation given by Eq. (64), we obtain

Tn+1 = T0 +
τ tα–1

n (1 – α)
�(α)

F1(tn,Tn,Hn,En)

+
τ�α

�(α + 2)B(α)

n∑
ζ=0

[
tα–1
ζ F1(tζ ,Tζ ,Hζ ,Eζ )

[
(–ζ + 1 + n)α(–ζ + n + α + 2)
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– (–ζ + n)α(–ζ + n + 2α + 2)
]

– tα–1
ζ–1F1(tζ–1,Tζ–1,Hζ–1,Eζ–1)

[
(–ζ + 1 + n)α+1 – (–ζ + n)α(–ζ + n + α + 1)

]]
,

Hn+1 = H0 +
τ tα–1

n (1 – α)
�(α)

F2(tn,Tn,Hn,En)

+
τ�α

�(α + 2)B(α)

n∑
ζ=0

[
tα–1
ζ F2(tζ ,Tζ ,Hζ ,Eζ )

[
(–ζ + 1 + n)α(–ζ + n + α + 2)

– (–ζ + n)α(–ζ + n + 2α + 2)
]

– tα–1
ζ–1F2(tζ–1,Tζ–1,Hζ–1,Eζ–1)

[
(–ζ + 1 + n)α+1 – (–ζ + n)α(–ζ + n + α + 1)

]]
,

(79)

En+1 = E0 +
τ tα–1

n (1 – α)
�(α)

F3(tn,Tn,Hn,En)

+
τ�α

�(α + 2)B(α)

n∑
ζ=0

[
tα–1
ζ F3(tζ ,Tζ ,Hζ ,Eζ )

[
(–ζ + 1 + n)α(–ζ + n + α + 2)

– (–ζ + n)α(–ζ + n + 2α + 2)
]

– tα–1
ζ–1F3(tζ–1,Tζ–1,Hζ–1,Eζ–1)

[
(–ζ + 1 + n)α+1 – (–ζ + n)α(–ζ + n + α + 1)

]]
,

where

F1
(
η,T (η),H(η),E(η)

)
= T (η)

(
1 – T (η)

)
– β12T (η)H(η) – β13T (η)E(η),

F2
(
η,T (η),H(η),E(η)

)
= η1

[
k2H(η)

(
1 – H(η)

)
– β21T (η)H(η)

]
,

F3
(
η,T (η),H(η),E(η)

)
=

k3T (η)E(η)
T (η) + s3

– β31T (η)E(η) – c3E(η).

(80)

6.6 Numerical simulations
Figures 16–18 demonstrate the variation of state variables in model (75) when scheme (79)
is utilized for different values of τ ∈ (0, 1] and α = 0.95. In this simulations, we considered
the following values in the model: β12 = 1, β13 = 2.5, k2 = 0.6, β21 = 1.5, k3 = 4.5, s3 = 1, a31 =

Figure 16 Simulations for solving (75) using (79) along with (T (0),H(0),E (0)) = (0.1, 0.1, 0.1)
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Figure 17 Simulations for solving (75) using (79) along with (T (0),H(0),E (0)) = (0.3, 0.3, 0.3) and β12 = 0.745

Figure 18 Simulations for solving (75) using (79) along with (T (0),H(0),E (0)) = (0.3517, 0.1115, 0.4951) and
β12 = 0.92

0.2, and d3 = 0.5. In our numerical simulations, tfinal = 500 and � = 0.001. In Fig. 16, we
take (T (t),H(t),E(t))|t=0 = (0.1, 0.1, 0.1). In this case the model exhibits chaotic attractor
behavior. Also, by taking into consideration (T (t),H(t),E(t))|t=0 = (0.3, 0.3, 0.3) and β12 =
0.745 the model shows the limit cycle behavior in Fig. 17, whereast for T (0) = 0.3517,
H(0) = 0.1115, E(0) = 0.4951, and β12 = 0.920, we get periodic orbit trajectories in the
solutions as depicted in Fig. 18.

In Figs. 19 and 20, we also investigate the sensitivity of the state variables when two
parameters β12 and c3 change, respectively. In these two figures, we can see that changes
in each of these parameters cause changes that are somewhat meaningful and constructive
in the behavior of variables. As a biological conclusion, we can point to the fact that the
stability in the model can only be achieved when the recruitment rate of effector cells is
greater than the rate of inactivation by cancer cells. In other words, if the immune system
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Figure 19 Simulations for solving (43) using (59) along with (T (0),H(0),E (0)) = (0.3, 0.7, 0.7) and α = 0.98 for
different β12

Figure 20 Simulations for solving (43) using (59) along with (T (0),H(0),E (0)) = (0.3, 0.7, 0.7) and α = 0.98 for
different c3

is unable to detect and attack cancer cells, then effective treatment must be used to control
the tumor growth.

7 Conclusion
Recent advances in the presentation of efficient numerical methods in fractional differen-
tial calculus are a great help to researchers in modeling real phenomena. It has also been
proven that differential calculus of integer order in some cases is incapable of describ-
ing the behavior of some phenomena or faces fundamental problems. In this paper, we
study the dynamics of a tumor-immune model due to the unpredictable growth of tumor
cells described by an attractive form of nonlinear differential equations. The importance
of this model has led to many different approaches of studying the problem. Our study in
the paper makes it clear how tumor cells interact with the immune system. The main dif-
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ference of this paper from other papers on this system is that we have used new fractional
and fractal-fractional definitions for the derivative in the system structure. Some of these
new concepts of differentiation were introduced in 2017 by Atangana and his collabora-
tors. They combine the idea of fractal derivative and fractional differentiation, which takes
into account the memory, fractal effect, and nonlocality. The model considers processes
like power-law, fading memory, and crossover. It is important to note that the numerical
methods and analysis used in this paper are quite different from those presented in [24].
In fact, this work can be considered as a complement to the content presented in this pa-
per. The basis of these mathematical algorithms is applying some fundamental axioms of
fractional derivative and the first-order interpolation. The existence and uniqueness of the
model solutions were also investigated. The interesting attractors obtained in this paper
imply that these new fractional and fractal-fractional operators can describe newer as-
pects of the behavior of these systems than fractional derivatives. Some of these features
cannot be described by conventional integer-order operators. Through numerical simula-
tions, we have confirmed the chaotic dynamics of the model by taking certain parameters
in the model and suitable initial conditions. These results indicate that the values consid-
ered for the fractional-order derivatives significantly influence the dynamic behavior of
the problem. The fractal-fractional operators allow us to describe self-similar problems
with power-law, fading memory, and crossover behavior. In addition, the chaotic behavior
seen in the results is entirely consistent with the inherent nature of the problem. These
systems are recognized as complex real-world problems that cannot be represented with
classical or fractional differential operators. Numerical simulations confirm that a change
in fractional order exhibits memory properties and very strange complex dynamical be-
haviors. The results of this paper show that other similar problems in this field can be
described and investigated using the numerical methods used in this paper.
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