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Abstract
Solutions to fractional differential equations is an emerging part of current research,
since such equations appear in different applied fields. A study of existence,
uniqueness, and stability of solutions to a coupled system of fractional differential
equations with non-separated boundary conditions is the main target of this paper.
The existence and uniqueness results are obtained by employing the Leray–Schauder
fixed point theorem and the Banach contraction principle. Additionally, we examine
different types of stabilities in the sense of Ulam–Hyers such as Ulam–Hyers stability,
generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability, and generalized
Ulam–Hyers–Rassias stability. To prove the effectiveness of our main results, we study
a few interesting examples.
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1 Introduction
In the last few decades, the theory of fractional differential equations (FDEs) has per-
formed a significant role in a new branch of applied mathematics. Many researchers ad-
dressed FDEs for various models because of the fact that FDEs are considered to be more
applicable and realistic as compared to integer order or classical differential equations.
Fractional order differential and integral equations, which constitute a coupled system,
became an important field of research in view of their nonlocal nature and applications in
many real-world problems like anomalous diffusion [30], disease models [8, 9, 22], syn-
chronization of chaotic system, etc. [10, 45]. We refer the reader to a series of papers
[1, 5, 12, 15, 16, 19, 28, 31, 33–35, 40] for the theoretical works on coupled systems of
FDEs and classical differential equations.

In the area of mathematical analysis Ulam [32] stability of functional equations is one of
the essential subjects. The verdict of this type of stability plays a key role concerning this
subject. When Hyers [13] and Rassias [24] generalized this stability to Banach spaces, then
a number of mathematicians spread the idea of stability to different classes of differential
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equations. Obloza [20, 21] proved for the first time Ulam–Hyers–Rassias stability of first
order linear differential equations, after that many researchers furnished this idea with
different results [7, 17, 25, 26, 37, 39, 41–44].

Nowadays, the investigation of initial and boundary value problems has attracted the
attention of many mathematicians. Particularly, the existence, uniqueness, and stability
properties of coupled systems supplemented with boundary conditions have grown to be
one of the central interest areas in mathematical analysis, see [2–4, 36, 38].

Li et al. [18] investigated the existence and uniqueness of solutions to the following FDEs
system with non-separated boundary conditions:

cDαx(t) = f
(
t, x(t)

)
, t ∈ [0, T], 1 < α ≤ 2, T > 0,

a1x(0) + b1x(T) = c1, a2
(cDγ x(0)

)
+ b2

(cDγ x(T)
)

= c2, 0 < γ < 1,

where f ∈ ([0, T] ×R), cDα represents the Caputo fractional derivative of order α and ai,
bi, ci, for i = 1, 2, are real constants with a1 + b1 �= 0 and b2 �= 0. Alsulami et al. [6] studied
fractional order coupled systems with non-separated coupled boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDa
0+ u(t) = f (t, u(t), v(t)),

cDb
0+ v(t) = g(t, u(t), v(t)),

u(0) = λ1v(T), u′(0) = λ2v′(T),

v(0) = μ1u(T), v′(0) = μ2u′(T),

where t ∈ [0, T], a, b ∈ (1, 2], cDa, cDb denote the Caputo fractional derivatives of order a
and b, respectively, u, v : [0, T] ×R×R →R and λj,μj, j = 1, 2, are real constants.

Recently, Rao and Alesemi [23] investigated the existence and uniqueness of solutions
for a coupled system of fractional differential equations with fractional non-separated cou-
pled boundary conditions. As far as we know, the Ulam–Hyers stability analysis for the so-
lutions of nonlinear coupled FDEs with non-separated coupled boundary conditions has
been rarely investigated.

Motivated by the mentioned work, in this paper we study the existence, uniqueness, and
stability results to the following nonlinear coupled FDEs:

⎧
⎨

⎩

cDm
0+� (t) = k(t, w(t), cDm

0+� (t)), 0 < t < 1,
cDn

0+ w(t) = l(t,� (t), cDn
0+ w(t)), 0 < t < 1,

(1.1)

with non-separated coupled boundary conditions

⎧
⎨

⎩
� (0) = α1w(1), � ′(0) = α2w′(ζ ), � ′′(0) = α3w′′(η),

w(0) = β1� (1), w′(0) = β2�
′(ζ ), w′′(0) = β3�

′′(η),
(1.2)

where the symbols cDm
0+ and cDn

0+ stand for Caputo fractional derivatives, m, n ∈ (2, 3],
αi, βi, i = 1, 2, 3, are real constants, and k, l ∈ C([0, 1] ×R+ ×R+,R).

We can say that model (1.1)–(1.2) is of quite general and flexible nature, because the pa-
rameters involved in the problem cover a wide range of important cases. Some of them are
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explained here. If we choose α1,β1 = 0 and t ∈ [0, T], then the results correspond to a prob-
lem with coupled flux type boundary conditions. Next, if we set t ∈ [0, T], α1 = α2 = α3 = 1,
and β1 = β2 = β3 = –1 or vice versa, then the results correspond to nonlinear coupled frac-
tional differential equations with coupled periodic and anti-periodic boundary conditions
of the form: � (0) = w(T), � ′(0) = w′(T), � ′′(0) = w′′(T), w(0) = –� (T), w′(0) = –� ′(T),
w′′(0) = –� ′′(T) or � (0) = –w(T), � ′(0) = –w′(T), � ′′(0) = –w′′(T), w(0) = � (T), w′(0) =
� ′(T), w′′(0) = � ′′(T).

The remaining part of the paper is designed in the following way: In Section 2, we re-
call a few important definitions and lemmas from fractional calculus used throughout this
article. In Section 3, we present the application of some standard fixed point approaches
already mentioned in the abstract, through which the existence and uniqueness results for
(1.1)–(1.2) are obtained. Ulam–Hyers stability results are established in Section 4. In Sec-
tion 5, applications of the main results are provided, while in the final section, we present
the conclusion of the paper.

2 Preliminaries
In this part we state some important lemmas and definitions about fractional derivatives
and fractional integrals taken from [46].

Definition 2.1 (Riemann–Liouville fractional integral) The Riemann–Liouville fractional
integral of a function f : [0,∞) →R of order α > 0 is defined by

D–αf (t) =
1

	(α)

∫ t

0
(t – s)α–1f (s) ds, t > 0,

if the integral on the right-hand side exists, where 	 denotes the Euler gamma function.

Definition 2.2 (Riemann–Liouville fractional derivative) The Riemann–Liouville frac-
tional derivative of a function f : [0,∞) →R of order α > 0, n – 1 < α < n is defined by

Dα
0+ f (t) =

1
	(n – α)

dn

dtn

∫ t

0

f (s)
(t – s)1+α–n ds, t > 0.

Definition 2.3 (Caputo fractional derivative) The Caputo fractional derivative of a func-
tion f : [0,∞) →R of order α > 0, n – 1 < α < n is given by

cDαf (t) =
1

	(n – α)

∫ t

0

f n(s)
(t – s)1+α–n ds, n = [α] + 1,

where [α] is the integer part of α.

Theorem 2.4 ([29], Banach contraction theorem) Consider a Banach space Y �= ∅, and let
a map 
 : Y → Y be a contraction on Y. Then 
 has precisely one fixed point.

Lemma 2.5 ([14], Method of undetermined coefficients) Let α > 0, h(t) ∈ C([0, 1],R), then
the homogeneous fractional differential equation

cDαh(t) = 0
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has a solution of the form

h(t) = a0 + a1t + a2t2 + · · · + an–1tn–1,

where ai ∈R, i = 0, 1, . . . , n – 1, and n = [α] + 1.

Lemma 2.6 Let θ , τ ∈ C([0, 1],R). Then the solution of the following boundary value prob-
lem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDm
0+� (t) = θ (t), m ∈ (2, 3],

cDn
0+ w(t) = τ (t), n ∈ (2, 3],

� (0) = α1w(1), � ′(0) = α2w′(ζ ), � ′′(0) = α3w′′(η),

w(0) = β1� (1), w′(0) = β2�
′(ζ ), w′′(0) = β3�

′′(η),

(2.1)

enriched with the boundary conditions (1.2) is given by

� (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ α1α2α3β1β2β3ζ

∗ + α1α2β1β3ζ (α3β3+1)
∗ + α1α3β3(β1+β3)

2z̃ + α1α2α3β2
2 β3ζ

∗

+ α1α2β2β3ζ (α3β3+1)
∗ + α1α3β2β3ζ

z̃ + α1β3
2(1–α1β1) + α2α3β2β3ζ t



+ α2β3ζ (α3β3+1)t


+ α3β3t2

2(1–α3β3) ]U3 + [ α1α2α3β1ζ (β2+β3)
∗

+ α1α3(β1+β3)
2z̃ + α1α2α3ζ (β2+β3)

∗ + α1α3β2
z̃ + α2α3ζ (β2+β3)t



+ α3t2

2(1–α3β3) ]V3 + [ α1α2β1β2
z + α1α2β2

2
z + α1β2

1–α1β1
+ α2β2t

1–α2β2
]U2

+ [ α1α2β1
z + α1α2β2

z + α2t
(1–α2β2) ]V2 + α1β1

1–α1β1
U1 + α1

1–α1β1
V1

+ 1
	(m)

∫ t
0 (t – s)m–1θ (s) ds

(2.2)

and

w(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ α1α2α3β1β2
2 β3ζ

∗ + α1α2β1β2β3ζ (α3β3+1)
∗ + α1α3β1β2β3ζ

z̃ + α1α3β1β2
3

2z̃

+ α1β1β3
2(1–α1β1) + α2α3β1β2β3ζ

∗ + α1α2β1β3ζ (α3β3+1)
∗ + α3β1β3

2z̃

+ α2α3β2
2 β3ζ t


+ α2β2β3ζ t(α3β3+1)


+ α3β2β3ζ t

1–α3β3
+ α3β2

3 t2

2(1–α3β3) + β3t2

2 ]U3

+ [ α1α2α3β1β2ζ (β2+β3)
∗ + α1α3β1β2ζ

z̃ + α1α3β1β3
2z̃

+ α1α2α3β1ζ (β2+β3)
∗ + α3β1

2z̃ + α2α3β2ζ t(β2+β3)


+ α3β2ζ t
1–α3β3

+ α3β3t2

2(1–α3β3) ]V3

+ [ α1α2β1β2
2

z + α1β1β2
1–α1β1

+ α1α2β1β2
z + α2β2

2 t
1–α2β2

+ β2t]U2 + [ α1α2β1β2
z

+ α2β2t
1–α2β2

+ α1α2β1
z ]V2 + α1

1–α1β1
U1 + α1β1

1–α1β1
V1

+ 1
	(n)

∫ t
0 (t – s)n–1τ (s) ds,

(2.3)

where

U1 =
1

	(m)

∫ 1

0
(1 – s)m–1θ (s) ds, V1 =

1
	(n)

∫ 1

0
(1 – s)n–1τ (s) ds,

U2 =
1

	(m – 1)

∫ ζ

0
(ζ – s)m–2θ (s) ds, V2 =

1
	(n – 1)

∫ ζ

0
(ζ – s)n–2τ (s) ds,

U3 =
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds, V3 =

1
	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds,
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 = (1 – α2β2)(1 – α3β3), ∗ = (1 – α1β1), z = (1 – α1β1)(1 – α2β2), z̃ = (1 – α1β1)(1 – α3β3).

Proof We know by the method of undetermined coefficients that the general solution of
(2.1) can be drafted as follows:

� (t) = a0 + a1t + a2t2 +
1

	(m)

∫ t

0
(t – s)m–1θ (s) ds, (2.4)

w(t) = b0 + b1t + b2t2 +
1

	(n)

∫ t

0
(t – s)n–1τ (s) ds, (2.5)

where ai, bi ∈R, i = 0, 1, 2.
Using the boundary conditions � (0) = α1w(1) and w(0) = β1� (1), we get

a0 = α1

[
b0 + b1 + b2 +

1
	(n)

∫ 1

0
(1 – s)n–1τ (s) ds

]
, (2.6)

b0 = β1

[
a0 + a1 + a2 +

1
	(m)

∫ 1

0
(1 – s)m–1θ (s) ds

]
.

By applying the conditions � ′(0) = α2w′(ζ ), w′(0) = β2�
′(ζ ) and using (2.4) and (2.5), we

obtain

a1 = α2

[
b1 + 2b2ζ +

1
	(n – 1)

∫ ζ

0
(ζ – s)n–2τ (s) ds

]
(2.7)

and

b1 = β2

[
a1 + 2a2ζ +

1
	(m – 1)

∫ ζ

0
(ζ – s)m–2θ (s) ds

]
. (2.8)

In view of � ′′(0) = α3w′′(η) and w′′(0) = β3�
′′(η) along with (2.4) and (2.5), we have

a2 =
α3

2

[
2b2 +

1
	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds

]
,

b2 =
β3

2

[
2a2 +

1
	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

]
.

By solving the last two equations, we get

a2 =
1

1 – α3β3

[
α3β3

2	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

]

+
α3

2	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds,

b2 =
α3β

2
3

2(1 – α3β3)
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α3β3

2(1 – α3β3)
1

	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds

+
β3

2	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds.
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Substituting the values of a2 and b2 in (2.7) and (2.8), we get

a1 =
α2α3β2β3ζ



1
	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α2α3(β2 + β3)ζ



1
	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds

+
α2β3ζ (α3β3 + 1)



1
	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α2β2

1 – α2β2

1
	(m – 1)

∫ ζ

0
(ζ – s)m–2θ (s) ds

+
α2

1 – α2β2

1
	(n – 1)

∫ η

0
(η – s)n–3τ (s) ds

and

b1 =
α2α3β

2
2β3ζ



1
	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α2α3β2ζ (β2 + β3)



1
	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds

+
α2β2β3ζ (α3β3 + 1)



1
	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α2β

2
2

1 – α2β2

1
	(m – 1)

∫ ζ

0
(ζ – s)m–2θ (s) ds

+
α2β2

1 – α2β2

1
	(n – 1)

∫ η

0
(η – s)n–2τ (s) ds

+
α3β2β3ζ

1 – α3β3

1
	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α3β2ζ

1 – α3β3

1
	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds

+
β2

	(m – 1)

∫ ζ

0
(ζ – s)m–2θ (s) ds.

By substituting the values of b0, b1, and b2 in (2.6), we get

a0 =
α1α2α3β1β2β3ζ

∗
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α1α2α3β1ζ (β2 + β3)

∗
1

	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds

+
α1α2β1β3ζ (α3β3 + 1)

∗
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α1α2β1β2

z
1

	(m – 1)

∫ ζ

0
(ζ – s)m–2θ (s) ds

+
α1α2β1

z
1

	(n – 1)

∫ η

0
(η – s)n–3τ (s) ds

+
α1α3β1β3

2z̃
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds
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+
α1α3β1

2z̃
1

	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds

+
α1β1

1 – α1β1

1
	(m)

∫ 1

0
(1 – s)m–1θ (s) ds

+
α1α2α3β

2
2β3ζ

∗
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α1α2α3ζ (β2 + β3)

∗
1

	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds

+
α1α2β2β3ζ (α3β3 + 1)

∗
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α1α2β

2
2

z
1

	(m – 1)

∫ ζ

0
(ζ – s)m–2θ (s) ds

+
α1α2β2

z
1

	(n – 1)

∫ η

0
(η – s)n–3τ (s) ds

+
α1α3β2β3ζ

z̃
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α1α3β2

z̃
1

	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds

+
α1β2

1 – α1β1

1
	(m – 1)

∫ ζ

0
(ζ – s)m–2θ (s) ds

+
α1α3β

2
3

2z̃
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α1α3β3

2z̃
1

	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds

+
α1β3

2(1 – α1β1)
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α1

1 – α1β1

1
	(n)

∫ 1

0
(1 – s)n–1τ (s) ds.

After some calculations, we get (2.2). By following the same steps, we obtain

b0 =
α1α2α3β1β

2
2β3ζ

∗
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α1α2α3β1β2ζ (β2 + β3)

∗
1

	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds

+
α1α2β1β2β3ζ (α3β3 + 1)

∗
1

	(m – 2)

∫ η

0
(η – s)m–2θ (s) ds

+
α1α2β1β

2
2

z
1

	(m – 1)

∫ ζ

0
(ζ – s)m–2θ (s) ds

+
α1α2β1β2

z
1

	(n – 1)

∫ ζ

0
(ζ – s)n–2τ (s) ds

+
α1α3β1β2β3ζ

z̃
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α1α3β1β2ζ

z̃
1

	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds
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+
α1β1β2

1 – α1β1

1
	(m – 1)

∫ ζ

0
(ζ – s)m–2θ (s) ds

+
α1α3β1β

2
3

2z̃
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α1α3β1β3

2z̃
1

	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds

+
α1β1β3

2(1 – α1β1)
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α1β1

1 – α1β1

1
	(n)

∫ 1

0
(1 – s)n–1τ (s) ds

+
α2α3β1β2β3ζ

∗
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α1α2α3β1ζ (β2 + β3)

∗
1

	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds

+
α1α2β1β3ζ (α3β3 + 1)

∗
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α1α2β1β2

z
1

	(m – 1)

∫ ζ

0
(ζ – s)m–2θ (s) ds

+
α1α2β1

z
1

	(n – 1)

∫ η

0
(η – s)n–3τ (s) ds

+
α3β1β3

2z̃
1

	(m – 2)

∫ η

0
(η – s)m–3θ (s) ds

+
α3β1

2z̃
1

	(n – 2)

∫ η

0
(η – s)n–3τ (s) ds +

α1

1 – α1β1

1
	(m)

∫ 1

0
(1 – s)m–1θ (s) ds.

With the help of b0, b1, and b2, we get (2.3). �

3 Main results
Let Y = {� (t) : � ∈ C([0, 1],R)} denote the Banach space of all continuous functions from
the interval [0, 1] into R supplied by the norm ‖�‖ = sup{|� (t)| : t ∈ [0, 1]}. Definitely, the
product space X = Y × Y,‖(., .)‖ is a Banach space equipped with the norm ‖(� , w)‖ =
‖�‖ + ‖w‖.

Next, in view of Lemma 3.2, we define an operator ϒ : X→X by

ϒ(� , w)(t) =
(
ϒ1(� , w)(t),ϒ2(� , w)(t)

)
,

where

ϒ1(� , w)(t)

=
[

α1α2α3β1β2β3ζ

∗ +
α1α2β1β3ζ (α3β3 + 1)

∗ +
α1α3β3(β1 + β3)

2z̃
+

α1α2α3β
2
2β3ζ

∗

+
α1α2β2β3ζ (α3β3 + 1)

∗ +
α1α3β2β3ζ

z̃
+

α1β3

2(1 – α1β1)
+

α2α3β2β3ζ t


+
α2β3ζ (α3β3 + 1)t


+

α3β3t2

2(1 – α3β3)

]
U3k
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+
[

α1α2α3β1ζ (β2 + β3)
∗ +

α1α3(β1 + β3)
2z̃

+
α1α2α3ζ (β2 + β3)

∗

+
α1α3β2

z̃
+

α2α3ζ (β2 + β3)t


+
α3t2

2(1 – α3β3)

]
V3l

+
[

α1α2β1β2

z
+

α1α2β
2
2

z
+

α1β2

1 – α1β1
+

α2β2t
1 – α2β2

]
U2k

+
[

α1α2β1

z
+

α1α2β2

z
+

α2t
(1 – α2β2)

]
V2l +

α1β1

1 – α1β1
U1k +

α1

1 – α1β1
V1l

+
1

	(m)

∫ t

0
(t – s)m–1k

(
s, w(s),c Dm

0+� (s)
)

ds,

ϒ2(� , w)(t)

=
[

α1α2α3β1β
2
2β3ζ

∗ +
α1α2β1β2β3ζ (α3β3 + 1)

∗ +
α1α3β1β2β3ζ

z̃
+

α1α3β1β
2
3

2z̃

+
α1β1β3

2(1 – α1β1)
+

α2α3β1β2β3ζ

∗ +
α1α2β1β3ζ (α3β3 + 1)

∗ +
α3β1β3

2z̃

+
α2α3β

2
2β3ζ t


+

α2β2β3ζ t(α3β3 + 1)


+
α3β2β3ζ t
1 – α3β3

+
α3β

2
3 t2

2(1 – α3β3)
+

β3t2

2

]
U3k

+
[

α1α2α3β1β2ζ (β2 + β3)
∗ +

α1α3β1β2ζ

z̃
+

α1α3β1β3

2z̃
+

α1α2α3β1ζ (β2 + β3)
∗

+
α3β1

2z̃
+

α2α3β2ζ t(β2 + β3)


+
α3β2ζ t

1 – α3β3
+

α3β3t2

2(1 – α3β3)

]
V3l

+
[

α1α2β1β
2
2

z
+

α1β1β2

1 – α1β1
+

α1α2β1β2

z
+

α2β
2
2 t

1 – α2β2
+ β2t

]
U2k

+
[

α1α2β1β2

z
+

α2β2t
1 – α2β2

+
α1α2β1

z

]
V2l +

α1

1 – α1β1
U1k +

α1β1

1 – α1β1
V1l

+
1

	(n)

∫ t

0
(t – s)n–1l

(
s,� (s),c Dn

0+ w(s)
)

ds.

Here,

U1k =
1

	(m)

∫ 1

0
(1 – s)m–1k

(
s, w(s),c Dm

0+� (s)
)

ds,

V1l =
1

	(n)

∫ 1

0
(1 – s)n–1l

(
s,� (s),c Dn

0+ w(s)
)

ds,

U2k =
1

	(m – 1)

∫ ζ

0
(ζ – s)m–2k

(
s, w(s),c Dm

0+� (s)
)

ds,

V2l =
1

	(n – 1)

∫ ζ

0
(ζ – s)n–2l

(
s,� (s),c Dn

0+ w(s)
)

ds,

U3k =
1

	(m – 2)

∫ η

0
(η – s)m–3k

(
s, w(s),c Dm

0+� (s)
)

ds,

V3l =
1

	(n – 2)

∫ η

0
(η – s)n–3l

(
s,� (s),c Dn

0+ w(s)
)

ds.
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For convenience, we use the subsequent symbols:

ω1 =
[

α1α2α3β1β2β3ζ

∗ +
α1α2β1β3ζ (α3β3 + 1)

∗ +
α1α3β3(β1 + β3)

2z̃
+

α1α2α3β
2
2β3ζ

∗

+
α1α2β2β3ζ (α3β3 + 1)

∗ +
α1α3β2β3ζ

z̃
+

α1β3

2(1 – α1β1)
+

α2α3β2β3ζ



+
α2β3ζ (α3β3 + 1)


+

α3β3

2(1 – α3β3)

]
(m – 1)ηm–2

	(m)

+
[

α1α2β1β2

z
+

α1α2β
2
2

z
+

α1β2

1 – α1β1
+

α2β2

1 – α2β2

]
ζ m–1

	(m)

+
α1

(1 – α1β1)	(m + 1)
+

1
	(m + 1)

,

ω2 =
[

α1α2α3β1ζ (β2 + β3)
∗ +

α1α3(β1 + β3)
2z̃

+
α1α2α3ζ (β2 + β3)

∗

+
α1α3β2

z̃
+

α2α3ζ (β2 + β3)


+
α3

2(1 – α3β3)

]
(n – 1)ηn–2

	(n)

+
[

α1α2β1β2

z
+

α2β2

1 – α2β2
+

α1α2β1

z

]
ζ n–1

	(n)
+

α1β1

(1 – α1β1)	(n + 1)
,

ω3 =
[

α1α2α3β1β
2
2β3ζ

∗ +
α1α2β1β2β3ζ (α3β3 + 1)

∗ +
α1α3β1β2β3ζ

z̃
+

α1α3β1β
2
3

2z̃

+
α1β1β3

2(1 – α1β1)
+

α2α3β1β2β3ζ

∗ +
α1α2β1β3ζ (α3β3 + 1)

∗ +
α3β1β3

2z̃
+

α2α3β
2
2β3ζ



+
α2β2β3ζ (α3β3 + 1)


+

α3β2β3ζ

1 – α3β3
+

α3β
2
3

2(1 – α3β3)
+

β3

2

]
(m – 1)ηm–2

	(m)

+
[

α1α2β1β
2
2

z
+

α1β1β2

1 – α1β1
+

α1α2β1β2

z
+

α2β
2
2

1 – α2β2
+ β2

]
ζ m–1

	(m)

+
α1

(1 – α1β1)	(m + 1)
,

and

ω4 =
[

α1α2α3β1β2ζ (β2 + β3)
∗ +

α1α3β1β2ζ

z̃
+

α1α3β1β3

2z̃
+

α1α2α3β1ζ (β2 + β3)
∗

+
α3β1

2z̃
+

α2α3β2ζ (β2 + β3)


+
α3β2ζ

1 – α3β3
+

α3β3

2(1 – α3β3)

]
(n – 1)ηn–2

	(n)

+
[

α1α2β1β2

z
+

α2β2

1 – α2β2
+

α1α2β1

z

]
ζ n–1

	(n)
+

α1β1

(1 – α1β1)	(n + 1)
+

1
	(n + 1)

.

Now we present our main results.

Theorem 3.1 Suppose that:
(E1) k, l : [0, 1] × R

2 → R are continuous such that, for any y1, y2, z1, z2 ∈ R, there exist
constants ℘1,℘2 > 0 satisfying

∣∣k(t, y1, z1) – k(t, y2, z2)
∣∣ ≤ ℘1

(|y1 – y2| + |z1 – z2|
) ≤ ℘1

∣∣(y1, z1) – (y2, z2)
∣∣,
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∣∣l(t, y1, z1) – l(t, y2, z2)
∣∣ ≤ ℘2

(|y1 – y2| + |z1 – z2|
) ≤ ℘2

∣∣(y1, z1) – (y2, z2)
∣∣;

(E2) The linear operator D : R → R is continuous such that, for each � , w, u, v ∈ R, we
can find constants 0 < l1, l2 < 1 satisfying

∣∣D� (t) – D(u)
∣∣ ≤ l1

∣∣� (t) – u(t)
∣∣,

∣
∣Dw(t) – D(v)

∣
∣ ≤ l2

∣
∣w(t) – v(t)

∣
∣.

If (ω1 +ω3)℘1 +(ω2 +ω4)℘2 < 1, then system (1.1)–(1.2) has a unique solution on the interval
[0, 1].

Proof Define supt∈[0,1] k(t, 0, 0) = δ1 < ∞ and supt∈[0,1] l(t, 0, 0) = δ2 < ∞ and q > 0, where

q >
(ω1 + ω3)δ1 + (ω2 + ω4)δ2

1 – (ω1 + ω3)℘1 – (ω2 + ω4)℘2
.

Define Tq = {(� , w) ∈X : ‖(� , w) ≤ q‖}, we will show that ϒ(Tq) ⊂ Tq.
By assumptions E1 and E2 for each (� , w) ∈ Tq and every t ∈ [0, 1], we have

∣
∣k

(
t, w(t), Dm� (t)

)∣∣ ≤ ∣
∣k

(
t, w(t), Dm� (t)

)
– k(t, 0, 0)

∣
∣ +

∣
∣k(t, 0, 0)

∣
∣

≤ ℘1
(∣∣w(t)

∣∣ + l1
∣∣� (t)

∣∣) + δ1

≤ ℘1
(‖s‖ + ‖w‖) + δ1

≤ ℘1q + δ1.

Following the same procedure, we obtain

∣
∣l
(
t,� (t), Dnw(t)

)∣∣ ≤ ℘2q + δ2,

which further yields

∣∣ϒ1(� , w)(t)
∣∣

≤
[

α1α2α3β1β2β3ζ

∗ +
α1α2β1β3ζ (α3β3 + 1)

∗ +
α1α3β3(β1 + β3)

2z̃
+

α1α2α3β
2
2β3ζ

∗

+
α1α2β2β3ζ (α3β3 + 1)

∗ +
α1α3β2β3ζ

z̃
+

α1β3

2(1 – α1β1)
+

α2α3β2β3ζ



+
α2β3ζ (α3β3 + 1)


+

α3β3

2(1 – α3β3)

]
1

	(m – 1)
ηm–2(℘1q + δ1)

+
[

α1α2α3β1ζ (β2 + β3)
∗ +

α1α3(β1 + β3)
2z̃

+
α1α2α3ζ (β2 + β3)

∗

+
α1α3β2

z̃
+

α2α3ζ (β2 + β3)


+
α3

2(1 – α3β3)

]
1

	(n – 1)
ηn–2(℘2q + δ2)

+
[

α1α2β1β2

z
+

α1α2β
2
2

z
+

α1β2

1 – α1β1
+

α2β2

1 – α2β2

]
ζ m–1

	(m)
(℘1q + δ1)

+
[

α1α2β1

z
+

α1α2β2

z
+

α2

(1 – α2β2)

]
ζ n–1

	(n)
(℘2q + δ2)
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+
α1β1

(1 – α1β1)	(m + 1)
(℘1q + δ1) +

α1

(1 – α1β1)	(n + 1)
(℘2q + δ2)

+
1

	(m + 1)
(℘1q + δ1).

Thus,

∥∥ϒ1(� , w)
∥∥ ≤ (ω1℘1 + ω2℘2)q + ω1δ1 + ω2δ2. (3.1)

Likewise,

∥
∥ϒ2(� , w)

∥
∥ ≤ (ω3℘1 + ω4℘2)q + ω3δ1 + ω4δ2. (3.2)

Since

∥∥ϒ(� , w)
∥∥ ≤ ∥∥ϒ1(� , w)

∥∥ +
∥∥ϒ1(� , w)

∥∥. (3.3)

Therefore, combining inequalities (3.1) and (3.2) into (3.3), we obtain

∥
∥ϒ(� , w)

∥
∥ ≤ [

(ω1 + ω3)℘1 + (ω2 + ω4)℘2
]
q + (ω1 + ω3)δ1 + (ω2 + ω4)δ2 ≤ q.

Hence, ϒ maps a bounded subset of Tq into a bounded subset of Tq.
Next, for any (�2, w2), (�1, w1) ∈X and each t ∈ [0, 1], we have

∣
∣ϒ1(�2, w2)(t) – ϒ1(�1, w1)(t)

∣
∣

≤
[

α1α2α3β1β2β3ζ

∗ +
α1α2β1β3ζ (α3β3 + 1)

∗ +
α1α3β3(β1 + β3)

2z̃

+
α1α2α3β

2
2β3ζ

∗ +
α1α2β2β3ζ (α3β3 + 1)

∗ +
α1α3β2β3ζ

z̃
+

α1β3

2(1 – α1β1)

+
α2α3β2β3ζ t


+

α2β3ζ (α3β3 + 1)t


+
α3β3t2

2(1 – α3β3)

]

× (m – 1)ηm–2

	(m)
∣∣k

(
t, w2(t), Dm�2(t)

)
– k

(
t, w1(t), Dm�1(t)

)∣∣

+
[

α1α2α3β1ζ (β2 + β3)
∗ +

α1α3(β1 + β3)
2z̃

+
α1α2α3ζ (β2 + β3)

∗

+
α1α3β2

z̃
+

α2α3ζ (β2 + β3)t


+
α3t2

2(1 – α3β3)

]

× (n – 1)ηn–2

	(n)
∣∣l
(
t,�2(t), Dnw2(t)

)
– l

(
t,�1(t), Dnw1(t)

)∣∣

+
[

α1α2β1β2

z
+

α1α2β
2
2

z
+

α1β2

1 – α1β1
+

α2β2t
1 – α2β2

]

× ζ m–1

	(m)
∣
∣k

(
t, w2(t), Dm�2(t)

)
– k

(
t, w1(t), Dm�1(t)

)∣∣ +
[

α1α2β1β2

z
+

α2β2t
1 – α2β2

+
α1α2β1

z

]
ζ n–1

	(n)
∣
∣l
(
t,�2(t), Dnw2(t)

)
– l

(
t,�1(t), Dnw1(t)

)∣∣ +
α1

(1 – α1β1)	(m + 1)
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× ∣∣k
(
t, w2(t), Dm�2(t)

)
– k

(
t, w1(t), Dm�1(t)

)∣∣

+
α1β1

(1 – α1β1)	(n + 1)
∣
∣l
(
t,�2(t), Dnw2(t)

)
– l

(
t,�1(t), Dnw1(t)

)∣∣

+
1

	(m + 1)
tm∣

∣k
(
t, w2(t), Dm�2(t)

)
– k

(
t, w1(t), Dm�1(t)

)∣∣.

Employing assumptions E1 and E2, we obtain

∣∣ϒ1(�2, w2)(t) – ϒ1(�1, w1)(t)
∣∣

≤
[

α1α2α3β1β2β3ζ

∗ +
α1α2β1β3ζ (α3β3 + 1)

∗ +
α1α3β3(β1 + β3)

2z̃

+
α1α2α3β

2
2β3ζ

∗ +
α1α2β2β3ζ (α3β3 + 1)

∗

+
α1α3β2β3ζ

z̃
+

α1β3

2(1 – α1β1)
+

α2α3β2β3ζ


+

α2β3ζ (α3β3 + 1)


+
α3β3

2(1 – α3β3)

]
(m – 1)ηm–2

	(m)
℘1

(
l1‖�2 – �1‖ + ‖w2 – w1‖

)

+
[

α1α2α3β1ζ (β2 + β3)
∗ +

α1α3(β1 + β3)
2z̃

+
α1α2α3ζ (β2 + β3)

∗

+
α1α3β2

z̃
+

α2α3ζ (β2 + β3)


+
α3

2(1 – α3β3)

]

× (n – 1)ηn–2

	(n)
℘2

(‖�2 – �1‖ + l2‖w2 – w1‖
)

+
[

α1α2β1β2

z
+

α1α2β
2
2

z

+
α1β2

1 – α1β1
+

α2β2

1 – α2β2

]
ζ m–1

	(m)
℘1

(
l1‖�2 – �1‖ + ‖w2 – w1‖

)

+
[

α1α2β1β2

z
+

α2β2

1 – α2β2
+

α1α2β1

z

]
ζ n–1

	(n)
℘2

(‖�2 – �1‖ + l2‖w2 – w1‖
)

+
α1

1 – α1β1

1
	(m + 1)

℘1
(
l1‖�2 – �1‖ + ‖w2 – w1‖

)

+
α1β1

1 – α1β1

1
	(n + 1)

℘2
(‖�2 – �1‖ + l2‖w2 – w1‖

)

+
1

	(m + 1)
℘1

(
l1‖�2 – �1‖ + ‖w2 – w1‖

)
.

The condition 0 < l1, l2 < 1 will lead us to

∥∥ϒ1(�2, w2)(t) – ϒ1(�1, w1)(t)
∥∥ ≤ (ω1℘1 + ω2℘2)

(‖�2 – �1‖ + ‖w2 – w1‖
)
. (3.4)

Similarly,

∥
∥ϒ2(�2, w2)(t) – ϒ2(�1, w1)(t)

∥
∥ ≤ (ω3℘1 + ω4℘2)

(‖�2 – �1‖ + ‖w2 – w1‖
)
. (3.5)

From inequalities (3.4) and (3.5), it follows that

∥∥ϒ(�2, w2)(t) – ϒ(�1, w1)(t)
∥∥ ≤ [

(ω1 + ω3)℘1 + (ω2 + ω4)℘2
](∥∥(w1, w2) – (�1,�2)

∥∥)
.
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As [(ω1 + ω3)℘1 + (ω2 + ω4)℘2] < 1. Therefore, ϒ is a contractive operator. By the Banach
contraction principle, we deduce that the operator ϒ has a unique fixed point which is the
unique solution of problem (1.1)–(1.2). �

The coming result is established on the basis of Leray–Schauder fixed point alternative.

Lemma 3.2 (Leray–Schauder alternative [11]) Let A : S → S be a completely continuous
operator (i.e., a map restricted to any bounded set in S is compact), and let

Z(F) =
{

x ∈ S : x = λF(x) for some 0 < λ < 1
}

.

Then either the set Z(F) is unbounded or F has at least one fixed point.

Theorem 3.3 Assume that:
(E3) k, l : [0, 1] × R

2 → R such that, for all x, x̄, y, ȳ, we can find positive real constants
d0, d1, d2, e0, e1, e2 satisfying

∣∣k(t, x, x̄)
∣∣ ≤ d0 + d1|x| + d2|x̄|,

∣∣l(t, y, ȳ)
∣∣ ≤ e0 + e1|y| + e2|ȳ|.

If (ω1 + ω3)d2 + (ω2 + ω4)e1 < 1 and (ω1 + ω3)d1 + (ω2 + ω4)e2 < 1, then the boundary value
problem (1.1)–(1.2) has at least one solution on [0, 1].

Proof The proof will be finished in the subsequent steps.
Step 1. First we show that the operator ϒ : X → X is completely continuous. It is clear

that ϒ is continuous due to the continuity of functions k and l.
Let � be any bounded subset of X. Then, for all (� , w) ∈ �, there exist some positive

constants A1 and A2 such that |k(t, w(t), Dm� (t))| ≤ A1, |l(t,� (t), Dnw(t))| ≤ A2. There-
fore, for any (� , w) ∈ �, we have

∣
∣ϒ1(� , w)(t)

∣
∣

=
[

α1α2α3β1β2β3ζ

∗ +
α1α2β1β3ζ (α3β3 + 1)

∗ +
α1α3β3(β1 + β3)

2z̃
+

α1α2α3β
2
2β3ζ

∗

+
α1α2β2β3ζ (α3β3 + 1)

∗ +
α1α3β2β3ζ

z̃
+

α1β3

2(1 – α1β1)
+

α2α3β2β3ζ t


+
α2β3ζ (α3β3 + 1)t


+

α3β3t2

2(1 – α3β3)

]
1

	(m – 1)
ηm–2∣∣k

(
t, w(t), Dm� (t)

)∣∣

+
[

α1α2α3β1ζ (β2 + β3)
∗ +

α1α3(β1 + β3)
2z̃

+
α1α2α3ζ (β2 + β3)

∗ +
α1α3β2

z̃

+
α2α3ζ (β2 + β3)t


+

α3t2

2(1 – α3β3)

]
1

	(n – 1)
ηn–2∣∣l

(
t,� (t), Dnw(t)

)∣∣

+
[

α1α2β1β2

z
+

α1α2β
2
2

z
+

α1β2

1 – α1β1
+

α2β2t
1 – α2β2

]
ζ m–1

	(m)
∣
∣k

(
t, w(t), Dm� (t)

)∣∣

+
[

α1α2β1

z
+

α1α2β2

z
+

α2t
(1 – α2β2)

]
ζ n–1

	(n)
∣
∣l
(
t,� (t), Dnw(t)

)∣∣
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+
α1β1

1 – α1β1

1
	(m + 1)

∣∣k
(
t, w(t), Dm� (t)

)∣∣

+
α1

1 – α1β1

1
	(n + 1)

∣∣l
(
t,� (t), Dnw(t)

)∣∣ +
1

	(m + 1)
tm∣∣k

(
t, w(t), Dm� (t)

)∣∣.

By the boundedness of k and l, we get

∣∣ϒ1(� , w)(t)
∣∣

≤
[

α1α2α3β1β2β3ζ

∗ +
α1α2β1β3ζ (α3β3 + 1)

∗ +
α1α3β3(β1 + β3)

2z̃
+

α1α2α3β
2
2β3ζ

∗

+
α1α2β2β3ζ (α3β3 + 1)

∗ +
α1α3β2β3ζ

z̃
+

α1β3

2(1 – α1β1)
+

α2α3β2β3ζ



+
α2β3ζ (α3β3 + 1)


+

α3β3

2(1 – α3β3)

]
1

	(m – 1)
ηm–2A1

+
[

α1α2α3β1ζ (β2 + β3)
∗ +

α1α3(β1 + β3)
2z̃

+
α1α2α3ζ (β2 + β3)

∗

+
α1α3β2

z̃
+

α2α3ζ (β2 + β3)


+
α3

2(1 – α3β3)

]
1

	(n – 1)
ηn–2A2

+
[

α1α2β1β2

z
+

α1α2β
2
2

z
+

α1β2

1 – α1β1
+

α2β2

1 – α2β2

]
ζ m–1

	(m)
A1

+
[

α1α2β1

z
+

α1α2β2

z
+

α2

(1 – α2β2)

]
ζ n–1

	(n)
A2

+
α1β1

1 – α1β1

1
	(m + 1)

A1 +
α1

1 – α1β1

1
	(n + 1)

A2 +
1

	(m + 1)
A1.

Consequently,

∥∥ϒ1(� , w)
∥∥ ≤ ω1A1 + ω2A2. (3.6)

Similarly,

∥
∥ϒ2(� , w)

∥
∥ ≤ ω3A1 + ω4A2. (3.7)

Thus, it follows from inequalities (3.6) and (3.7) that ϒ is uniformly bounded since
‖ϒ(� , w)‖ ≤ (ω1 + ω3)A1 + (ω2 + ω4)A2.

Step 2. Next, we show that ϒ is equicontinuous. Let t1, t2 ∈ [0, 1] with t1 < t2. Then

∣∣ϒ1
(
� (t2), w(t2)

)
– ϒ1(�

(
t1, w(t1)

)∣∣

≤ A1

[
α2α3β2β3ζ


(t2 – t1) +

α2β3ζ (α3β3 + 1)


(t2 – t1) +
α3β3

2(1 – α3β3)
(t2 – t1)2

]

× 1
	(m – 1)

ηm–2 + A2

[
α2α3ζ (β2 + β3)


(t2 – t1) +

α3

2(1 – α3β3)
(t2 – t1)2

]

× 1
	(n – 1)

ηn–2 + A1

[
α2β2

1 – α2β2

]
ζ m–1

	(m)
(t2 – t1) + A2

[
α2

(1 – α2β2)

]
ζ n–1

	(n)
(t2 – t1)

+ A1

∣∣
∣∣

1
	(m)

∫ t2

0
(t2 – s)m–1 ds –

1
	(m)

∫ t1

0
(t1 – s)m–1 ds

∣∣
∣∣
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≤
[

α2α3β2β3ζ


(t2 – t1) +

α2β3ζ (α3β3 + 1)


(t2 – t1) +
α3β3

2(1 – α3β3)
(t2 – t1)2

]

× 1
	(m – 1)

ηm–2 + A2

[
α2α3ζ (β2 + β3)


(t2 – t1) +

α3

2(1 – α3β3)
(t2 – t1)2

]

× 1
	(n – 1)

ηn–2 + A1

[
α2β2

1 – α2β2

]
ζ m–1

	(m)
(t2 – t1) + A2

[
α2

(1 – α2β2)

]
ζ n–1

	(n)
(t2 – t1)

+
A1

	(m)

∣
∣∣∣

∫ t2

t1

(t2 – s)m–1 ds
∣
∣∣∣ + A1

∣
∣∣∣

∫ t1

0

(t2 – s)m–1 – (t1 – s)m–1

	(m)
ds

∣
∣∣∣

or

∣
∣ϒ1

(
� (t2), w(t2)

)
– ϒ1(�

(
t1, w(t1)

)∣∣

≤ A1

[
α2α3β2β3ζ


(t2 – t1) +

α2β3ζ (α3β3 + 1)


(t2 – t1)

+
α3β3

2(1 – α3β3)
(t2 – t1)2

]
1

	(m – 1)
ηm–2 + A2

[
α2α3ζ (β2 + β3)


(t2 – t1)

+
α3

2(1 – α3β3)
(t2 – t1)2

]
1

	(n – 1)
ηn–2 + A1

[
α2β2

1 – α2β2

]
ζ m–1

	(m)
(t2 – t1)

+ A2

[
α2

(1 – α2β2)

]
ζ n–1

	(n)
(t2 – t1) + A1

(tm
2 – tm

1 )
	(m + 1)

. (3.8)

By following the same procedure, we get

∣∣ϒ2
(
� (t2), w(t2)

)
– ϒ2(�

(
t1, w(t1)

)∣∣

≤ A1

[
α2α3β

2
2β3ζ


(t2 – t1) +

α2β2β3ζ (α3β3 + 1)


(t2 – t1)

+
α3β2β3ζ

1 – α3β3
(t2 – t1) +

α3β
2
3

2(1 – α3β3)
(t2 – t1)2 +

β3

2
(t2 – t1)2

]
1

	(m – 1)
ηm–2

+ A2

[
α2α3β2ζ (β2 + β3)


(t2 – t1) +

α3β2ζ

1 – α3β3
(t2 – t1)

+
α3β3

2(1 – α3β3)
(t2 – t1)2

]
1

	(n – 1)
ηn–2 + A1

[
α2β

2
2

1 – α2β2
(t2 – t1)

+ β2(t2 – t1)
]

1
	(m)

ζ m–1 + A2

[
α2β2t

1 – α2β2

]
1

	(n)
ζ n–1 + A2

(tn
2 – tn

1 )
	(n + 1)

. (3.9)

From inequalities (3.8) and (3.9), we conclude that |ϒ1(� (t2), w(t2))–ϒ1(� (t1, w(t1))| → 0
as t1 → t2 and |ϒ2(� (t2), w(t2)) – ϒ2(� (t1, w(t1))| → 0 as t1 → t2. Therefore, ϒ(� , w) is
equicontinuous. Hence, by Arzela–Ascoli theorem the operator ϒ(� , w) is completely
continuous.

Step 3. It remains to show that the set

Z =
{

(� , w) ∈X : (� , w) = μϒ(� , w) for some μ ∈ (0, 1)
}
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is bounded. Let (� , w) ∈ Z along with (� , w) = μϒ(� , w), then for any t ∈ [0, 1], we have
� (t) = μϒ1(� , w)(t), w(t) = μϒ2(� , w)(t).

∣
∣� (t)

∣
∣ ≤ μ

[
ω1

∣
∣k

(
t, w(t), Dm� (t)

)∣∣ + ω2
∣
∣l
(
t,� (t), Dnw(t)

)∣∣]

≤ ω1
(
d0 + d1

∣
∣w(t)

∣
∣ + d2k

∣
∣� (t)

∣
∣) + ω2

(
e0 + e1

∣
∣� (t)

∣
∣ + e2k

∣
∣w(t)

∣
∣)

= ω1d0 + ω2e0 + (ω1d2 + ω2e1)
∣∣� (t)

∣∣ + (ω1d1 + ω2e2)
∣∣w(t)

∣∣.

Also

∣
∣w(t)

∣
∣ ≤ μ

[
ω3

(
d0 + d1

∣
∣w(t)

∣
∣ + d2k

∣
∣� (t)

∣
∣) + ω4

(
e0 + e1

∣
∣� (t)

∣
∣ + e2k

∣
∣w(t)

∣
∣)]

= ω3d0 + ω4e0 + (ω3d2 + ω4e1)
∣
∣� (t)

∣
∣ + (ω3d1 + ω4e2)

∣
∣w(t)

∣
∣,

which further gives

‖�‖ + ‖w‖ ≤ (ω1 + ω3)d0 + (ω2 + ω4)e0 +
[
(ω1 + ω3)d2 + (ω2 + ω4)e1

]‖�‖
+

[
(ω1 + ω3)d1 + (ω2 + ω4)e2

]‖w‖.

Consequently,

∥∥(� , w)
∥∥ ≤ (ω1 + ω3)d0 + (ω2 + ω4)e0

γ0
,

where

γ0 = min
{

1 –
[
(ω1 + ω3)d2 + (ω2 + ω4)e1

]
, 1 –

[
(ω1 + ω3)d1 + (ω2 + ω4)e2

]}
,

which implies that Z is bounded. Thus, the operator ϒ has at least one fixed point which
is the solution of (1.1)–(1.2), thanks to Lemma 3.2. �

4 Ulam–Hyers stability
This section is dedicated to the investigation of Ulam–Hyers stability, generalized Ulam–
Hyers stability, Ulam–Hyers–Rassias stability, and generalized Ulam–Hyers–Rassias sta-
bility results corresponding to the solutions of (1.1)–(1.2). We will only establish the most
general stability result, that is, generalized Ulam–Hyers–Rassias stability result. The fol-
lowing definitions are adopted from [27].

Let εm, εn > 0 and �m,�n : [0, 1] →R+ be nondecreasing continuous functions. We will
focus on the following inequalities for t ∈ [0, 1]:

∣∣Dm� (t) – k
(
t, w(t), Dm� (t)

)∣∣ ≤ εm,
∣∣Dnw(t) – l

(
t,� (t),c Dnw(t)

)∣∣ ≤ εn,
(4.1)

∣
∣Dm� (t) – k

(
t, w(t), Dm� (t)

)∣∣ ≤ εm,
∣
∣Dnw(t) – l

(
t,� (t),c Dnw(t)

)∣∣ ≤ εn,
(4.2)

∣∣Dm� (t) – k
(
t, w(t), Dm� (t)

)∣∣ ≤ �m(t)εm,
∣∣Dnw(t) – l

(
t,� (t),c Dnw(t)

)∣∣ ≤ �n(t)εn,
(4.3)
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∣∣Dm� (t) – k
(
t, w(t), Dm� (t)

)∣∣ ≤ �m(t),
∣∣Dnw(t) – l

(
t,� (t),c Dnw(t)

)∣∣ ≤ �n(t).
(4.4)

Definition 4.1 Problem (1.1)–(1.2) is called Ulam–Hyers stable if we can find a constant
Pm,n > 0 (Pm,n = max{Pm,Pn}) such that, for each ε > 0 (ε = max{εm, εn}) and every solu-
tion (� , w) ∈X of (4.1), there exists a solution (s∗, w∗) ∈ X of (1.1)–(1.2) with

∣∣(� , w)(t) –
(
s∗, w∗)(t)

∣∣ ≤Pm,nε, t ∈ [0, 1].

Definition 4.2 Problem (1.1)–(1.2) is said to be generalized Ulam–Hyers stable if there is
� ∈ C(R+,R+), �(0) = 0 such that, for every solution (� , w) ∈X of (4.2), there is a solution
(s∗, w∗) ∈X of (1.1)–(1.2) with

∣∣(� , w)(t) –
(
s∗, w∗)(t)

∣∣ ≤ �(ε), t ∈ [0, 1].

Definition 4.3 Problem (1.1)–(1.2) is Ulam–Hyers–Rassias stable on the interval [0, 1]
with respect to �m,n ∈ C([0, 1],R), (�m,n = max{�m,�n}) if there exists a positive real
number C such that, for each solution (� ∗, w∗) ∈ X of (4.3), there exists a solution
(� , w) ∈X of (1.1)–(1.2) with

∣∣(� , w)(t) –
(
� ∗, w∗)(t)

∣∣ ≤ C�m,n(t)(ε), t ∈ [0, 1].

Definition 4.4 Problem (1.1)–(1.2) is generalized Ulam–Hyers–Rassias stable on [0, 1]
with respect to �m,n ∈ C([0, 1],R) if there exists a real number C� > 0 such that, for each
solution (� , w) ∈X of (4.4), we have a solution (s∗, w∗) ∈ X of (1.1)–(1.2) with

∣
∣(� , w)(t) –

(
s∗, w∗)(t)

∣
∣ ≤ C��m,n(t), t ∈ [0, 1].

Remark 4.5 We say that the functions � , w ∈ X are the solutions of (4.4) if there exist
functions �1,�1 ∈X which depend upon � , w, respectively, such that

(I)

∣
∣�1(t)

∣
∣ ≤ �m,

∣
∣�2(t)

∣
∣ ≤ �n

(II)

cDm� (t) = k
(
t, w(t),c Dm� (t)

)
+ �1(t), 0 < t < 1,

cDnw(t) = l
(
t,� (t),c Dnw(t)

)
+ �2(t), 0 < t < 1.

Before going to the main result, we need the following assumption:
(E4) �1,�2 : J →R

+ are nondecreasing functions such that

∫ t

0
�1(s) ds ≤ λm�1(t),

∫ t

0
�2(s) ds ≤ λn�2(t)

for all t ∈ [0, 1] and λm,λn > 0.
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Lemma 4.6 Let � , w be the solutions of inequality (4.4), then

⎧
⎨

⎩
|� (t) – u(t)| ≤ C�m�m,

|w(t) – v(t)| ≤ C�n�n.

Proof From Remark 4.5(II), we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDm� (t) = k(t, w(t), cDm� (t)) + �1(t), 0 < t < 1,
cDnw(t) = l(t,� (t), cDnw(t)) + �2(t), 0 < t < 1,

� (0) = α1w(1), � ′(0) = α2w′(ζ ), � ′′(0) = α3w′′(η),

w(0) = β1� (1), w′(0) = β2�
′(ζ ), w′′(0) = β3�

′′(η).

(4.5)

In view of Lemma 3.2, the solution of (4.5) will be equivalent to the subsequent integral
equations:

� (t) = ω1k
(
t, w(t),c Dm� (t)

)
+ ω2l

(
t,� (t),c Dnw(t)

)

+
1

	(m)

∫ t

0
(t – s)m–1

�1(s) ds, (4.6)

w(t) = ω3k
(
t, w(t),c Dm� (t)

)
+ ω4l

(
t,� (t),c Dnw(t)

)

+
1

	(n)

∫ t

0
(t – s)n–1

�2(s) ds. (4.7)

It follows from (4.6) that

∣∣� (t) – u(t)
∣∣ ≤ 1

	(m)

∫ t

0
(t – s)m–1

�1(s) ds, (4.8)

where

u(t) = ω1k
(
t, w(t),c Dm� (t)

)
+ ω2l

(
t,� (t),c Dnw(t)

)
.

By using (I) of Remark 4.5 and assumption E4, (4.8) leads to

∣∣� (t) – u(t)
∣∣ ≤ λm�m.

Also from (4.7) we have

∣∣w(t) – v(t)
∣∣ ≤ 1

	(n)

∫ t

0
(t – s)n–1

�2(s) ds, (4.9)

where

v(t) = ω3k
(
t, w(t),c Dm� (t)

)
+ ω4l

(
t,� (t),c Dnw(t)

)
.

Following the same procedures, we can write equation (4.9) as

∣∣w(t) – v(t)
∣∣ ≤ λn�n. �
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Theorem 4.7 Under assumption E4, system (1.1)–(1.2) has generalized Ulam–Hyers–
Rassias stability provided that

1 – ℵmℵn > 0.

Proof Let (� , w) ∈ X be a solution of inequality (4.4) and (� ∗, w∗) ∈ X be the unique
solution of the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDm
0+� ∗(t) = k(t, w∗(t), cDm

0+� ∗(t)), 0 < t < 1
cDn

0+ w∗(t) = l(t,� ∗(t), cDn
0+ w∗(t)), 0 < t < 1

� ∗(0) = α1w∗(1), � ∗′ (0) = α2w∗′ (ζ ), � ∗′′ (0) = α3w∗′′ (η),

w∗(0) = β1�
∗(1), w∗′ (0) = β2�

∗′ (ζ ), w∗′′ (0) = β3�
∗′′ (η).

(4.10)

Thus, we write the solution of (4.10) as follows:

⎧
⎨

⎩
� ∗(t) = ω1k(t, w∗(t),c Dm

0+� ∗(t)) + ω2l(t,� ∗(t),c Dn
0+ w∗(t)),

w∗(t) = ω3k(t, w∗(t),c Dm
0+� ∗(t)) + ω4l(t,� ∗(t),c Dn

0+ w∗(t)).

Now

∣∣� (t) – � ∗(t)
∣∣ ≤ ∣∣� (t) – u(t)

∣∣ +
∣∣u(t) – � ∗(t)

∣∣

≤ λm�m +
∣
∣ω1k

(
t, w(t),c Dm

0+� (t)
)

+ ω2l
(
t,� (t),c Dn

0+ (t)
)

– ω1k
(
t, w∗(t),c Dm

0+ s∗(t)
)

– ω2l
(
t, s∗(t),c Dn

0+ w∗(t)
)∣∣

≤ λm�m + (ω1℘1 + ω2℘2l2)
∣
∣w(t) – w∗(t)

∣
∣

+ (ω1℘1l1 + ω2℘2)
∣
∣� (t) – � ∗(t)

∣
∣,

which further gives

∣∣� (t) – � ∗(t)
∣∣ ≤ λm�m

1 – (ω1℘1 + ω2℘2)
+

ω1℘1 + ω2℘2

1 – (ω1℘1 + ω2℘2)
∣∣w(t) – w∗(t)

∣∣. (4.11)

Similarly,

∣∣w(t) – w∗(t)
∣∣ ≤ λn�n

1 – (ω3℘1 + ω4℘2)
+

ω3℘1 + ω4℘2

1 – (ω3℘1 + ω4℘2)
∣∣� (t) – � ∗(t)

∣∣. (4.12)

Inequality (4.11) can be written as

∥
∥� – � ∗∥∥ ≤ Cm�m + ℵm

∥
∥w – w∗∥∥

or

∥∥� – � ∗∥∥ – ℵm
∥∥w – w∗∥∥ ≤ Cm�m, (4.13)
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where

Cm =
λm

1 – (ω1℘1 + ω2℘2)
, ℵm =

ω1℘1 + ω2℘2

1 – (ω1℘1 + ω2℘2)
.

Also from (4.12) we gain

∥∥w – w∗∥∥ – ℵn
∥∥� – � ∗∥∥ ≤ Cn�n, (4.14)

where

Cn =
λn

1 – (ω3℘1 + ω4℘2)
, ℵn =

ω3℘1 + ω4℘2

1 – (ω3℘1 + ω4℘2)
.

From (4.13) and (4.14), we have

[
1 –ℵm

–ℵn 1

][
‖� – � ∗‖
‖w – w∗‖

]

≤
[

Cmθm

Cnθn

]

.

Set

� = 1 – ℵmℵn > 0.

Simplification yields

∥
∥� – � ∗∥∥ ≤ Cm�m

�
+

ℵmCn�n

�
,

∥∥w – w∗∥∥ ≤ Cn�n

�
+

ℵnCm�m

�
, (4.15)

∥
∥� – � ∗∥∥ +

∥
∥w – w∗∥∥ ≤ Cm�m

�
+

Cn�n

�
+

ℵmCn�n

�
+

ℵnCm�m

�
.

Inequality (4.15) becomes

∥∥(� , w) –
(
� ∗, w∗)∥∥ ≤ Cm,n�m,n,

where

Cm,n =
Cm

�
+

Cn

�
+

ℵmCn

�
+

ℵnCm

�
.

Thus, by Definition 4.4, the proposed system is generalized Ulam–Hyers–Rassias sta-
ble. �

Remark 4.8 From the last theorem, the Ulam–Hyers stability, generalized Ulam–Hyers
stability, and Ulam–Hyers–Rassias stability of system (1.1)–(1.2) can be obtained as corol-
laries.
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5 Example
ln this section, we present some examples to achieve the existence, uniqueness, and sta-
bility of the proposed system.

Example 5.1 Consider the following system of fractional differential equation with non-
separated coupled boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

cD 5
2 � (t) = etw(t)

16 + cos |cD
5
2 � (t)|

16+t2 , t ∈ (0, 1),
cD 5

2 w(t) = 1+sin2 � (t)√
t(1–t)2

+ |cD
5
2 w(t)|

16(1+|cD
5
2 w(t)|)

, t ∈ (0, 1),

� (0) = 1
2 w(1), � ′(0) = 1

3 w′( 1
4 ), � ′′(0) = 1

4 w′′( 1
4 ),

w(0) = 3
7� (1), w′(0) = 2

3� ′( 1
4 ), w′′(0) = 1

5� ′′( 1
6 ).

(5.1)

Here, m = n = 5
2 , α1 = 1

2 , α2 = 1
3 , α3 = 1

4 , β1 = 3
7 , β2 = 2

3 , β3 = 1
5 , ζ = 1

4 , η = 1
6 . We

can easily find that ω1 = 0.648937084, ω2 = 0.5431954534, ω3 = 0.8409326373, and ω4 =
0.5537849552.

Also, we have

∣∣f (t,�1,�2) – f (t, w1, w2)
∣∣ ≤ 1

16
|�1 – �2| +

1
16

|w1 – w2|,
∣
∣g(t,�1,�2) – g(t, w1, w2)

∣
∣ ≤ 1

16
|�1 – �2| +

1
16

|w1 – w2|.

Also (ω1 + ω3)℘1 + (ω2 + ω4)℘2 ≈ 0.1616781 < 1. Since all the requirements of Theorem
3.1 are satisfied, hence problem (5.1) has a unique solution.

Example 5.2 Consider the following system of fractional differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cD 5
2 � (t) = 1 + 1

2(t+1)2
|cD

5
2 � (t)|

1+|D� (t)| + sin w(t)
9 , t ∈ (0, 1),

cD 5
2 w(t) = 1

3 + sin 2π� (t)
27 +

cD
5
2 w(t)
9 , t ∈ (0, 1),

� (0) = 1
2 w(1), � ′(0) = 1

3 w′( 1
4 ), � ′′(0) = 1

4 w′′( 1
4 ),

w(0) = 3
7� (1), w′(0) = 2

3� ′( 1
4 ), w′′(0) = 1

5� ′′( 1
6 ).

(5.2)

Comparing (5.2) with system (1.1)–(1.2) yields m = n = 5
2 , α1 = 1

2 , α2 = 1
3 , α3 = 1

4 , β1 = 3
7 ,

β2 = 2
3 , β3 = 1

5 , ζ = 1
4 , η = 1

6 . Furthermore,

∣
∣k(t, x, x̄)

∣
∣ ≤1 +

1
9
|x| +

1
9
|x̄|, ∣

∣l(t, y, ȳ)
∣
∣ ≤ 1

3
+

1
9
|y| +

1
9
|ȳ|.

As d0 = 1, d1 = 1
9 , d2 = 1

9 , e0 = 1
3 , e1 = 1

9 , e2 = 1
9 , we can easily find that ω1 = 0.648937084,

ω2 = 0.5431954534, ω3 = 0.8409326373, and ω4 = 0.5537849552. Note that (ω1 + ω3)d2 +
(ω2 + ω4)e1 ≈ 0.2874278 < 1 and (ω1 + ω3)d1 + (ω2 + ω4)e2 < 1. As a conclusion, we can say
that a coupled system has at least one solution. Furthermore,

1 – ℵmℵn ≈ 0.6639308221 > 0

and condition E4 is also satisfied. Consequently, problem (5.2) is generalized Ulam–
Hyers–Rassias stable.
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6 Conclusion
In this manuscript, we have successfully derived the existence and uniqueness results for
nonlinear coupled FODEs with non-separated boundary conditions. To guarantee the
existence and uniqueness of solutions, some sufficient criteria have been established by
the Banach contraction principle and the Leray–Schauder alternative. Moreover, we pre-
sented the generalized Ulam–Hyers–Rassias stability for model (1.1)–(1.2) by classical
functional analysis. At the end, for the justification of our results, we stated some exam-
ples. The results obtained in this article are of quite general nature, because by changing
the parameters and the interval from (0, 1) to [0, T] in the proposed system, one can get
different types of boundary conditions like coupled flux type conditions, periodic and anti
periodic boundary conditions, etc.
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