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Abstract
In this study, a wavelet method is developed to solve a system of nonlinear
variable-order (V-O) fractional integral equations using the Chebyshev wavelets (CWs)
and the Galerkin method. For this purpose, we derive a V-O fractional integration
operational matrix (OM) for CWs and use it in our method. In the established scheme,
we approximate the unknown functions by CWs with unknown coefficients and
reduce the problem to an algebraic system. In this way, we simplify the computation
of nonlinear terms by obtaining some new results for CWs. Finally, we demonstrate
the applicability of the presented algorithm by solving a few numerical examples.
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1 Introduction
Fractional calculus is a useful extension of the classical calculus by allowing derivatives and
integrals of arbitrary orders. It arose from a famous scientific discussion between Leibniz
and L’Hopital in 1695 and was developed by other scientists like Laplace, Abel, Euler, Rie-
mann, and Liouville [1]. In recent years, fractional calculus has become a popular topic
for researchers in mathematics, physics, and engineering because the fractional differen-
tial (integral) equations govern the behavior of many physical systems with more precision
[2]. We remind that the main advantage of using fractional differential (integral) equations
for modeling applied problems is their nonlocal property [3], i.e., in a fractional dynamical
system, the next state depends on all the previous situations so far [3].

Another interesting extension to fractional order calculus is considering the fractional
order to be a known time-dependent function α(t) [4]. This generalization is called
variable-order (V-O) fractional calculus. This subject finds enormous applications in sci-
ence and engineering because the nonlocal property of fractional calculus becomes more
evident [4]. Usually, the V-O fractional functional equations are difficult to solve, ana-
lytically. So, finding the exact solutions for these problems is impossible in most cases.
Therefore, it is very important to propose approximation/numerical procedures to find
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numerical solutions for these problems. Some recent studies and numerical methods for
V-O fractional functional equations can be observed in [5–10].

During last decades, orthogonal functions have been applied extensively for solving dif-
ferent classes of problems. The major reason for this is that solving the main problem turns
into solving a simple algebraic system [11–13]. We remind that the Chebyshev polynomi-
als can be effectively utilized for approximating any sufficiently differentiable function. In
this case, the approximation error is rapidly converted to zero [14]. This property usually
is named “the spectral accuracy”.

Wavelets, compared to other functions, favor many advantages which allow the investi-
gation of problems which the conventional numerical methods cannot handle [14]. During
last years, different categories of fractional problems have been solved by eliciting the OM
of classical fractional integration for well-known orthogonal wavelets, e.g., [15–17]. CWs
are a particular type of orthonormal wavelets which satisfy orthogonality and spectral-
ity, which are the properties of the Chebyshev polynomials in addition to the properties of
wavelets. These useful features have led to the widespread use of CWs in solving fractional
differential equations (FDEs). In [18], a category of fractional systems of singular integro-
differential equations was solved using CWs. Multi-order FDEs were solved in [19] by
proposing a CWs-based numerical method. Also, nonlinear fractional integro-differential
equations in large intervals were solved by Heydari et al. in [20] by CWs. A class of nonlin-
ear FDEs was solved by applying CWs in [21]. The generalized Burgers–Huxley equation
was solved by applying a CWs-based collocation method in [22]. In [23], CWs were uti-
lized for solving FDEs with nonsingular kernel.

Many applied problems with memory can be successfully modeled via a fractional sys-
tem of differential and/or integral equations, for example, semi-conductor devices [24],
population dynamics [25], and identification of memory kernels in heat conduction [26].
During last years, several numerical techniques have been applied for solving fractional
systems of differential and integral equations, for example, fractional power Jacobi spec-
tral method [27], Bernoulli wavelets method [28], Haar wavelets method [29], Müntz–
Legendre wavelets method [30], Block pulse functions method [31], finite difference
method [32], spline collocation method [33–35], and spectral method [36].

The major aim of the current study is to treat the following nonlinear V-O fractional
system by proposing the CWs Galerkin method:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(t) = F1(t, u1(t), u2(t), . . . , ud(t))

+
∫ t

0 (t – s)α1(t)–1K1(t, s)G1(s, u1(s), u2(s), . . . , ud(s)) ds,

u2(t) = F2(t, u1(t), u2(t), . . . , ud(t))

+
∫ t

0 (t – s)α2(t)–1K2(t, s)G2(s, u1(s), u2(s), . . . , ud(s)) ds,
...

ud(t) = Fd(t, u1(t), u2(t), . . . , ud(t))

+
∫ t

0 (t – s)αd(t)–1Kd(t, s)Gd(s, u1(s), u2(s), . . . , ud(s)) ds,

(1.1)

where ui : [0, 1] → R, i = 1, 2, . . . , d, are unknown functions, qi –1 < αi(t) ≤ qi, i = 1, 2, . . . , d,
are given functions, qi, i = 1, 2, . . . , d, are natural constants, Fi and Gi : [0, 1] × R

d → R,
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i = 1, 2, . . . , d, are continuous maps which satisfy appropriate Lipschitz conditions, and
Ki : [0, 1] × [0, 1] →R, i = 1, 2, . . . , d, are continuous functions. Note that fractional system
(1.1) is a generalization of the classical fractional system introduced in [36]. So, the method
of this paper can also be used for the fractional system investigated in [36].

To implement the proposed method, a new OM for CWs is elicited as follows:

(
Iα(t)�

)
(t) � P(α)�(t), (1.2)

where

�(t) =
[
ψ1(t),ψ2(t), . . . ,ψm̂(t)

]T , (1.3)

and Pα is the V-O fractional integration OM of CWs and ψi(t), i = 1, 2, . . . , m̂, are the CWs
basis functions. We construct this new OM using HFs and their properties. The proposed
technique is based upon expanding the unknown functions by CWs for transforming the
main system to a system of algebraic equations using the mentioned OM and applying the
Galerkin technique. In this way, a new method is introduced to compute nonlinear terms
in such systems.

This article is structured as follows: In Sect. 2, we express some required preliminaries
of HFs and the V-O fractional calculus. In Sect. 3, we introduce CWs and their required
properties. In Sect. 4, we study the existence of a unique solution for fractional system
(1.1). The expressed method for solving system (1.1) is described in Sect. 5. We exam-
ine the convergence of CWs in Sect. 6. Some illustrative examples are solved in Sect. 7.
Eventually, we draw a conclusion in the last section.

2 Mathematical preliminaries
Here, some preliminaries which are necessary for this study are reviewed.

2.1 V-O fractional integral
In the development of the fractional calculus theory with V-O, many definitions have ap-
peared. In this section, we give the most popular definition of V-O fractional integral.

Definition 2.1 ([37]) Let α(t) be a continuous function and f (t) be a given function. The
fractional integral operator of order α(t) ≥ 0 in the Riemann–Liouville type is given by

(
Iα(t)f
)
(t) =

⎧
⎨

⎩

1
�(α(t))

∫ t
0 (t – s)α(t)–1f (s) ds, α(t) > 0,

f (t), α(t) = 0.
(2.1)

Remark 1 The following useful property is implied by the definition:

Iα(t)tβ =
�(β + 1)

�(α(t) + β + 1)
tα(t)+β . (2.2)
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2.2 HFs and their properties
An m̂-set of HFs is introduced on [0, 1] as follows [38, 39]:

ϕ0(t) =

⎧
⎨

⎩

h–t
h , 0 ≤ t < h,

0, otherwise,
(2.3)

ϕi(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t–(i–1)h
h , (i – 1)h ≤ t < ih,

(i+1)h–t
h , ih ≤ t < (i + 1)h,

0, otherwise,

1 ≤ i ≤ m̂ – 2, (2.4)

and

ϕm̂–1(t) =

⎧
⎨

⎩

t–(1–h)
h , 1 – h ≤ t ≤ 1,

0, otherwise,
(2.5)

where h = 1
(m̂–1) . The HFs can be utilized to express any function f (t) on [0, 1] as

f (t) �
m̂–1∑

i=0

f (ih)ϕi(t) = F̄T�(t) = �(t)T F̄ , (2.6)

where

F̄ �
[
f (0), f (h), f (2h), . . . , f (1)

]T , (2.7)

�(t) �
[
ϕ0(t),ϕ1(t), . . . ,ϕm̂–1(t)

]T . (2.8)

Similarly, they can be utilized to express any function f (x, t) on [0, 1] × [0, 1] as

f (x, t) � �(x)T	�(t), (2.9)

in which 	 is the coefficients matrix and

	ij = f
(
(i – 1)h, (j – 1)h

)
, 1 ≤ i, j ≤ m̂. (2.10)

Lemma 2.2 ([39]) If �(t) is the vector expressed in (2.8), then

�(t)�(t)T � diag
(
ϕ0(t),ϕ1(t), . . . ,ϕm̂–1(t)

)
� diag

(
�(t)
)
, (2.11)

in which diag(�(t)) is an m̂-order diagonal matrix.

Lemma 2.3 ([39]) If X is an arbitrary m̂-column vector and �(t) is the HFs vector in (2.8),
then

�(t)�(t)T X � X̂�(t), (2.12)

where X̂ = diag(x1, x2, . . . , xm̂) and X̂ is an m̂-order matrix, namely the product OM for HFs.



Yang et al. Advances in Difference Equations        (2020) 2020:611 Page 5 of 24

Lemma 2.4 If A is an m̂-order square matrix and �(t) is the vector in (2.8), then

�(t)T A�(t) � ÂT�(t), (2.13)

where Â = diag(A) is an m̂-column vector.

Proof The proof is easy regarding Lemma 2.2. �

Theorem 2.5 ([40]) Suppose that α(t) : [0, 1] −→ R
+ is continuous and �(t) is the vector

in (2.8). Then we have

(
Iα(t)�

)
(t) � P̂(α)�(t), (2.14)

where P̂(α) is known as the V-O fractional integral OM for HFs. Moreover, we have

P̂(α) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ζ1 ζ2 . . . ζm̂–2 ζm̂–1

0 ξ1 1 ξ1 2 . . . ξ1 m̂–2 ξ1 m̂–1

0 0 ξ2 2 . . . ξ2 m̂–2 ξ2 m̂–1
...

...
...

. . .
...

...
0 0 0 0 ξm̂–2 m̂–2 ξm̂–2 m̂–1

0 0 0 0 0 ξm̂–1 m̂–1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

m̂×m̂

,

where

ζj =
hα(jh)

�(α(jh) + 2)
(
(j – 1)α(jh)+1 + jα(jh)(α(jh) – j + 1

))
, 1 ≤ j ≤ m̂ – 1,

and

ξij =

⎧
⎪⎪⎨

⎪⎪⎩

0, j < i,
hα(jh)

�(α(jh)+2) , j = i,
hα(jh)

�(α(jh)+2) ((j – i + 1)α(jh)+1 – 2(j – i)α(jh)+1 + (j – i – 1)α(jh)+1), j > i.

Definition 2.6 Let V T = [v1, v2, . . . , vm̂] and UT
i = [ui

1, ui
2, . . . , ui

m̂], i = 1, 2, . . . , d, be arbi-
trary constant vectors, and F : Rd+1 → R be any continuous function. Then we define
F(V T , UT

1 , UT
2 , . . . , UT

d ) as

F
(
V T , UT

1 , UT
2 , . . . , UT

d
)

=
[
F
(
v1, u1

1, u2
1, . . . , ud

1
)
, F
(
v2, u1

2, u2
2, . . . , ud

2
)
, . . . , F

(
vm̂, u1

m̂, u2
m̂, . . . , ud

m̂
)]

.

Lemma 2.7 If V T�(t) and UT
i �(t) are the approximations of v(t) = t and ui(t) by HFs,

then

F
(
v(t), u1(t), u2(t), . . . , ud(t)

)� F
(
V T , UT

1 , UT
2 , . . . , UT

d
)
�(t) (2.15)

for any continuous function F : Rd+1 →R.

Proof Equations (2.6) and (2.7) together with Definition 2.6 complete the proof. �
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3 Chebyshev wavelets
Herein, CWs and some of their properties, which will be used in the sequel, are reviewed.

3.1 CWs and function expansion
CWs are defined over [0, 1] as follows [18]:

ψnm(t) =

⎧
⎨

⎩

βm2 k
2 Tm(2k+1t – 2n – 1), t ∈ [ n

2k , n+1
2k ],

0, otherwise,
(3.1)

where

βm =

⎧
⎨

⎩

√
2
π

, m = 0,
2√
π

, m ≥ 1,

m = 0, 1, . . . , M – 1, M ∈N and n = 0, 1, . . . , 2k – 1 for k ∈ Z
+ ∪ {0}. Here, Tm(t) denotes the

Chebyshev polynomials which are recursively defined over [–1, 1] as follows [41]:

T0(t) = 1, T1(t) = t, Tm+1(t) = 2tTm(t) – Tm–1(t), m ∈N. (3.2)

Let wn(t) be a weight function defined as

wn(t) =

⎧
⎨

⎩

1√
1–(2k+1t–2n–1)2

, t ∈ [ n
2k , n+1

2k ],

0, otherwise.
(3.3)

The CWs can be utilized to expand any function u(t) on [0, 1] as

u(t) =
∞∑

n=0

∞∑

m=0

cnmψnm(t), (3.4)

where cnm = 〈u(t),ψnm(t)〉wn(t). This function can be approximated as

u(t) �
2k –1∑

n=0

M–1∑

m=0

cnmψnm(t) = CT�(t), (3.5)

where the symbol T denotes transposition and �(t) and C are m̂ = 2kM column vectors.
Relation (3.5) can be simplified as follows:

u(t) �
m̂∑

i=1

ciψi(t) = CT�(t), (3.6)

where ψi(t) = ψnm(t), ci = cnm, and i = Mn + m + 1. This results in

C � [c1, c2, . . . , cm̂]T ,

�(t) �
[
ψ1(t),ψ2(t), . . . ,ψm̂(t)

]T . (3.7)
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Likely, the CWs can be used to expand any two-variable functions u(x, t) ∈ L2
wn,n′ ((0, 1) ×

(0, 1)) as

u(x, t) �
m̂∑

i=1

m̂∑

j=1

uijψi(x)ψj(t) = �(x)T U�(t), (3.8)

where Uij = 〈ψi(x), 〈u(x, t),ψj(t)〉wn′ (t)〉wn(x), i, j = 1, 2, . . . , m̂.

3.2 Novel results for CWs
Here, some technical results are extracted for CWs which are applicable in the following.

Lemma 3.1 Assume �(t) and �(t) are respectively the CWs and the HFs vectors in (3.7)
and (2.8). Then we have

�(t) � Q�(t), (3.9)

where Q is the CWs matrix of size m̂ × m̂ with

Qij = ψi
(
(j – 1)h

)
, 1 ≤ i, j ≤ m̂. (3.10)

Proof The function ψi(t) (ith component of �(t)) can be approximated via HFs as follows:

ψi(t) �
m̂–1∑

j=0

ψi(jh)ϕj(t) =
m̂∑

j=1

ψi
(
(j – 1)h

)
ϕj–1(t) = QT

i �(t), 1 ≤ i ≤ m̂, (3.11)

in which Qi is the ith row of the matrix Q. Then the proof is concluded. �

Corollary 3.2 If X is an m̂-column vector and �(t) is the CWs vector in (3.7), then

�(t)�(t)T X � X̂�(t), (3.12)

where X̂ = Qdiag(QT X)Q–1, and the matrix X̂ is the product OM for the CWs of size m̂×m̂.

Proof The proof is easy by applying Lemmas 2.3 and 3.1. �

Corollary 3.3 If �(t) is the CWs vector in (3.7) and A is an m̂-order matrix, then

�(t)T A�(t) � ÂT�(t), (3.13)

in which ÂT = BT Q–1 and B = diag(QT AQ) is an m̂-column vector.

Proof The proof is immediate from Lemmas 2.4 and 3.1. �

Corollary 3.4 Assume that V T�(t) and UT
i �(t) are the approximations of v(t) = t and

ui(t) via CWs, respectively, for i = 1, 2, . . . , d. Then we have

F
(
v(t), u1(t), u2(t), . . . , ud(t)

)� F
(
Ṽ T , ŨT

1 , ŨT
2 , . . . , ŨT

d
)
Q–1�(t)

= �(t)T(Q–1)T F
(
Ṽ T , ŨT

1 , ŨT
2 , . . . , ŨT

d
)T (3.14)
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for any continuous function F : Rd+1 → R, where Ṽ T = V T Q and ŨT
i = UT

i Q for i =
1, 2, . . . , d.

Proof The proof is clear by Lemmas 2.7 and 3.1. �

Theorem 3.5 Assume that �(t) is the CWs vector in (3.7) and α(t) : [0, 1] −→ R
+ is con-

tinuous, then

(
Iα(t)�

)
(t) � (QP̂(α)Q–1)�(t) � P(α)�(t), (3.15)

where Q and P̂(α) are respectively defined in (2.14) and (3.9), and P(α) is the V-O fractional
integration OM of CWs.

Proof By Theorem 2.5 and Lemma 3.1, we get

(
Iα(t)�

)
(t) � (Iα(t)Q�

)
(t) = Q

(
Iα(t)�

)
(t) � QP̂(α)�(t). (3.16)

Hence, by applying Lemma 3.1, the desired result is obtained. �

4 Existence and uniqueness
The uniqueness and the existence of a solution for fractional system (1.1) is studied in
this section. Since norms in R

d are equivalent, we use the sup-norm ‖ · ‖ which, for any
v = [v1, v2, . . . , vd]T = [vi]T

i=1,2,...,d ∈R
d , is given as follows:

‖v‖ = max
1≤i≤d

|vi|. (4.1)

Similarly, for  = [0, 1] or  = [0, 1] × [0, 1] and any V ∈ C(,Rd), we consider the follow-
ing norm:

‖V‖ = max
ω∈

∥
∥V(ω)

∥
∥, (4.2)

where ‖V(ω)‖ is the sup-norm of V(ω) ∈R
d . It is obvious that the space C(,Rd) endowed

with the above norm constitutes a Banach space. It is also worth mentioning that we have

∥
∥
∥
∥

∫ t

0
v(s) ds

∥
∥
∥
∥≤
∥
∥
∥
∥

[∫ t

0

∣
∣vi(s)
∣
∣ds
]T

i=1,2,...,d

∥
∥
∥
∥ (4.3)

for v = [v1, v2, . . . , vd]T ∈ C([0, 1],Rd) and t ∈ [0, 1].

Definition 4.1 (Lipschitz continuous function [42]) Let F = [F1, F2, . . . , Fd]T and G =
[G1, G2, . . . , Gd]T ∈ C([0, 1] × R

d,Rd). These functions are Lipschitz continuous if there
exist ρ,σ ∈R

+ such that

∥
∥F(t, V ) – F(t, W )

∥
∥≤ ρ‖V – W‖,

∥
∥G(t, V ) – G(t, W )

∥
∥≤ σ‖V – W‖ ∀V , W ∈R

d.
(4.4)
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Remark 2 Fractional system (1.1) can be rewritten as AU = U , where the operator A :
C([0, 1],Rd) →R

d for each U ∈ C([0, 1],Rd) and t ∈ [0, 1] is defined as follows:

AU(t) = F
(
t, U(t)

)
+
∫ t

0
(t – s)α(t)–1K(t, s)G

(
s, U(s)

)
ds. (4.5)

Then solving problem (1.1) is equivalent to obtaining a fixed point U ∈ ([0, 1],Rd) for the
operator A.

Theorem 4.2 Suppose that F and G ∈ C([0, 1] ×R
d,Rd) satisfy Lipschitz conditions (4.4).

If ρ + σ‖K‖‖ 1
α(t)‖ < 1

2 , then system (1.1) has a unique solution.

Proof Choose r ≥ 2(M1 + M2‖K‖‖ 1
α(t)‖) and let ‖F(t, 0)‖ = M1 and ‖G(s, 0)‖ = M2. Then

we show that ABr ⊂ Br , where Br ≡ {V ∈ C([0, 1] × R
d,Rd) : ‖V‖ ≤ r}. So, let V ∈ Br .

Then we have

∥
∥AV (t)

∥
∥≤ ∥∥F(t, V (t)

)∥
∥ +
∥
∥
∥
∥

[∫ t

0
(t – s)αi(t)–1∣∣Ki(t, s)

∣
∣
∣
∣Gi
(
s, V (s)

)∣
∣ds
]T

i=1,2,...,d

∥
∥
∥
∥

≤ ∥∥F(t, V (t)
)

– F(t, 0)
∥
∥ +
∥
∥F(t, 0)

∥
∥

+
∥
∥
∥
∥

[∫ t

0
(t – s)αi(t)–1∣∣Ki(t, s)

∣
∣
(∣
∣Gi
(
s, V (s)

)
– Gi(s, 0)

∣
∣ +
∣
∣Gi(s, 0)

∣
∣
)

ds
]T

i=1,2,...,d

∥
∥
∥
∥

≤ ρr + M1 + (σ r + M2)‖K‖
∥
∥
∥
∥

[∫ t

0
(t – s)αi(t)–1 ds

]T

i=1,2,...,d

∥
∥
∥
∥

≤ ρr + M1 + (σ r + M2)‖K‖
∥
∥
∥
∥

1
α(t)

∥
∥
∥
∥

= r
(

ρ + σ‖K‖
∥
∥
∥
∥

1
α(t)

∥
∥
∥
∥

)

+ M1 + M2‖K‖
∥
∥
∥
∥

1
α(t)

∥
∥
∥
∥ < r.

Now, suppose that V , W ∈ C([0, 1] ×R
d,Rd) and t ∈ [0, 1]. Then we have

∥
∥AV (t) – AW (t)

∥
∥

≤ ∥∥F(t, V (t)
)

– F
(
t, W (t)

)∥
∥

+
∥
∥
∥
∥

[∫ t

0
(t – s)αi(t)–1∣∣Ki(t, s)

∣
∣
∣
∣Gi
(
s, V (s)

)
– Gi
(
s, W (s)

)∣
∣ds
]T

i=1,2,...,d

∥
∥
∥
∥

≤ ρ
∥
∥V (t) – W (t)

∥
∥ + σ‖K‖∥∥V (t) – W (t)

∥
∥

∥
∥
∥
∥

[∫ t

0
(t – s)αi(t)–1 ds

]T

i=1,2,...,d

∥
∥
∥
∥

≤
(

ρ + σ‖K‖
∥
∥
∥
∥

1
α(t)

∥
∥
∥
∥

)
∥
∥V (t) – W (t)

∥
∥.

Since ρ + σ‖K‖‖ 1
α(t)‖ < 1, using the contraction mapping principle, the desired result is

obtained. �
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Remark 3 The Lipschitz hypotheses are spontaneously satisfied when the vectors F and
K adopt as follows:

F(t, V ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

F11(t) F12(t) . . . F1(d–1)(t) F1d(t)
F21(t) F22(t) . . . F2(d–1)(t) F2d(t)

...
...

...
...

...
F(d–1)1(t) F(d–1)2(t) . . . F(d–1)(d–1)(t) F(d–1)d(t)

Fd1(t) Fd2(t) . . . Fd(d–1)(t) Fdd(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1

v2
...

vd–1

vd

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

K(t, s)G(s, V )

=

⎛

⎜
⎜
⎜
⎜
⎝

K1(t, s)G11(t) K1(t, s)G12(t) . . . K1(t, s)G1(d–1)(t) K1(t, s)G1d(t)
K2(t, s)G21(t) K2(t, s)G22(t) . . . K2(t, s)G2(d–1)(t) K2(t, s)G2d(t)

...
...

...
...

...
Kd(t, s)Gd1(t) Kd(t, s)Gd2(t) . . . Kd(t, s)Gd(d–1)(t) Kd(t, s)Gdd(t)

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

v1

v2
...

vd

⎞

⎟
⎟
⎟
⎟
⎠

for all s, t ∈ [0, 1] and any V = [v1, v2, . . . , vd]T ∈ R
d . Here, Fij and Gij : [0, 1] → R are con-

tinuous maps. Hence, the system of nonlinear integral equations (1.1) can be defined as

ui(t) =
d∑

j=1

(

Fij(t)uj(t) +
∫ t

0
(t – s)αij(t)–1Ki(t, s)Gij(s)uj(s) ds

)

, i = 1, 2, . . . , d,

and Theorem 4.2 admits a unique solution.

5 The established wavelet method
Herein, a new computational method using CWs is established for solving the VO frac-
tional system (1.1). We utilize the results yielded in Sect. 4 for transforming fractional sys-
tem (1.1) to an algebraic system by expressing the functions ui(t), K̃i(t, s) for i = 1, 2, . . . , d
and v(t) = t via CWs as follows:

ui(t) � UT
i �(t), i = 1, 2, . . . , d,

K̃i(t, s) = �
(
αi(t)
)
Ki(t, s) � �(t)T Ki�(s), i = 1, 2, . . . , d,

(5.1)

and

v(t) � V T�(t), (5.2)

where Ui are unknown vectors, Ki are coefficient matrices for kernels Ki for i = 1, 2, . . . , d,
and V is the coefficient vector for v(t). By substituting (5.1) and (5.2) into (1.1), we have

UT
i �(t) � Fi

(
V T�(t), UT

1 �(t), UT
2 �(t), . . . , UT

q �(t)
)

(5.3)

+
1

�(αi(t))

∫ t

0
(t – s)αi(t)–1�(t)T Ki�(s)

× Gi
(
V T�(s), UT

1 �(s), UT
2 �(s), . . . , UT

d �(s)
)

ds.
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From Corollary 3.4, we can write Eq. (5.3) for i = 1, 2, . . . , d in the form

UT
i �(t) � Fi

(
Ṽ T , ŨT

1 , ŨT
2 , . . . , ŨT

d
)
Q–1�(t) (5.4)

+ �(t)T Ki
1

�(αi(t))

∫ t

0
(t – s)αi(t)–1�(s)�(s)T(Q–1)T

× Gi
(
Ṽ T , ŨT

1 , ŨT
2 , . . . , ŨT

d
)T ds.

Now, by Corollary 3.2, we have

�(s)�(s)T(Q–1)T Gi
(
Ṽ T , ŨT

1 , ŨT
2 , . . . , ŨT

d
)T � Ĝi�(s), (5.5)

where Ĝi are m̂ × m̂ matrices given as

Ĝi = Qdiag
(
Gi
(
Ṽ T , ŨT

1 , ŨT
2 , . . . , ŨT

d
))

Q–1, (5.6)

for i = 1, 2, . . . , d. By substituting (5.5) into (5.4) and employing the fractional integration
matrix for CWs, we get

UT
i �(t) � Fi

(
Ṽ T , ŨT

1 , ŨT
2 , . . . , ŨT

d
)
Q–1�(t)

+ �(t)T KiĜiP(αi)�(t), i = 1, 2, . . . , d. (5.7)

By Corollary 3.3, we have

UT
i �(t) � Fi

(
Ṽ T , ŨT

1 , ŨT
2 , . . . , ŨT

d
)
Q–1�(t) + K̂T

i �(t), i = 1, 2, . . . , d, (5.8)

where K̂T
i = BT

i Q–1 and Bi are m̂-column vectors given as

Bi = diag
(
QT KiĜiP(αi)Q

)
(5.9)

for i = 1, 2, . . . , d. So, the residual functions Ri(t) for fractional system (1.1) can be written
as follows:

Ri(t) =
(
UT

i – Fi
(
Ṽ T , ŨT

1 , ŨT
2 , . . . , ŨT

d
)
Q–1 – K̂T

i
)
�(t), 1 ≤ i ≤ d. (5.10)

Similar to the typical Galerkin method [41], m̂d nonlinear algebraic equations are gener-
ated as follows:

(
Ri(t),ψj(t)

)
=
∫ 1

0
Ri(t)ψj(t)wn(t) dt = 0, 1 ≤ i ≤ d, 1 ≤ j ≤ m̂, (5.11)

where the index j is computed as j = Mn + m + 1 and ψj(t) = ψnm(t).

Remark 4 Note that a set of m̂d nonlinear algebraic equations is generated by Eq. (5.11)
as follows:

UT
i – Fi

(
Ṽ T , ŨT

1 , ŨT
2 , . . . , ŨT

d
)
Q–1 – K̂T

i = 0, 1 ≤ i ≤ d. (5.12)
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Finally, we get a wavelet solution for the original system (1.1) using (5.1) by solving the
above system for the vectors Ui, i = 1, 2, . . . , d.

Remark 5 After simplification we can compute the vectors Bi in (5.9) as follows:

Bi = diag
(
QT KiQdiag

(
Gi
(
Ṽ T , ŨT

1 , ŨT
2 , . . . , ŨT

d
))

P̂(αi)
)
, (5.13)

where P̂(αi), i = 1, 2, . . . , d, are defined in (2.14). Moreover, by Lemma 3.1 and Eqs. (2.9) and
(2.10), we have

QT KlQ � 	l, l = 1, 2, . . . , d, (5.14)

where

	l = Kl
(
(i – 1)h, (j – 1)h

)
, 1 ≤ i, j ≤ m̂. (5.15)

Hence, with Eqs. (5.13) and (5.14), we can compute the vectors Bi, i = 1, 2, . . . , d, as follows:

Bi = diag
(
	idiag

(
Gi
(
Ṽ T , ŨT

1 , ŨT
2 , . . . , ŨT

d
))

P̂(αi)
)
. (5.16)

6 Analysis of convergence
The convergence analysis of CWs is surveyed in this section.

Definition 6.1 ([41]) Let m̄ ≥ 0 be an integer, w be a suitable function, and (a, b) be a
bounded interval. The Sobolev space Hm̄

w (a, b) is defined by

Hm̄
w (a, b) =

{
u ∈ L2

w(a, b) : u(j)(x) ∈ L2
w(a, b), 0 ≤ j ≤ m̄

}
. (6.1)

Remark 6 The weighted inner product in the Sobolev space Hm̄
w (a, b) is given as

〈u, v〉m̄,w =
m̄∑

j=0

∫ b

a
u(j)(x)v(j)(x)w(x) dx, (6.2)

for which Hm̄
w (a, b) is a Hilbert space with the norm

‖u‖Hm̄
w (a,b) =

( m̄∑

j=0

∥
∥u(j)∥∥2

L2
w(a,b)

)1/2

. (6.3)

Remark 7 For convenience, we introduce the semi-norm

|u|Hm̄;N
w (a,b) =

( m̄∑

j=min(m̄,N+1)

∥
∥u(j)∥∥2

L2
w(a,b)

)1/2

, (6.4)

since some of the L2
w-norms in (6.3) come into play when we put an upper bound to the

approximation error.
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Remark 8 Note that |u|Hm̄;N
w (a,b) ≤ ‖u‖Hm̄

w (a,b)

|u|Hm̄;N
w (a,b) =

∥
∥u(m̄)∥∥2

L2
w(a,b) = |u|Hm̄

w (a,b) (6.5)

for m̄ ≤ N + 1.

Remark 9 The Sobolev space Hm̄
w (a, b) constructs a hierarchy of Hilbert spaces, because

. . . Hm̄+1
w (a, b) ⊂ Hm̄

w (a, b) ⊂ · · · ⊂ H0
w(a, b) ≡ L2

w(a, b).

Definition 6.2 The truncated Chebyshev series for a function u ∈ L2
w(–1, 1) equals

PN u =
N∑

j=0

ûjTj(x),

where

ûj = 〈u, Tj〉w/〈Tj, Tj〉w =
2

πγj

∫ 1

–1
u(x)Tj(x)w(x) dx,

w(x) = 1/
√

1 – x2, γj =

⎧
⎨

⎩

2, j = 0,

1, j ≥ 1.

Lemma 6.3 ([41]) Let u ∈ Hm̄
w (–1, 1), w(x) = 1/

√
1 – x2, and PN u =

∑N
j=0 ûjTj(x). Then we

have

‖u – PN u‖L2
w(–1,1) ≤ C̄N–m̄|u|Hm̄;N

w (–1,1), (6.6)

where C̄ is a constant dependent on m̄ and independent of N . In addition, it yields

‖u – PN u‖L∞(–1,1) ≤ Ĉ
(
1 + log(N)

)
N–m̄

m̄∑

j=min(m̄,N+1)

∥
∥u(j)∥∥

L∞(–1,1) (6.7)

in the infinity norm, in which ‖u‖L∞(–1,1) = sup–1≤x≤1 |u(x)| and Ĉ is a constant dependent
on m̄ and independent of N .

Theorem 6.4 Suppose u ∈ Hm̄
w∗ (a, b), w∗(t) = w( 2

b–a t – b+a
b–a ) and P∗

N u =
∑N

j=0 û∗
j T∗

j (t), where
T∗

j (t) = Tj( 2
b–a t – b+a

b–a ) and

û∗
j =
〈
u, T∗

j
〉

w∗/
〈
T∗

j , T∗
j
〉

w∗ =
4

(b – a)πγj

∫ b

a
u(t)T∗

j (t)w∗(t) dt.

Then we have

∥
∥u – P∗

N u
∥
∥

L2
w∗ (a,b) ≤ C̄N–m̄‖|u‖|Hm̄;N

w∗ (a,b), (6.8)

where

‖|u‖|Hm̄;N
w∗ (a,b) =

( m̄∑

j=min(m̄,N+1)

(
b – a

2

)2j∥
∥u(j)∥∥2

L2
w∗ (a,b)

)1/2

.
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Moreover, we have

∥
∥u – P∗

N u
∥
∥

L∞(a,b) ≤ Ĉ
(
1 + log(N)

)
N–m̄

m̄∑

j=min(m̄,N+1)

(
b – a

2

)j∥
∥u(j)∥∥

L∞(a,b), (6.9)

where ‖u‖L∞(a,b) = supa≤t≤b |u(t)|.

Proof It is the case that

∥
∥u – P∗

N u
∥
∥

L2
w∗ (a,b) =

(∫ b

a

(

u(t) –
N∑

j=0

û∗
j T∗

j (t)

)2

w∗(t) dt

)1/2

.

By considering t = b–a
2 x + b+a

2 and dt = b–a
2 dx as change of variables, we get

∥
∥u – P∗

N u
∥
∥

L2
w∗ (a,b)

=
√

b – a
2

(∫ 1

–1

(

u
(

b – a
2

x +
b + a

2

)

–
N∑

j=0

ûjTj(x)

)2

w(x) dx

)1/2

, (6.10)

where ûj = 〈u( b–a
2 x + b+a

2 ), Tj(x)〉w/〈Tj(x), Tj(x)〉w. Letting v(x) = u( b–a
2 x + b+a

2 ) yields

(∫ 1

–1

(

u
(

b – a
2

x +
b + a

2

)

–
N∑

j=0

ûjTj(x)

)2

w(x) dx

)1/2

= ‖v – PN v‖L2
w(–1,1). (6.11)

By (6.6), we obtain

‖v – PN v‖L2
w(–1,1) ≤ C̄N–m̄|v|Hm̄;N

w (–1,1), (6.12)

where

|v|Hm̄;N
w (–1,1) =

( m̄∑

j=min(m̄,N+1)

∥
∥v(j)∥∥2

L2
w(–1,1)

)1/2

. (6.13)

Meanwhile, we have

∥
∥v(j)∥∥2

L2
w(–1,1) =

∫ 1

–1

(
v(j)(x)

)2w(x) dx =
∫ 1

–1

((
b – a

2

)j

u(j)
(

b – a
2

x +
b + a

2

))2

w(x) dx.

By considering t = b–a
2 x + b+a

2 and b–a
2 dx = dt as change of variables, we obtain

∥
∥v(j)∥∥2

L2
w(–1,1) =

2
b – a

(
b – a

2

)2j ∫ b

a

(
u(j)(t)

)2w∗(t) dt

=
2

b – a

(
b – a

2

)2j∥
∥u(j)∥∥2

L2
w∗ (a,b). (6.14)
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Hence, (6.4) and (6.14) yield

|v|Hm̄;N
w (–1,1) =

√
2

b – a

( m̄∑

j=min(m̄,N+1)

(
b – a

2

)2j∥
∥u(j)∥∥2

L2
w∗ (a,b)

)1/2

, (6.15)

and (6.10)–(6.15) yield

∥
∥u – P∗

N u
∥
∥

L2
w∗ (a,b) ≤ C̄N–m̄

( m̄∑

j=min(m̄,N+1)

(
b – a

2

)2j∥
∥u(j)∥∥2

L2
w∗ (a,b)

)1/2

.

The following equality holds for the infinity norm:

∥
∥u – P∗

N u
∥
∥

L∞(a,b) = sup
a≤t≤b

∣
∣u(t) – P∗

N u(t)
∣
∣ = sup

a≤t≤b

∣
∣
∣
∣
∣
u(t) –

N∑

j=0

û∗
j T∗

j (t)

∣
∣
∣
∣
∣
. (6.16)

By considering t = b–a
2 x + b+a

2 as change of variables, we obtain

sup
a≤t≤b

∣
∣
∣
∣
∣
u(t) –

N∑

j=0

û∗
j T∗

j (t)

∣
∣
∣
∣
∣

= sup
–1≤x≤1

∣
∣
∣
∣
∣
u
(

b – a
2

x +
b + a

2

)

–
N∑

j=0

ûjTj(x)

∣
∣
∣
∣
∣
. (6.17)

Letting v(x) = u( b–a
2 x + b+a

2 ), one has

sup
–1≤x≤1

∣
∣
∣
∣
∣
u
(

b – a
2

x +
b + a

2

)

–
N∑

j=0

ûjTj(x)

∣
∣
∣
∣
∣

= sup
–1≤x≤1

∣
∣
∣
∣
∣
v(x) –

N∑

j=0

v̂jTj(x)

∣
∣
∣
∣
∣

= ‖v – PN v‖L∞(–1,1). (6.18)

Considering (6.7) we have

‖u – PN v‖L∞(–1,1) ≤ Ĉ
(
1 + log(N)

)
N–m̄

m̄∑

j=min(m̄,N+1)

∥
∥v(j)∥∥

L∞(–1,1). (6.19)

Furthermore, we have

∥
∥v(j)∥∥

L∞(–1,1) =
(

b – a
2

)j∥
∥u(j)∥∥

L∞(a,b). (6.20)

Thus

‖u – PN v‖L∞(–1,1) ≤ Ĉ
(
1 + log(N)

)
N–m̄

m̄∑

j=min(m̄,N+1)

(
b – a

2

)j∥
∥u(j)∥∥

L∞(a,b). (6.21)

Finally, (6.16)–(6.21) result in

∥
∥u – P∗

N u
∥
∥

L∞(a,b) ≤ Ĉ
(
1 + log(N)

)
N–m̄

m̄∑

j=min(m̄,N+1)

(
b – a

2

)j∥
∥u(j)∥∥

L∞(a,b),

which completes the proof. �
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Corollary 6.5 Given the satisfaction of assumptions in Theorem 6.4, the following rates of
convergence hold:

lim
N−→∞

∥
∥u – P∗

N u
∥
∥

L2
w∗ (a,b) −→ 0, with O

(
N–m̄),

lim
N−→∞

∥
∥u – P∗

N u
∥
∥

L∞(a,b) −→ 0, with O
((

1 + log(N)
)
N–m̄).

Theorem 6.6 Let u ∈ Hm̄
ww̃

(0, 1), w̃(t) = w(2t – 1) and PM,ku =
∑2k–1

n=0
∑M–1

m=0 cnmψnm(t).
Then we have

‖u – PM,ku‖L2
w̃(0,1) ≤ C̄(M – 1)–m̄

(2k –1∑

n=0

m̄∑

j=min(m̄,M)

(
1

2k+1

)2j∥
∥u(j)∥∥2

L2
wn (Ink )

)1/2

, (6.22)

where Ink = [ n
2k , n+1

2k ] and wn(t) is defined in (3.3). Moreover, we have

‖u – PM,ku‖L∞(0,1)

≤ Ĉ
(
1 + log(M – 1)

)
(M – 1)–m̄

m̄∑

j=min(m̄,M)

(
1

2k+1

)j∥
∥u(j)∥∥

L∞(0,1). (6.23)

Proof We have

‖u – PM,ku‖L2
w̃(0,1) =

(∫ 1

0

∣
∣u(t) – PM,ku(t)

∣
∣2w̃(t) dt

)1/2

=

(2k –1∑

n=0

∫

Ink

∣
∣u(t) – P∗

M–1u(t)
∣
∣2wn(t) dt

)1/2

, (6.24)

where P∗
M–1u =

∑M–1
j=0 û∗

j T∗
j (t), T∗

j (t) = Tj(2k+1t – 2n – 1) and

û∗
j =
〈
u, T∗

j
〉

wn
/
〈
T∗

j , T∗
j
〉

wn
=

2k+2

πγj

∫

Ink

u(t)T∗
j (t)wn(t) dt.

From (6.24) and Theorem 6.4 we get

‖u – PM,ku‖L2
w̃(0,1) =

(2k –1∑

n=0

∥
∥u – P∗

M–1u
∥
∥2

L2
wn (Ink )

)1/2

≤ C̄(M – 1)–m̄

(2k –1∑

n=0

m̄∑

j=min(m̄,M)

(
1

2k+1

)2j∥
∥u(j)∥∥2

L2
wn (Ink )

)1/2

.

Moreover, we have

‖u – PM,ku‖L∞(0,1) = max
n=0,1,...,2k –1

∥
∥u – P∗

M–1u
∥
∥

L∞(Ink )
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for the maximum norm. Considering Theorem 6.4, we obtain

∥
∥u – P∗

M–1u
∥
∥

L∞(Ink ) ≤ Ĉ
(
1 + log(M – 1)

)
(M – 1)–m̄

m̄∑

j=min(m̄,M)

(
1

2k+1

)j∥
∥u(j)∥∥

L∞(Ink ),

and since ‖u(j)‖L∞(0,1) = maxn=0,1,...,2k –1 ‖u(j)‖L∞(Ink ), the proof is completed. �

7 Illustrative test problems
In this section, a few examples of V-O fractional integral equations are given to show the
reliability of the presented algorithm. Note that the maximum absolute errors are reported
as

e(ui) = max
t∈[0,1]

∣
∣ui(t) – UT

i �(t)
∣
∣, i = 1, 2, . . . , d. (7.1)

All the simulations are carried out via Maple 18 with 20 decimal digits.

Example 1 Consider fractional system (1.1) where

F1
(
t, u1(t), u2(t)

)
= cos(t) – sin(t)

(
–3 – t2 cos(t) + 2 cos(t) + 2t sin(t)

)
– u2(t),

F2
(
t, u1(t), u2(t)

)
= cos(t) – sin(t) –

1
2

t sin(t) + u1(t),

K1(t, s) =
s2 sin(t)
�(α1(t))

,

K2(t, s) =
sin(t – s)
�(α2(t))

,

G1
(
s, u1(s), u2(s)

)
= u1(s),

G2
(
s, u1(s), u2(s)

)
= u2(s).

The exact solution of this linear system when α1(t) = α2(t) = 1 is 〈u1(t), u2(t)〉 = 〈sin(t),
cos(t)〉. We have used the proposed method to solve this problem with m̂ = 40, (k = 2 and
M = 10) for some different functions α1(t) and α2(t)

(A)

⎧
⎨

⎩

α1(t) = 1,

α2(t) = 1,

(B)

⎧
⎨

⎩

α1(t) = 0.65 + 0.2 sin(10t),

α2(t) = 0.65 + 0.2 sin(50t),

(C)

⎧
⎨

⎩

α1(t) = 2 – 0.3|2t – 1| cos(t),

α2(t) = 2 – 0.3|2t – 1| cos(20t),

(D)

⎧
⎨

⎩

α1(t) = 1.0 + 0.4|2t – 1| sin(100t),

α2(t) = 1.0 + 0.6|2t – 1| sin(150t).

(7.2)
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Figure 1 Diagrams of the obtained solutions for the mentioned functions α1(t) and α2(t) in Example 1

Figure 1 demonstrates the numerical solutions behavior for these problems. It should be
noted that we have the analytic solution only for α1(t) = α2(t) = 1. For this case, the max-
imum absolute errors are e(u1) = 2.3490 × 10–5 and e(u2) = 2.4951 × 10–5. Moreover, it
is obvious that the established technique can be simply implemented, and satisfactory
numerical results for this problem are obtained. Note that a little time is necessary for
obtaining high accuracy.

Example 2 Consider fractional system (1.1) where

F1
(
t, u1(t), u2(t)

)
= tan(t) – arctan(t) –

2!
�(3 + α1(t))

sin(t)t2+α1(t) + u2(t),

F2
(
t, u1(t), u2(t)

)
= tan(t) + arctan(t) –

4!
�(5 + α2(t))

t7+α2(t) – u1(t),

K1(t, s) =
s sin(t)
�(α1(t))

,

K2(t, s) =
t3s3

�(α2(t))
,

G1
(
s, u1(s), u2(s)

)
= arctan

(
u1(s)
)
,

G2
(
s, u1(s), u2(s)

)
= tan
(
u2(s)
)
.

The analytic solution for this system is 〈u1(t), u2(t)〉 = 〈tan(t), arctan(t)〉. This system is
solved via the presented technique for m̂ = 24 (k = 1 and M = 12) and m̂ = 48 (k = 2 and
M = 12). The maximum absolute errors of the obtained solutions and the run time for
some different functions α1(t) and α2(t) as

(A)

⎧
⎨

⎩

α1(t) = 0.75 + 0.25 cos(t),

α2(t) = 0.65 + 0.35 sin(t),

(B)

⎧
⎨

⎩

α1(t) = 1.75 + 0.25 cos(t),

α2(t) = 1.65 + 0.35 sin(t),
(7.3)

(C)

⎧
⎨

⎩

α1(t) = 3 – 0.4|2t – 1| cos(t),

α2(t) = 3 – 0.4|2t – 1| sin(t),
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Table 1 The maximum absolute errors and the run time in Example 2

Case m̂ = 24 m̂ = 48

e(u1) e(u2) Time (s) e(u1) e(u2) Time (s)

A 3.9607E–04 1.1284E–04 03.14 9.4911E–05 2.7046E–05 14.70
B 1.2517E–04 4.0678E–06 02.92 2.9959E–05 9.8769E–07 11.40
C 4.1289E–05 6.6032E–06 02.55 9.8847E–06 1.5858E–06 10.04
D 8.8861E–06 3.1016E–06 02.45 2.1275E–06 7.4415E–07 09.84

(D)

⎧
⎨

⎩

α1(t) = 4 – 0.3|2t – 1| cos(10t),

α2(t) = 4 – 0.3|2t – 1| cos(20t),

are reported in Table 1. As it can be verified by Table 1, numerical solutions with high
accuracy are provided by the proposed method. Moreover, it shows that, by increasing
the numbers of CWs, the numerical results are improved. It is worth noting that for the
case 0 < α1(t), α2(t) < 1 system (1.1) transforms to a singular system of integral equations.
So, it can be deduced that the presented technique works well for such cases and computes
numerical solutions with high accuracy. Another significant conclusion from the obtained
results is that as αi(t) for i = 1, 2 increase, the absolute errors and the run time decrease.

Example 3 Consider fractional system (1.1) where

F1
(
t, u1(t), u2(t), u3(t)

)
= t4 + t3 –

5!
�(6 + α1(t))

t6+α1(t) – tu2(t) + u3(t),

F2
(
t, u1(t), u2(t), u3(t)

)
= t5 – t4 + t3 –

8!
�(9 + α2(t))

t10+α2(t) + u1(t)u2(t),

F3
(
t, u1(t), u2(t), u3(t)

)
= t5 – t4 – t3 + t2 –

(
4!t4+α3(t)

�(5 + α3(t))
–

5!t5+α3(t)

�(6 + α3(t))

)

tan(t)

– u1(t)
(
u2(t) – u1(t)

)
,

K1(t, s) =
ts

�(α1(t))
,

K2(t, s) =
t2s2

�(α2(t))
,

K3(t, s) =
s2 tan(t)
�(α3(t))

,

G1
(
s, u1(s), u2(s), u3(s)

)
= u1(s)2,

G2
(
s, u1(s), u2(s), u3(s)

)
= u2(s)2,

G3
(
s, u1(s), u2(s), u3(s)

)
= u3(s).

The analytic solution for this system is 〈u1(t), u2(t), u3(t)〉 = 〈t2, t3, t2 – t3〉. We have used
the presented technique to solve this system for m̂ = 16 (k = 1 and M = 8) and m̂ = 32
(k = 2 and M = 8). Table 2 contains the maximum absolute errors of obtained solutions



Yang et al. Advances in Difference Equations        (2020) 2020:611 Page 20 of 24

Table 2 The maximum absolute errors and the run time in Example 3

Case m̂ = 16 m̂ = 32

e(u1) e(u2) e(u3) Time (s) e(u1) e(u2) e(u3) Time (s)

A 8.3289E–04 5.5473E–04 1.8833E–03 03.94 1.9637E–04 1.3171E–04 4.4339E–04 98.96
B 4.0837E–05 1.7771E–04 1.0400E–04 02.56 1.0006E–05 4.1539E–05 2.3687E–05 40.31
C 1.9694E–05 4.6398E–05 9.0960E–07 03.51 4.6593E–06 1.0843E–05 1.2908E–07 73.93
D 5.0693E–06 8.2312E–06 3.8376E–06 02.52 1.1879E–06 1.9215E–06 9.0470E–07 19.31

and the run time for some different functions α1(t), α2(t), and α3(t) as follows:

(A)

⎧
⎪⎪⎨

⎪⎪⎩

α1(t) = 0.75 + 0.2t2,

α2(t) = 0.75 + 0.2t3,

α3(t) = 0.75 + 0.2t4,

(B)

⎧
⎪⎪⎨

⎪⎪⎩

α1(t) = 1.75 + 0.2t2,

α2(t) = 1.75 + 0.2t3,

α3(t) = 1.75 + 0.2t4,

(C)

⎧
⎪⎪⎨

⎪⎪⎩

α1(t) = 3 – 0.4|2t – 1| cos(t),

α2(t) = 3 – 0.4|2t – 1| sin(t),

α3(t) = 3 – 0.4|2t – 1| sin(t),

(D)

⎧
⎪⎪⎨

⎪⎪⎩

α1(t) = 4 – 0.4|2t – 1| cos(t),

α2(t) = 4 – 0.4|2t – 1| sin(t),

α3(t) = 4 – 0.4|2t – 1| sin(t).

(7.4)

It can be observed in Table 2 that the elicited results are in good agreement with the exact
solution. Also, the established technique requires pretty little time to calculate the numer-
ical solutions. Moreover, similar to the previous example, it can be observed that for the
cases 0 < α1(t), α2(t),α3(t) < 1, the proposed method works very well and provides numer-
ical solutions with high accuracy. Furthermore, Table 2 shows that the obtained solutions
are improved as the numbers of CWs increase.

Example 4 Consider fractional system (1.1) where

F1
(
t, u1(t), u2(t), u3(t), u4(t)

)
= t

9
2 + t

3
2 –

5! sin(t)t5+α1(t)

�(6 + α1(t))
– u4(t),

F2
(
t, u1(t), u2(t), u3(t), u4(t)

)
= t

5
2 + t

3
2 –

6!t7+α2(t)

2�(7 + α2(t))
– u1(t),

F3
(
t, u1(t), u2(t), u3(t), u4(t)

)
= t

7
2 + t

5
2 + t

3
2 –

�( 11
2 )t 11

2 +α3(t)

�( 11
2 + α3(t))

– u1(t) – u2(t),

F4
(
t, u1(t), u2(t), u3(t), u4(t)

)
= t

9
2 + t

5
2 – t

3
2 – t7 –

�( 11
2 ) sin(t)t 9

2 +α4(t)

�( 11
2 + α4(t))

+ u1(t) – u2(t) + u3(t)2,
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K1(t, s) =
s2 sin(t)
�(α1(t))

,

K2(t, s) =
ts

2�(α2(t))
,

K3(t, s) =
ts

�(α3(t))
,

K4(t, s) =
sin(t)

�(α4(t))
,

G1
(
s, u1(s), u2(s), u3(s), u4(s)

)
= u1(s)2,

G2
(
s, u1(s), u2(s), u3(s), u4(s)

)
= u2(s)2,

G3
(
s, u1(s), u2(s), u3(s), u4(s)

)
= u3(s),

G4
(
s, u1(s), u2(s), u3(s), u4(s)

)
= u4(s).

The analytic solution of this system is 〈u1(t), u2(t), u3(t), u4(t)〉 = 〈t 3
2 , t 5

2 , t 7
2 , t 9

2 〉. We have
used the presented algorithm to solve this problem for m̂ = 12 (k = 1 and M = 6) and
m̂ = 24 (k = 2 and M = 6). Table 3 contains the maximum absolute errors of the obtained
solutions and the run time for some different functions α1(t), α2(t), α3(t), and α4(t) as
follows:

(A)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α1(t) = 0.75 + 0.2 cos(t),

α2(t) = 0.85 + 0.1 cos(t),

α3(t) = 1 – 0.1t3,

α4(t) = 1 – 0.2t3,

(B)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α1(t) = 1.75 + 0.2 cos(t),

α2(t) = 1.85 + 0.1 cos(t),

α3(t) = 2 – 0.1t3,

α4(t) = 2 – 0.2t3,

(C)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α1(t) = 3 – 0.3|2t – 1| cos(10t),

α2(t) = 3 – 0.3|2t – 1| cos(20t),

α3(t) = 3 – 0.3|2t – 1| cos(30t),

α4(t) = 3 – 0.3|2t – 1| cos(40t),

(D)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α1(t) = 4 – 0.3|2t – 1| cos(10t),

α2(t) = 4 – 0.3|2t – 1| cos(20t),

α3(t) = 4 – 0.3|2t – 1| cos(30t),

α4(t) = 4 – 0.3|2t – 1| cos(40t).

(7.5)

As it can be observed in Table 3, we obtain numerical solutions with high accuracy by the
proposed method. In addition, it can be observed that the presented technique requires
quite little time to calculate the numerical solutions.
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Table 3 The maximum absolute errors and the run time in Example 3

Case m̂ = 12 m̂ = 24

e(u1) e(u2) e(u3) e(u4) Time (s) e(u1) e(u2) e(u3) e(u4) Time (s)

A 5.2462E–05 1.9973E–03 1.0155E–03 2.7958E–03 11.52 1.2904E–05 4.5898E–04 2.3408E–04 6.4634E–04 14.33
B 9.6211E–05 3.8974E–04 3.1559E–04 6.4782E–04 02.46 2.2249E–05 8.8597E–05 7.2103E–05 1.4753E–04 13.85
C 2.6195E–06 5.7659E–05 7.2860E–06 3.1719E–05 03.70 2.1067E–07 1.5175E–05 5.0179E–06 7.5981E–06 09.60
D 1.0525E–06 8.4119E–06 7.21701E–07 5.4596E–06 02.24 3.3708E–07 2.2480E–06 4.8064E–07 1.3463E–06 08.01

8 Conclusion
In this paper, we established a Chebyshev wavelets (CWs) Galerkin technique for a class
of systems of variable-order (V-O) fractional integral equations. First, we derived a frac-
tional integral operational matrix (OM) for CWs which was then employed to find ap-
proximate solutions for the problem. Also, the hat functions were reviewed and used to
elicit a method for forming this novel matrix. We also obtained the expansion of the un-
known functions in terms of CWs with undetermined coefficients. Then, by employing
some properties of CWs and their fractional integration OM, we reduced the fractional
system to an algebraic system. Also, the existence of a unique solution for the system under
consideration was proved. Furthermore, the reliability of the presented scheme is studied
on some numerical examples which show the accuracy of the established technique.
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