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Abstract
Time-fractional nonlinear partial differential equations (TFNPDEs) with proportional
delay are commonly used for modeling real-world phenomena like earthquake,
volcanic eruption, and brain tumor dynamics. These problems are quite challenging,
and the transcendental nature of the delay makes them even more difficult. Hence,
the development of efficient numerical methods is open for research. In this paper,
we use the concepts of Laplace-like transform and variational theory to develop a
new numerical method for solving TFNPDEs with proportional delay. The stability and
convergence of the method are analyzed in the Banach sense. The efficiency of the
proposed method is demonstrated by solving some test problems. The numerical
results show that the proposed method performs much better than some recently
developed methods and enables us to obtain more accurate solutions.

Keywords: Caputo fractional derivative; Time-fractional nonlinear partial differential
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1 Introduction
Fractional calculus is a valuable concept in applied mathematics dedicated to the study
of integrals and derivatives of arbitrary positive order [1, 2]. The fact of the matter is that
fractional differential equations (FDEs), which are considered to be generalization of dif-
ferential equations, enable us to describe functional values at continuous points not just at
discrete points. For this reason, they are a popular choice for modeling complicated phe-
nomena marked by memory and hereditary behaviors. Hence, fractional derivatives and
integrals facilitate the analysis of real-world situations. It is also worth mentioning that
nonlinear FDEs are preferable when it comes to dealing with various real-world events
such as earthquake propagation, volcanic eruption, population growth, and the likes [3, 4].

In the case when one is interested in incorporating the present time as well as history
in the mathematical formulation of a certain physical situation, one needs to consider
delay differential equations. These kinds of differential equations (DEs), which are also
referred to as time-delay differential equations, are commonly used for modeling various
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phenomena in science and engineering. Combining the concepts of fractional derivatives
and time-delay differential equations gives rise to fractional delay differential equations
which are appropriate for capturing and modeling real-world events that involve memory
and history. In this paper, we are interested in time-fractional nonlinear partial differential
equations (TFNPDEs) with proportional delay. TFNPDEs are popular in different fields
such as environmental sciences, economics, chemistry, physics, and life-sciences [5–7].

In this paper, we consider the following type of TFNPDEs with proportional delay:

⎧
⎨

⎩

C
0 Dα

t v(x, t) = f (x, t, v(p0x, q0t), ∂
∂x v(p1x, q1t), . . . , ∂n

∂xn v(pnx, qnt)),

vk(x, 0) = gk(x),
(1.1)

where gk(x) is a specified initial function for k = 0, 1, 2, . . . , m–1, m–1 < α ≤ m, and m ∈N,
pi, qi ∈ (0, 1) for i = 0, 1, 2, . . . , n, α is the order of the time-fractional derivative, and f is the
partial differential operator.

TFNPDE equation (1.1) can be used to represent models of real-world phenomena by
selecting f wisely. For example, the time-fractional differential equation given by

C
0 Dα

t v(x, t) = bv
∂

∂x
v(p0x, q0t) +

∂3

∂x3 v(p1x, q1t), 0 < α ≤ 1, b ∈ R

is known as Korteweg–de Vries equation arising in various studies related to shallow water
waves.

The Klein–Gordon equation which is a TFNPDE with proportional delay is given by

C
0 Dα

t v(x, t) =
∂2

∂x2 v(p0x, q0t) – bv(p1x, q1t) – F
(
v(p2x, q2t)

)
+ h(x, t), 1 < α ≤ 2,

where h(x, t) is a known analytic function, and F is a nonlinear function of u(x, t). This
equation is usually used in the description of nonlinear wave interaction which arises in
quantum field theory.

Since TFNPDEs, and in general nonlinear differential equations, are difficult to solve
and it is very hard to obtain exact solutions, many attempts have been made to develop
numerical methods that provide good approximate solutions. For this reason, several tech-
niques have been proposed to solve these kinds of DEs. Abazari and Ganji [8] proposed
a two-dimensional differential transform method and its reduced form to solve nonlinear
partial differential equations with proportional delay. Variational iteration method (VIM),
initially proposed by He [9], has been proved to be a powerful technique for solving non-
linear DEs [10]. However, the success of this method mainly depends on accurate identifi-
cation of Lagrange multipliers by using variational theory and integration by parts [9, 11].
Moreover, application of VIM for obtaining series solutions of nonlinear problems re-
quires repeated calculations and computations of a large number of unnecessary terms
which reduce the efficiency of the method [12]. To avoid some of the shortcomings of VIM,
Abassy et al. [12, 13] proposed the modified variational iteration method (MVIM) and
used it to find an approximate power series solutions of nonlinear problems. It is reported
that MVIM facilitates and minimizes the computational work significantly thereby lead-
ing to fast convergence. Sakar and Saldir [14] also proposed an improved version of VIM
based on incorporating an auxiliary parameter. The authors obtained the optimal value of
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this parameter by using residual error function and applied their method to solve various
TFNPDEs. Saldir et al. [15] successfully applied reproducing kernel method (RKM) for
solving time-fractional Kawahara equation with variable coefficients. The authors man-
aged to construct orthonormal bases functions on specific Hilbert spaces that facilitate
the solution process. Sakar et al. [16] developed an iterative method based on RKM to
solve the time-fractional Cahn–Allen differential equation with Caputo derivative. Sakar
et al. [17] designed a homotopy perturbation method (HPM) to solve various TFNPDEs
with proportional delays in which the fractional derivative was taken in the Caputo sense.
The authors compared their approach with traditional methods and reported that HPM
is cost efficient. Singh and Kumar [18] combined HPM with Laplace transform and pro-
posed a hybrid method called homotopy perturbation transform method (HPTM) to solve
TFNPDEs with proportional delay. They reported that HPTM provides solutions in a se-
ries form and is a powerful technique for treating various physical phenomena in science
and engineering. Singh and Kumar [19] developed an analytical method called alternative
variational iteration method (AVIM) which is capable of proving approximate power se-
ries solutions to TFNPDE problems. The authors reported that AVIM competes favorably
with DTM, HPM, and HPTM. Wang et al. [20] proposed two analytical methods called
residual power series method (RPSM) and homotopy analysis transform method (HATM)
to solve TFNPDEs with proportional delay. It is reported that the above methods provide
approximate solutions which are in good agreement with HPM, HPTM, and exact solu-
tions.

In this paper, we propose a new numerical method which benefits from the nice prop-
erties of Laplace-like transform and variational theory. We have observed that the new
method facilitates computing generalized Lagrange multipliers which are crucial for solv-
ing nonlinear DEs.

This paper is organized as follows: In Sect. 2, we discuss some basic concepts from frac-
tional calculus and provide brief descriptions of a new Laplace-like transform and varia-
tional theory. Section 3 is dedicated to developing a new numerical method. In Sects. 3.1
and 3.2, we analyze the stability and convergence of the proposed method in the Banach
sense. In Sect. 4, we present and analyze various numerical results. Moreover, we compare
the efficiency of some methods which are used to solve TFNPDEs with proportional delay.
Finally, in Sect. 5, we provide the conclusive remarks.

2 Preliminaries
In this section we present some basic concepts from fractional calculus which are crucial
for understanding the remaining part of the paper. We also briefly describe Laplace-like
transform and variational theory which will be used to design the new method.

Definition 2.1 ([1, 2]) A real function v(t), t > 0, is in the space Cμ, μ ∈ R, if there exists
a real number p (p > μ) such that v(t) = tpv1(t), where v1(t) ∈ C[0,∞), and it is said to be
in the space Cm

μ if and only if v(m) ∈ Cμ, m ∈N.

Definition 2.2 ([1, 2]) The Riemann–Liouville fractional integral operator of order α ≥ 0
of a function v ∈ Cμ, μ ≥ –1, is defined as follows:

D–α
a,t v(t) =

1
�(α)

∫ t

0
(t – τ )α–1v(τ ) dτ , α > 0, t > 0,
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D0
a,tv(t) = v(t).

Definition 2.3 ([1, 2]) The Caputo time-fractional derivative of order α, m – 1 < α ≤ m,
m ∈N of a function v(t), t > 0, is defined as follows:

C
a Dα

t v(t) = D–(m–α)
a,t

[C
a Dm

t v(t)
]

=
1

�(m – α)

∫ t

a
(t – τ )m–(α+1)v(m)(τ ) dτ .

2.1 Laplace-like transform
Laplace-like transform (LlT), also known as “Shehu transform”, is a new integral transform
derived to facilitate solving DEs [21]. LlT is defined over the set

A =
{

v(t) : ∃M, k1,k2 > 0,
∣
∣v(t)

∣
∣ < Me

|t|
kj , if t ∈ (–1)j × [0,∞), j = 1, 2

}
,

where the constant M is finite and k1, k2 are either finite or infinite. Then LlT of the func-
tion v(t), denoted by S[v(t)], is defined as follows:

S
[
v(t)

]
= G(s, u) =

∫ ∞

0
e

–st
u v(t) dt, s > 0, u > 0,

provided the integral on the right-hand side exists [21]. In particular,

S[1] =
u
s

,

S
[

tα

�(α + 1)

]

=
(

u
s

)α+1

,

where � is the gamma function. Moreover, LlT of the fractional order derivative C
0 Dα

t v(x, t)
for α ≥ 0 is given by [22]

S
[C

0 Dα
t v(x, t)

]
=

(
s
u

)α

G(x, s, u) –
m–1∑

k=0

(
s
u

)α–(k+1)

v(k)(x, 0), (2.1)

where G(x, s, u) = S[v(x, t)] for m – 1 < α ≤ m, m ∈N.

2.2 Variational theory
Modified variational iteration method (MVIM) is an efficient technique which has been
implemented successfully to solve a large class of nonlinear problems [12, 13, 23]. Efficient
implementation of MVIM rests on establishing the correction functional and identifying
optimal Lagrange multipliers.

To illustrate the basic idea of MVIM, we consider the following TFNPDE problem:

C
0 Dα

t v(x, t) + Rv(x, t) + Nv(x, t) – g(x, t) = 0, 0 < α < 1, (2.2)

where C
0 Dα

t is the Caputo fractional derivative operator, R is a linear operator, Nv(x, t) is
the nonlinear term, and g(x, t) is a given continuous function [11, 23, 24].



Bekela et al. Advances in Difference Equations        (2020) 2020:586 Page 5 of 19

One of the most important steps of MVIM is to construct the correction functional for
(2.2) which is defined as follows [12]:

vn+1(x, t) = vn(x, t) +
∫ t

0
λ
[C

0 Dα
t v(x, t) + Rṽn(x, s) + Nṽn(x, s) – g(x, s)

]
ds, (2.3)

where λ is a general Lagrange multiplier, vn is the approximate solution at the nth iteration,
and ṽn denotes a restricted variation, i.e., δṽn = 0 with variational operator δ [25].

Making the correction functional in equation (2.3) stationary, i.e., δvn+1(x, t) = 0, we ob-
tain

δvn(x, t) + δ

∫ t

0
λ C

0 Dα
t vn(x, s) ds = 0. (2.4)

The other crucial step in MVIM is computing the Lagrange multiplier λ by solving the
system of stationary conditions which can be derived from (2.4). In ordinary calculus, the
optimal value of λ can be obtained by using variational theory and integration by parts.
However, in fractional calculus, it is not possible to perform integration by parts on the
second term of the above equation [24].

2.3 Banach’s fixed point theorem
Definition 2.4 ([26]) Let T : X → X be a mapping of a set X into itself. The fixed point of
T is x ∈ X which is mapped onto itself, that is,

Tx = x,

the image Tx coincides with x.

Definition 2.5 (Contraction [26]) Let X = (X, d) be a metric space. A mapping T : X → X
is called a contraction on X if there is a nonnegative real number γ < 1 such that, for all
x, y ∈ X,

d(Tx, Ty) ≤ γ d(x, y), 0 ≤ γ < 1. (2.5)

Theorem 2.1 (Banach’s fixed point theorem [26]) Consider a metric space X = (X, d),
where X �= ∅. Suppose that X is complete, and let T : X → X be a contraction on X. Then T
has a unique fixed point.

Corollary 2.1 (Iteration, error bounds [26]) Under the conditions of Theorem 2.1, the Pi-
card iterative sequence {xn}∞n=1 defined by the procedure xn+1 = Txn with arbitrary x0 ∈ X
converges to the unique fixed point x of T . Error estimates of the iterative procedure are
prior estimate

d(xn, x) ≤ γ n

1 – γ
d(x0, x1)

and posterior estimate

d(xn, x) ≤ γ

1 – γ
d(xn–1, xn).
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Theorem 2.2 ([27, 28]) Let (X, d) be a Banach space and T : X → X be a self-map of X
satisfying

d(Tx, Ty) ≤ βd(x, Tx) + γ d(x, y)

for all x, y ∈ X, β ≥ 0, 0 ≤ γ < 1. Then T is Picard T-stable.

3 A new numerical method for solving TFNPDEs with proportional delay
Even if there are methods which approximate the solution of TFNPDE problems, for in-
stance HPM [17], HPTM [18], RPSM, and HATM [20], the challenging nature of these DEs
inspires the search for new and efficient methods. In the sequel, we derive a new method
which makes use of Laplace-like (Shehu) transform and variational theory. We name this
new method Laplace transform variational iteration method (LTVIM).

Consider the general TFNPDE problem given in equation (1.1). Applying LlT as given
in equation (2.1) to transform the fractional derivative in (1.1) gives

(
s
u

)α

G(x, s, u) –
m–1∑

k=0

(
s
u

)α–(k+1)

v(k)(x, 0)

= S
[

f
(

x, t, v(p0x, q0t),
∂

∂x
v(p1x, q1t), . . . ,

∂n

∂xn v(pnx, qnt)
)]

,

G(x, s, u) = S
[
v(x, t)

]
.

(3.1)

Applying MVIM as given in equation (2.3) to construct a correction functional of the
transformed equation (3.1), we obtain

Gn+1(x, s, u) = Gn(x, s, u) + λ

((
s
u

)α

Gn(x, s, u) –
m–1∑

k=0

(
s
u

)α–(k+1)

ṽ(k)
n (x, 0)

)

– λS
[

f̃
(

x, t, vn(p0x, q0t),
∂

∂x
vn(p1x, q1t), . . . ,

∂n

∂xn vn(pnx, qnt)
)]

.

(3.2)

Since ṽn and f̃ are restricted variations, i.e., δṽn = 0 and δf̃ = 0, applying the variational
operator δ on (3.2) we obtain

δGn+1(x, s, u) = δGn(x, s, u) + λ

(
s
u

)α

δGn(x, s, u). (3.3)

Making equation (3.3) stationary, i.e., δGn+1(x, s, u) = 0, gives

δGn(x, s, u)
[

1 + λ

(
s
u

)α]

= 0.

Hence, the value of the Lagrange multiplier which satisfies the stationary condition 1 +
λ( s

u )α = 0 is

λ = –
(

s
u

)–α

.
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Inserting the Lagrange multiplier found above into equation (3.2) gives

Gn+1(x, s, u)

=
(

s
u

)–α
(m–1∑

k=0

(
s
u

)α–(k+1)

v(k)
n (x, 0)

)

+
(

s
u

)–α

S
[

f
(

x, t, vn(p0x, q0t),
∂

∂x
vn(p1x, q1t), . . . ,

∂n

∂xn vn(pnx, qnt)
)]

.

(3.4)

Taking the inverse LlT of both sides of (3.4) gives

vn+1(x, t)

= S–1

[(
s
u

)–α
(m–1∑

k=0

(
s
u

)α–(k+1)

vn
(k)(x, 0)

)]

(3.5)

+ S–1
[(

s
u

)–α

S
[

f
(

x, t, vn(p0x, q0t),
∂

∂x
vn(p1x, q1t), . . . ,

∂n

∂xn vn(pnx, qnt)
)]]

.

In this paper, we are interested in α ∈ (0, 1]. Therefore, m = 1 and k = 0 in (3.5) and the
first term on the right-hand side of this equation becomes

S–1

[(
s
u

)–α
(m–1∑

k=0

(
s
u

)α–(k+1)

vn
(k)(x, 0)

)]

= S–1
[(

s
u

)–α((
s
u

)α–1

vn(x, 0)
)]

= S–1
[(

u
s

)

vn(x, 0)
]

= vn(x, 0).

Hence, the iteration formula of LTVIM is given by

vn+1(x, t)

= vn(x, 0)

+ S–1
[(

u
s

)α

S
[

f
(

x, t, vn(p0x, q0t),
∂

∂x
vn(p1x, q1t), . . . ,

∂n

∂xn vn(pnx, qnt)
)]]

,

(3.6)

which is the (n + 1)th approximate solution of the TFNPDE problem in (1.1) for 0 < α ≤ 1.

3.1 Stability analysis
In the sequel, we state and prove an important result regarding the stability of LTVIM. To
show Picard stability, it suffices to show that the mapping associated with LTVIM satisfies
the conditions of Theorem 2.2.

Theorem 3.1 Let (X,‖ · ‖) be a Banach space and T : X → X be a self-map of X. Then the
LTVIM iteration procedure defined by

vn+1(x, t)

= Tvn(x, t) (3.7)
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= vn(x, 0)

+ S–1
[(

u
s

)α

S
[

f
(

x, t, vn(p0x, q0t),
∂

∂x
vn(p1x, q1t), . . . ,

∂n

∂xn vn(pnx, qnt)
)]]

is Picard T-stable provided that
i) ‖vn(x, 0) – vm(x, 0)‖ ≤ δ0‖vn(x, t) – vm(x, t)‖ for some δ0 ∈R+ and for any t in the

domain;
ii) ‖f (vn(p0x, q0t) – vm(p0x, q0t), ∂

∂x vn(p1x, q1t) – ∂
∂x vm(p1x, q1t), . . . )‖ ≤ δ1‖vn – vm‖ for

some δ1 ∈R+;
iii) γ = δ0 + δ1‖ tα

�(α+1)‖ < 1.

Proof For the sake of convenience, we drop (x, t) from vn(x, t) and vm(x, t). Thus, for n, m ∈
N, we have

Tvn – Tvm

= vn(x, 0) – vm(x, 0)

+ S–1
[(

u
s

)α

S
[

f
(

x, t, vn(p0x, q0t),
∂

∂x
vn(p1x, q1t), . . . ,

∂n

∂xn vn(pnx, qnt)
)]]

– S–1
[(

u
s

)α

S
[

f
(

x, t, vm(p0x, b0t),
∂

∂x
vm(p1x, q1t), . . . ,

∂n

∂xn vm(pnx, qnt)
)]]

.

(3.8)

Taking the norm of both sides of equation (3.8), we have

‖Tvn – Tvm‖
≤ ∥

∥vn(x, 0) – vm(x, 0)
∥
∥

+
∥
∥
∥
∥S–1

[(
u
s

)α

S
[

f
(

x, t, vn(p0x, q0t),
∂

∂x
vn(p1x, q1t), . . . ,

∂n

∂xn vn(pnx, qnt)
)]]∥

∥
∥
∥

–
∥
∥
∥
∥S–1

[(
u
s

)α

S
[

f
(

x, t, vm(p0x, q0t),
∂

∂x
vm(p1x, q1t), . . . ,

∂n

∂xn vm(pnx, qnt)
)]]∥

∥
∥
∥.

Using the linearity of S, S–1 and the partial differential operator f , we obtain

‖Tvn – Tvm‖
≤ ∥

∥vn(x, 0) – vm(x, 0)
∥
∥

+ S–1
[(

u
s

)α

S
[∥
∥
∥
∥f

(

vn(p0x, q0t) – vm(p0x, q0t),

∂

∂x
(
vn(p1x, q1t) – vm(p1x, q1t)

)
, . . .

)∥
∥
∥
∥

]]

.

(3.9)

Using conditions i) and ii) of the theorem, equation (3.9) becomes

‖Tvn – Tvm‖ ≤ δ0‖vn – vm‖ +
∥
∥
∥
∥S–1

[(
u
s

)α

S
[
δ1‖vn – vm‖]

]∥
∥
∥
∥

= δ0‖vn – vm‖ + δ1‖vn – vm‖
∥
∥
∥
∥S–1

[(
u
s

)α

S[1]
]∥
∥
∥
∥.
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Observe that

S–1
[(

u
s

)α

S[1]
]

= S–1
[(

u
s

)α u
s

]

= S–1
[(

u
s

)α+1]

=
tα

�(α + 1)
.

Therefore, we have

‖Tvn – Tvm‖ ≤
(

δ0 + δ1

∥
∥
∥
∥

tα

�(α + 1)

∥
∥
∥
∥

)

‖vn – vm‖

= γ ‖vn – vm‖
≤ β‖vn – Tvn‖ + γ ‖vn – vm‖, β ≥ 0,

(3.10)

where γ = δ0 + δ1‖ tα
�(α+1)‖. Hence, by Theorem 2.2, LTVIM is Picard T-stable if γ < 1. �

3.2 Convergence analysis and error estimate
To analyze the convergence of LTVIM and to estimate its error, we state and prove two
important results.

Theorem 3.2 Let (X,‖ · ‖) be a Banach space and T : X → X, a mapping associated with
LTVIM, be defined by (3.7). Then T has a unique fixed point and the sequence {vn}∞n=1

generated by LTVIM with an initial value v0 ∈ X converges to this fixed point.

Proof Combination of Definition 2.5, Theorem 2.1, and equation (3.10) implies that T has
a unique fixed point. Next choose v0 ∈ X and consider the sequence {vn}∞n=1 generated by
LTVIM with vn+1 = Tvn as in equation (3.7). Observe that

x1 = Tx0, x2 = Tx1 = T2x0, . . . , xn = Tnx0, . . . . (3.11)

Equation (3.11) contains a sequence of images of x0 under repeated application of T . To
show the convergence of LTVIM, it suffices to show that the generated sequence is Cauchy.
By applying (3.10) and (3.11) one obtains

‖vn+1 – vn‖ = ‖Tvn – Tvn–1‖
≤ γ ‖vn – vn–1‖
= γ ‖Tvn–1 – Tvn–2‖
≤ γ 2‖vn–1 – vn–2‖
...

≤ γ n‖x1 – x0‖.

(3.12)

By the triangle inequality and equation (3.12), for any m, n ∈N such that n > m, we have

‖vm – vn‖ = ‖vm – vm+1 + vm+1 – vm+2 + vm+2 – vm+3 + · · · + vn–1 – vn‖
≤ ‖vm – vm+1‖ + ‖vm+1 – vm+2‖ + ‖vm+2 – vm+3‖ + · · · + ‖vn–1 – vn‖
= ‖Tvm–1 – Tvm‖ + ‖Tvm – Tvm+1‖ + · · · + ‖Tvn–2 – Tvn–1‖



Bekela et al. Advances in Difference Equations        (2020) 2020:586 Page 10 of 19

≤ γ m‖v1 – v0‖ + γ m+1‖v1 – v0‖ + · · · + γ n–1‖v1 – v0‖
=

(
γ m + γ m+1 + · · · + γ n–1)‖v1 – v0‖

= γ m(
1 + γ + γ 2 + · · · + γ n–m–1)‖v1 – v0‖.

Since 0 ≤ γ < 1, the sum 1 +γ +γ 2 + · · ·+γ n–m–1 represents a finite geometric progression
whose total sum is 1–γ n–m

1–γ
. Therefore,

‖vm – vn‖ ≤ γ m
(

1 – γ n–m

1 – γ

)

‖v1 – v0‖ ≤ γ m

1 – γ
‖v1 – v0‖, as 1 – γ n–m ≤ 1. (3.13)

Since 0 ≤ γ < 1 and ‖v1 – v0‖ is fixed, the right-hand side of equation (3.13) can be made
very small as needed by taking m sufficiently large. Hence, the sequence {vn} is Cauchy
and therefore convergent.

Let {vn} converge to v ∈ X. To complete the proof, we need to show that v is the (unique)
fixed point of T . From the triangle inequality and equation (3.10), we have

‖v – Tv‖ ≤ ‖v – vn‖ + ‖vn – Tv‖
= ‖v – vn‖ + ‖Tvn–1 – Tv‖
≤ ‖v – vn‖ + γ ‖vn–1 – v‖
= 0 as n → ∞.

This implies that ‖v – Tv‖ = 0. Since ‖ · ‖ is a metric, we have Tv = v, i.e., v is the fixed point
of T which is unique. �

Corollary 3.1 The maximum absolute error of the approximate solution generated by
LTVIM is estimated to be

‖vn – v‖ ≤ γ n

1 – γ
‖v1 – v0‖, 0 ≤ γ < 1.

Proof Taking n → ∞ in equation (3.13) gives

‖vm – v‖ ≤ γ m

1 – γ
‖v1 – v0‖.

The rest follows from Corollary 2.1. �

4 Numerical results and discussion
In this section, we show the efficiency of LTVIM by solving some TFNPDE problems with
proportional delay. We also compare the performance of LTVIM with recently proposed
methods, namely HPM [17], HPTM [18], RPSM, and HATM [20].

Example 4.1 ([17, 18, 20]) Consider the following time-fractional generalized Burgers
equation with proportional delay:

C
0 Dα

t v(x, t) =
∂2

∂x2 v(x, t) +
∂

∂x
v
(

x,
t
2

)

v
(

x
2

,
t
2

)

+
1
2

v(x, t), (4.1)

x, t ∈ [0, 1] and 0 < α ≤ 1, with initial conditions v(x, 0) = x.
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For the special case α = 1, the exact solution of (4.1) is given by v(x, t) = xet [17, 18, 20].
The (n + 1)th approximate solution of (4.1) is obtained by applying the LTVIM iteration

formula given in equation (3.6):

vn+1(x, t) = vn(x, 0) + S–1
[(

u
s

)α

S
[

∂2

∂x2 vn(x, t) +
∂

∂x
vn

(

x,
t
2

)

vn

(
x
2

,
t
2

)

+
1
2

vn(x, t)
]]

.

First iteration Since v0(x, 0) = x, the first iteration solution is given by

v1(x, t) = v0(x, 0) + S–1
[(

u
s

)α

S
[

∂2

∂x2 v0(x, t) +
∂

∂x
v0

(

x,
t
2

)

v0

(
x
2

,
t
2

)

+
1
2

v0(x, t)
]]

= x + S–1
[(

u
s

)α

S
[

x
2

+
1
2

x
]]

= x + S–1
[(

u
s

)α

S[x]
]

= x + S–1
[

x
(

u
s

)α+1]

= x + xS–1
[(

u
s

)α+1]

= x
(

1 +
tα

�(α + 1)

)

.

Second iteration The second iteration solution, for v1(x, 0) = x, is

v2(x, t)

= v1(x, 0) + S–1
[(

u
s

)α

S
[

∂2

∂x2 v1(x, t) +
∂

∂x
v1

(

x,
t
2

)

v1

(
x
2

,
t
2

)

+
1
2

v1(x, t)
]]

= x + S–1
[(

u
s

)α

S
[(

1 +
tα

2α�(α + 1)

)(
x
2

+
xtα

2α+1�(α + 1)

)

+
x
2

+
xtα

2�(α + 1)

]]

= x + S–1
[(

u
s

)α

S
[

x
2

+
xtα

2α+1�(α + 1)
+

xtα

2α+1�(α + 1)
+

xt2α

22α+1(�(α + 1))2

]]

+ S–1
[(

u
s

)α

S
[

x
2

+
xtα

2�(α + 1)

]]

= x + S–1
[(

u
s

)α

S
[

x + a1
xtα

�(α + 1)
+ a2

xt2α

�(2α + 1)

]]

,

where a1 = 1
2α + 1

2 and a2 = �(2α+1)
22α+1(�(α+1))2 . Then, by the linearity of S and S–1, we have

v2(x, t) = x + S–1
[(

u
s

)α(
u
s

x + a1x
(

u
s

)α+1

+ a2x
(

u
s

)2α+1)]

= x + S–1
[

x
(

u
s

)α+1

+ a1x
(

u
s

)2α+1

+ a2x
(

u
s

)3α+1]

= x +
xtα

�(α + 1)
+

a1xt2α

�(2α + 1)
+

a2xt3α

�(3α + 1)

= x
(

1 +
tα

�(α + 1)
+ a1

t2α

�(2α + 1)
+ a2

t3α

�(3α + 1)

)

.
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Third iteration The third iteration solution, for v2(x, 0) = x, is given by

v3(x, t) = v2(x, 0) + S–1
[(

u
s

)α

S
[

∂2

∂x2 v2(x, t) +
∂

∂x
v2

(

x,
t
2

)

v2

(
x
2

,
t
2

)

+
1
2

v2(x, t)
]]

= x + S–1
[(

u
s

)α

S
[

x + a1
xtα

�(α + 1)
+ b1

xt2α

�(2α + 1)
+ b2

xt3α

�(3α + 1)

]]

+ S–1
[(

u
s

)α

S
[

b3
xt4α

�(4α + 1)
+ b4

xt5α

�(5α + 1)
+ b5

xt6α

�(6α + 1)

]]

= x
(

1 +
tα

�(α + 1)
+

a1t2α

�(2α + 1)
+

b1t3α

�(3α + 1)
+

b2t4α

�(4α + 1)
+

b3t5α

�(5α + 1)

)

+ x
(

b4t6α

�(6α + 1)
+

b5t7α

�(7α + 1)

)

,

where

b1 = a2 + a1

(
1

22α
+

1
2

)

, b2 =
a1�(3α + 1)

23α�(α + 1)�(2α + 1)
+

a2

23α
+

a2

2
,

b3 =
�(4α + 1)

24α

(
a2

1
2(�(2α + 1))2 +

a2

�(α + 1)�(3α + 1)

)

,

b4 =
a1a2�(5α + 1)

25α�(2α + 1)�(3α + 1)
, b5 =

a2
2�(6α + 1)

26α+1(�(3α + 1))2 .

Fourth iteration Since v3(x, 0) = x, the fourth iteration solution is given by

v4(x, t) = v3(x, 0) + S–1
[(

u
s

)α

S
[

∂2

∂x2 v3(x, t) +
∂

∂x
v3

(

x,
t
2

)

v3

(
x
2

,
t
2

)

+
1
2

v3(x, t)
]]

= x
(

1 +
tα

�(α + 1)
+

a1t2α

�(2α + 1)
+

b1t3α

�(3α + 1)

+
c1t4α

�(4α + 1)
+

c2t5α

�(5α + 1)
+ · · · +

c12t15α

�(15α + 1)

)

,

(4.2)

where

c1 = b1

(
1

23α
+

1
2

)

+
a1�(3α + 1)

23α�(α + 1)�(2α + 1)
,

c2 = b2

(
1

24α
+

1
2

)

+
�(4α + 1)

24α

(
b1

�(α + 1)�(3α + 1)
+

a2
1

2(�(2α + 1))2

)

,

c3 = b3

(
1

25α
+

1
2

)

+
�(5α + 1)

25α

(
b2

�(α + 1)�(4α + 1)
+

a1b1

�(2α + 1)�(3α + 1)

)

,

c4 = b4

(
1

26α
+

1
2

)

+
�(6α + 1)

26α

(
b3

�(α + 1)�(5α + 1)
+

a1b2

�(2α + 1)�(4α + 1)

)

+
b2

1�(6α + 1)
26α+1(�(3α + 1))2 ,

c5 = b5

(
1

27α
+

1
2

)

+
�(7α + 1)

27α

(
b4

�(α + 1)�(6α + 1)
+

a1b3

�(2α + 1)�(5α + 1)

)
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+
b1b2�(7α + 1)

27α�(3α + 1)�(4α + 1)
,

c6 =
�(8α + 1)

28α

(
b5

�(α + 1)�(7α + 1)
+

a1b4

�(2α + 1)�(6α + 1)
+

b1b3

�(3α + 1)�(5α + 1)

)

+
b2

2�(8α + 1)
28α+1(�(4α + 1))2 ,

c7 =
�(9α + 1)

29α

(
a1b5

�(2α + 1)�(7α + 1)
+

b1b4

�(3α + 1)�(6α + 1)
+

b2b3

�(4α + 1)�(5α + 1)

)

,

c8 =
�(10α + 1)

210α

(
b1b5

�(3α + 1)�(7α + 1)
+

b2b4

�(4α + 1)�(6α + 1)
+

b2
3

2�(5α + 1))2

)

,

c9 =
�(11α + 1)

211α

(
b2b5

�(4α + 1)�(7α + 1)
+

b3b4

�(5α + 1)�(6α + 1)

)

,

c10 =
�(12α + 1)

212α

(
b3b5

�(5α + 1)�(7α + 1)
+

b2
4

2(�(6α + 1))2

)

,

c11 =
b4b5�(13α + 1)

213α�(6α + 1)�(7α + 1)
, c12 =

b2
5�(14α + 1)

214α+1(�(7α + 1))2 .

In order to investigate the evolution of the solution approximated by the fourth iter-
ation v4(x, t) of LTVIM given in (4.2), we vary the values of the fractional order (α =
0.7, 0.8, 0.9, 1) and depict the results in Fig. 1. The surface behavior of v4(x, t) for α =
0.7, 0.8, 0.9, 1 and 0 ≤ x, t ≤ 1 are depicted in Fig. 2.

It can be seen from Fig. 1 that the approximate solution by LTVIM gets closer to the
exact solution as α → 1. We have also compared some numerical methods on the basis
of absolute error and recorded the results in Table 1. The intention is to compare LTVIM
with HPM [17], HPTM [18], RPSM, and HATM [20]. The results in this table show that
the solutions of the proposed method are in better agreement with the exact solution
than those of the other methods. The maximum error obtained with LTVIM is 2.25387 ×
10–3, but the maximum error obtained with the others is 7.46137 × 10–3, which is almost
three times bigger than that of LTVIM. In general, the numerical results recorded in this

Figure 1 Evolution of LTVIM’s fourth iteration approximate solution of Example 4.1 for x = 1, t ∈ [0, 1] and
different values of α
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Figure 2 Evolution of surface behavior of LTVIM’s fourth iteration approximate solution of Example 4.1 for
x, t ∈ [0, 1] and different values of α

Table 1 Comparison of LTVIM, HPM [17], HPTM [18], RPSM, and HATM [20] on Example 4.1. Here
α = 1 is used for all methods

x t Absolute error

LTVIM HPM [17], HPTM [18],
RPSM and HATM [20]

0.25 0.25 5.78490× 10–7 2.12240× 10–6

0.50 1.99999× 10–5 7.09428× 10–5

0.75 1.64394× 10–4 5.63480× 10–4

1 7.51289× 10–4 2.48712× 10–3

0.50 0.25 1.15698× 10–6 4.24500× 10–6

0.50 3.99999× 10–5 1.41885× 10–5

0.75 3.28789× 10–4 1.12696× 10–3

1 1.50258× 10–3 4.97424× 10–3

0.75 0.25 1.73547× 10–6 6.36750× 10–6

0.50 5.99999× 10–5 2.12828× 10–4

0.75 4.93183× 10–4 1.69044× 10–3

1 2.25387× 10–3 7.46137× 10–3

table show that LTVIM performs much better than its counterparts. Therefore, the results
obtained with only four iterations of LTVIM are very promising, thereby signaling that the
method can be successfully applied for solving nonlinear fractional order DEs.

Example 4.2 ([17, 18, 20]) Consider the following fractional partial differential equation
with proportional delay:

C
0 Dα

t v(x, t) =
∂2

∂x2 v
(

x,
t
2

)

v
(

x,
t
2

)

– v(x, t), (4.3)

x, t ∈ [0, 1] and 0 < α ≤ 1, with initial conditions v(x, 0) = x2.
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For α = 1, the exact solution of (4.3) is given by v(x, t) = x2et [17, 18, 20].
The (n + 1)th approximate solution of (4.3) is obtained by applying the LTVIM iteration

formula given in equation (3.6):

vn+1(x, t) = vn(x, 0) + S–1
[(

u
s

)α

S
[

∂2

∂x2 vn

(

x,
t
2

)

vn

(

x,
t
2

)

– vn(x, t)
]]

.

First iteration Since v0(x, 0) = x2, the first iteration solution is given by

v1(x, t) = v0(x, 0) + S–1
[(

u
s

)α

S
[

∂2

∂x2 v0

(

x,
t
2

)

v0

(

x,
t
2

)

– v0(x, t)
]]

= x2 + S–1
[(

u
s

)α

S
[
x2]

]

= x2 + S–1
[

x2
(

u
s

)α+1]

= x2 + x2S–1
[(

u
s

)α+1]

= x2
(

1 +
tα

�(α + 1)

)

.

Second iteration Since v1(x, 0) = x2, the second iteration solution is given by

v2(x, t) = v1(x, 0) + S–1
[(

u
s

)α

S
[

∂2

∂x2 v1

(

x,
t
2

)

v1

(

x,
t
2

)

– v1(x, t)
]]

= x2 + S–1
[(

u
s

)α

S
[

x2
(

1 + a1
tα

�(α + 1)
+ a2

t2α

�(2α + 1)

)]]

= x2 + S–1
[

x2
((

u
s

)α+1

+ a1

(
u
s

)2α+1

+ a2

(
u
s

)3α+1)]

= x2
(

1 +
tα

�(α + 1)
+ a1

t2α

�(2α + 1)
+ a2

t3α

�(3α + 1)

)

,

where a1 = 1
2α–2 – 1 and a2 = �(2α+1)

22α–1(�(α+1)2) .

Third iteration Since v2(x, 0) = x2, the third iteration solution is given by

v3(x, t) = v2(x, 0) + S–1
[(

u
s

)α

S
[

∂2

∂x2 v2

(

x,
t
2

)

v2

(

x,
t
2

)

– v2(x, t)
]]

= x2
(

1 +
tα

�(α + 1)
+

a1t2α

�(2α + 1)
+

b1t3α

�(3α + 1)
+

b2t4α

�(4α + 1)
+

b3t5α

�(5α + 1)

)

+ x2
(

b4t6α

�(6α + 1)
+

b5t7α

�(7α + 1)

)

,

where

b1 = a1

(
1

22α–2 – 1
)

+ a2, b2 = a2

(
1

23α–2 – 1
)

+
a1�(3α + 1)

23α–2�(α + 1)�(2α + 1)
,

b3 =
�(4α + 1)

24α–2

(
a2

�(α + 1)�(3α + 1)
+

a2
1

2(�(2α + 1))2

)

,

b4 =
a1a2�(5α + 1)

25α–2�(2α + 1)�(3α + 1)
, b5 =

a2
2�(6α + 1)

26α–1(�(3α + 1))2 .
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Fourth iteration Since v3(x, 0) = x2, the fourth iteration solution is given by

v4(x, t) = v3(x, 0) + S–1
[(

u
s

)α

S
[

∂2

∂x2 v3

(

x,
t
2

)

v3

(

x,
t
2

)

– v3(x, t)
]]

= x2
(

1 +
tα

�(α + 1)
+

a1t2α

�(2α + 1)
+

b1t3α

�(3α + 1)

+
r1t4α

�(4α + 1)
+

r2t5α

�(5α + 1)
+ · · · +

r12t15α

�(15α + 1)

)

,

(4.4)

where

c1 =
a1�(3α + 1)

23α–2�(α + 1)�(2α + 1)
+ b1

(
1

23α–2 – 1
)

,

c2 = �(4α + 1)
(

b1

24α–2�(α + 1)�(3α + 1)
+

a2
1

24α–1(�(2α + 1))2

)

+ b2

(
1

24α–2 – 1
)

,

c3 =
�(5α + 1)

25α–2

(
b2

�(α + 1)�(4α + 1)
+

a1b1

�(2α + 1)�(3α + 1)

)

+ b3

(
1

25α–2 – 1
)

,

c4 =
�(6α + 1)

26α–2

(
b3

�(α + 1)�(5α + 1)
+

a1b2

�(2α + 1)�(4α + 1)

)

+
b2

1�(6α + 1)
26α–1(�(3α + 1))2

+ b4

(
1

26α–2 – 1
)

,

c5 =
�(7α + 1)

27α–2

(
b4

�(α + 1)�(6α + 1)
+

a1b3

�(2α + 1)�(5α + 1)
+

b1b2

�(3α + 1)�(4α + 1)

)

+ b5

(
1

27α–2 – 1
)

,

c6 =
�(8α + 1)

28α–2

(
b5

�(α + 1)�(7α + 1)
+

a1b4

�(2α + 1)�(6α + 1)
+

b1b3

�(3α + 1)�(5α + 1)

)

+
b2

2�(8α + 1)
28α–1(�(4α + 1))2 ,

c7 =
�(9α + 1)

29α–2

(
a1b5

�(2α + 1)�(7α + 1)
+

b1b4

�(3α + 1)�(6α + 1)
+

b2b3

�(4α + 1)�(5α + 1)

)

,

c8 =
�(10α + 1)

210α–2

(
b1b5

�(3α + 1)�(7α + 1)
+

b2b4

�(4α + 1)�(6α + 1)

)

+
b2

3�(10α + 1)
210α–1(�(5α + 1))2 ,

c9 =
�(11α + 1)

211α–2

(
b2b5

�(4α + 1)�(7α + 1)
+

b3b4

�(5α + 1)�(6α + 1)

)

,

c10 =
�(12α + 1)

212α–2

(
b3b5

�(5α + 1)�(7α + 1)
+

b2
4

1(2�(6α + 1))2

)

,

c11 =
b4b5�(13α + 1)

213α–2�(6α + 1)�(7α + 1)
, c12 =

b2
5�(14α + 1)

214α–1(�(7α + 1))2 .

Here also we have investigated the evolution of the solution approximated by the fourth
iteration v4(x, t) of LTVIM given in (4.4) by varying the values of the fractional order (α =
0.7, 0.8, 0.9, 1) and presented the results in Fig. 3. Moreover, the surface behavior of v4(x, t)
for α = 0.7, 0.8, 0.9, 1 and 0 ≤ x, t ≤ 1 are depicted in Fig. 4.
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Figure 3 Evolution of LTVIM’s fourth iteration approximate solution of Example 4.2 for x = 1, t ∈ [0, 1] and
different values of α

Figure 4 Evolution of surface behavior of LTVIM’s fourth iteration solution of Example 4.2 for x, t ∈ [0, 1] and
different values of α

The results in Fig. 3 indicate that the approximate solution by LTVIM gets closer to the
exact solution when the value of α approaches 1. In addition, it is obvious from the numer-
ical results recorded in Table 2 that LTVIM provides more accurate solutions, which are
very close to the exact solution, than HPM [17], HPTM [18], RPSM, and HATM [20]. One
can also observe that the maximum error obtained with LTVIM is 4.91832×10–4, whereas
the maximum error obtained with the others is 5.59603 × 10–3. This means LTVIM is at
least ten times more accurate than other existing methods. Once again, the experimen-
tal results assure that LTVIM outperforms its counterparts and is well suited for solving
nonlinear DEs of fractional order.



Bekela et al. Advances in Difference Equations        (2020) 2020:586 Page 18 of 19

Table 2 Comparison of LTVIM, HPM [17], HPTM [18], RPSM and HATM [20] on Example 4.2. Here
α = 1 is used for all methods

x t Absolute error

LTVIM HPM [17], HPTM [18],
RPSM and HATM [20]

0.25 0.25 1.38496× 10–8 5.30400× 10–7

0.50 8.79440× 10–7 1.77350× 10–5

0.75 9.89609× 10–6 1.40870× 10–4

1 5.46480× 10–5 5.55306× 10–4

0.50 0.25 5.53984× 10–8 2.12200× 10–6

0.50 3.51776× 10–6 7.09430× 10–5

0.75 3.95844× 10–5 5.63482× 10–4

1 2.18592× 10–4 2.48712× 10–3

0.75 0.25 1.24646× 10–7 4.77400× 10–6

0.50 7.91497× 10–6 1.59621× 10–4

0.75 8.90649× 10–5 1.26783× 10–3

1 4.91832× 10–4 5.59603× 10–3

5 Conclusion
In this paper, we have studied TFNPDEs with proportional delay. A new numerical method
called LTVIM is designed using the concepts of Laplace-like transform and variational the-
ory. Very good conditions for the stability and convergence of LTVIM are constructed and
analyzed in the Banach sense. Moreover, the efficiency of the new method is illustrated by
solving some test problems. The numerical results show that LTVIM is very efficient and
provides more accurate solutions than some recently developed methods. The promis-
ing experimental results signal that LTVIM could be applied successfully for other similar
nonlinear problems.
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