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Abstract
The effect of infectious diseases cannot be overemphasised. The continuing surfacing
of the infectious diseases gives the stakeholders a great concern. In this paper, the
nature of the spread of Ebola virus outbreak in West Africa in 2014 is studied. We
develop a model that analyses the spread of infectious diseases, and the reproduction
number is determined by using the next generation matrix method. Finally, the
effects of treatment of the infected individuals and vaccination of the susceptible
population as the control strategies are looked into. The optimal control system
showed that the combination of the two strategies proved more effective.
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1 Introduction
Infectious diseases are deadly diseases of humans and animals which account for about
one-tenth of the causes of deaths worldwide. These deadly diseases cause major change to
the size of the population of any community during their outbreaks. These are diseases like
HIV, tuberculosis, malaria, including Ebola virus disease which West African countries
have just witnessed. The dynamics of the population change due to the high mortality
rate caused it to be a global problem to the practitioners of public health.

However, some diseases incubate in their hosts for a period of time before the hosts
become infectious [1], and in a heterogenous population, this is a cause for concern.

Several modelers have done justice to the various models of infectious diseases to show
their transmission and spread. The authors in [2] modified the S-E-I-R model and devel-
oped an S-E-I-H-F-R model to study the spread and transmission of Ebola virus to include
those at hospital and funeral but assumed homogeneous population, which according to
the authors was too simple, which may not have effects in countries where the structure
of the community favours infection in households, and recovered individuals were not
returned to the population. Still on the model formulation of infectious disease, a model
with nonlinear incidence to analyse the transmission of Zika virus was formulated by [3].
The model considered three forms of nonlinear forces of infection. In 2013, [4] studied the
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global stability conditions of two models having relapse and bilinear standard incidence
rate. He discovered that the disease produced deaths in the infectious class. He used the
construction of a Lyapunov function for the systems. The analysis of epidemiological data
of the 2014 Ebola virus disease outbreak in Nigeria was done by dividing the population
into five categories: susceptible; exposed; infectious and symptomatic individuals; hospi-
talised individuals; and those individuals separated from isolation centre after recovery or
those that died as a result of the disease. The model developed was S-E-I-H-P from S-E-
I-R [5]. In the work of [6] in (2018), they studied the stability analysis of infectious disease
using an S-E-I-R model incorporating recruitment rate. It was discovered that the model
was stable both locally and globally. Many other researchers have equally worked on the
stability and control analysis of infectious disease. The authors in [7] examined the signif-
icance of short-term human travellers on transmission dynamics of Malaria. The chance
of an individual developing breast cancer depends on the level of the immune system, the
efficacy of the anti-cancer drug and the rate at which the ketogenic diet is taken [8, 9]. [10]
in 2015 used an SIR epidemic model to model the 2014 Ebola outbreak in West Africa and
introduced vaccination to the susceptible as part of the control system. They concluded
that vaccination is a very efficient factor in reducing the number of infected individu-
als. On the account of controlling the spread of these deadly diseases, [11] examined the
possible impact of using combination of three control strategies to combat the spread of
Malaria. The effective treatment and prevention of Schistomiasis infection assists in erad-
ication of Malaria [12]. Vaccination combined with effective treatment reduces the spread
of malaria disease [13]. The control strategies of using treated bed-nets, medication and
insecticides spray have great impact on the control of malaria disease [14]. To this end, the
main aim of this work is to model the spread of Ebola virus disease in West Africa with
the incubation period by applying mathematical models of the systems of ordinary differ-
ential equations that describe the dynamics of the outbreak of 2014 Ebola virus in some
parts of West Africa, to determine the reproduction number and to better understand the
dynamics and find optimal control strategies to reduce the effect of the disease spread. We
considered two control strategies: treatment of the infected individuals and vaccination of
the susceptible.

2 Model formulation
The dynamics of the spread is described by a system of ordinary differential equations.
Because Ebola virus incubates in the body of the host for some time before manifesting,
the population is divided into four (4) compartmental groups: the susceptible population
(S), the exposed population (E), the infected population (I) and the recovered population
(R). We introduce a recruitment rate � into the population which is dynamic, i.e. migra-
tion and birth are possible. To describe the rate of change of the susceptible, the rate at
which the susceptible is being populated by the recruitment rate is reduced as the infected
individual comes into contact with them with a constant rate of “a”, which means the rate
of change of the susceptible population with respect to time is now

dS(t)
dt

= � – aS(t)I(t). (2.1)

The equation of the exposed population will be those leaving the susceptible population
to populate it and will later reduce by those that will die natural death during the outbreak,
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which we represented as constant of μ, and will also be reduced by those that will not be
affected upon exposure and those that will be infected and progress into infected popula-
tion with their constant rates being represented as b and δ respectively. Thus the equation
of the exposed population expressing the rate of change of the exposed with respect to
time is now

dE(t)
dt

= aS(t)I(t) – μE(t) – δE(t). (2.2)

The equations of the infected and recovered groups will relate in the same way as above,
i.e.

dI(t)
dt

= δE(t) – bI(t) – eI(t) – μI(t) (2.3)

and

dR(t)
dt

= bI(t) + bE(t) – cR(t) – μR(t). (2.4)

That is, the rate of change that describes the equation of the infected population is those
leaving the exposed group which will be reduced by those that will recover from the infec-
tion, those that will die as a result of the disease and those that will die naturally with the
infection. The equation of the recovered will be those that recovered from the infection,
added to those that recovered upon exposure to the infection and reduced by those that
will recover and return to the susceptible population at a constant rate of c. So our model
is now represented by system (2.5) of Eqs. (2.1)–(2.4) as follows:

dS(t)
dt

= � – aS(t)I(t) – μS(t) + cR(t),

dE(t)
dt

= aS(t)I(t) – μE(t) – bE(t) – δE(t),

dI(t)
dt

= δE(t) – bI(t) – eI(t) – μI(t),

dR(t)
dt

= bI(t) + bE(t) – cR(t) – μR(t), (2.5)

where a is the rate of infection, b is the rate of recovery, μ is the natural death rate, c is the
rate at which the recovered individuals move back to the susceptible to populate it and δ

is the rate at which the exposed individuals progress to the infected class.

3 Methodology
3.1 Positivity and boundedness of solutions
From system (2.5), we have the state variables to be dS

dt |S=0 = � + cR, dE
dt |E=0 = aSI , dI

dt |I=0 =
δE and dR

dt |R=0 = bI + bE.
This implies that all the above rates are nonnegative on bounding planes R4

+. Further-
more, we next show that the solutions of system (2.5) are positively invariant and attract-
ing. We note that

N = S + E + I + R. (3.1)
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Then the derivative of (3.1) taking into account (2.5) is

Ṅ = � – μ(S + E + I + R) – eI,

Ṅ = � – μN – eI. (3.2)

Since the term eI in (3.2) is nonnegative,

Ṅ ≤ � – μN

so that

lim
E→∞ sup N ≤ �

μ
.

Hence, the following positively invariant bound set

� =
(

(S, E, I, R) ∈ R4
+ : S + E + I + R ≤ �

μ

)
. (3.3)

Thus, it is sufficient to consider the dynamics of system (2.5) in � with initial conditions
S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0 and R(0) ≥ 0.

3.2 Equilibrium points of model (DFE)
Observe that system (2.5) exhibits the following equilibrium points: disease-free equilib-
rium(DFE) denoted by Po = ( �

μ
, 0, 0, 0) and endemic equilibrium (EE) denoted by

P∗ =
(
P∗

1 , P∗
2 , P∗

3 , P∗
4
)
,

where

P∗
1 =

(μ + b + δ)(b + e + μ)
aδ

,

P∗
2 =

�(b + e + μ)a(c + μ)
(a + μ)(c + μ)(μ + b + δ)(b + e + μ) – ac(δb + b(b + e + μ))

,

P∗
3 =

�aδ(c + μ)
(a + μ)(c + μ)(μ + b + δ)(b + e + μ) – ac(δb + b(b + e + μ))

,

P∗
4 =

(δb + b(b + e + μ))�a
(a + μ)(c + μ)(μ + b + δ)(b + e + μ) – ac(δb + b(b + e + μ))

.

3.3 Computation of the basic reproduction number R∗
0

It is known or described as the anticipated cases of newly created or fresh cases of in-
fections from one individual that is infectious in a population that is wholly susceptible
through the entire length of the infection period denoted by R0. It defines the dynamical
behaviour of the model, whether the disease dies out or persists in the system. If R0 < 1, the
infection in one individual cannot reinstate itself so the pathogen dies out (stable disease-
free population). If R0 > 1, the number of infectious persons increases and the disease
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persists, and if R0 = 1, there is an equilibrium: the endemic and the disease-free being
equal. By the use of next generation matrix,

[
G = FV –1], (3.4)

where F is the matrix of the newly created infection, V is the matrix of transferred infec-
tion / the movement of individuals from one compartment to another.

V –1 is the inverse of matrix V.
So,

Fi =

⎛
⎜⎝

aSI
0
0

⎞
⎟⎠ , i = 1, 2, 3,

Vi =

⎛
⎜⎝

(μ + b + δ)E
(b + e + μ)I – δE

(c + μ)R – bI – bE

⎞
⎟⎠ , i = 1, 2, 3,

F =

⎛
⎜⎝

∂f1
δE |Po

∂f1
δI |Po

∂f1
δR |Po

∂f2
δE |Po

∂f2
δI |Po

∂f2
δR |Po

∂f3
δE |Po

∂f3
δI |Po

∂f3
δR |Po

⎞
⎟⎠ =

⎛
⎜⎝

0 a�
μ

0
0 0 0
0 0 0

⎞
⎟⎠ ,

f1 = asI, f2 = f3 = 0,

V =

⎛
⎜⎜⎜⎝

(μ + b + δ) 0 0
–δ (b + e + μ) 0
–b –b (c + μ)

⎞
⎟⎟⎟⎠ ,

|V | = (μ + b + δ)(b + e + μ)(c + μ).

Let Vcf be the cofactor

V –1 =
Adj(Vcf )

|V |

=

⎛
⎜⎝

1
μ+b+δ

0 0
δ

(μ+b+δ)(b+e+μ)
1

(b+e+μ) 0
b(δ+(b+e+μ))

(μ+b+δ)(b+e+μ)(c+μ)
b

(b+e+μ)(c+μ)
1

c+μ

⎞
⎟⎠ ,

G = FV –1

=

⎛
⎜⎝

0 a�
μ

0
0 0 0
0 0 0

⎞
⎟⎠

⎛
⎜⎝

1
μ+b+δ

0 0
δ(c+μ)

(μ+b+δ)(b+e+μ)
1

(b+e+μ) 0
b+(δ+(b+e+μ))

(μ+b+δ)(b+e+μ)
b

(b+e+μ)(c+μ)
1

(c+μ)

⎞
⎟⎠ ,

G =

⎛
⎜⎝

a�δ(c+μ)
μ(μ+b+δ)(b+e+μ)

a�
μ(b+e+μ) 0

0 0 0
0 0 0

⎞
⎟⎠ .
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The dominant eigenvalue of G is the basic reproduction number denoted by R0, i.e. |G –
λI| = 0, where I is the identity matrix.

∣∣∣∣∣∣∣∣

(
a�δ

μ(μ+b+δ)(b+e+μ) – λ

)
a�

μ(b+e+μ) 0

0 –λ 0
0 0 –λ

∣∣∣∣∣∣∣∣
= 0,

(
a�δ

μ(μ + b + δ)(b + e + μ)
– λ

)
(–λ)(–λ) = 0.

Therefore,

λ1 =
a�δ

μ(μ + b + δ)(b + e + μ)
, λ2 = λ3 = 0.

The dominant eigenvalue is

λ1 = R0 =
a�δ

μ(μ + b + δ)(b + e + μ)
.

Therefore, the basic reproduction number of our model is

R0 =
a�δ

μ(μ + b + δ)(b + e + μ)
. (3.5)

3.4 Local stability of disease-free equilibrium
The stability analysis of system (2.5) is discussed in this section. The Jacobian matrix of
system (2.5) at Po is

J(P0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

–μ 0 –a�
μ

c
0 –(μ + b + δ) a�

μ
0

0 δ –(b + e + μ) 0
0 b b –(c + μ)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.6)

Two eigenvalues of (3.6) are λ1 = –μ, λ2 = –(c + μ), while the other two eigenvalues are
obtained from the 2 by 2 matrix

A =

(
–(μ + b + δ) a�

μ

δ –(b + e + μ)

)
. (3.7)

We next apply the Routh–Hurwitz condition, namely
(i) Tr(A) < 0

(ii) Det(A) > 0
to show that the remaining two eigenvalues are real and negative. Consequently,

Tr(A) = –(μ + b + δ) – (b + e + μ) = –(2μ + 2b + δ + e) < 0,
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Det(A) = (μ + b + δ)(b + e + μ) –
a�δ

μ

= (μ + b + δ)(b + e + μ)
(

1 –
a�δ

μ(μ + b + δ)(b + e + μ)

)

= (μ + b + δ)(b + e + μ)(1 – R0) > 0 if R0 < 1.

The above result is summarized as follows.

Theorem 1 The DFE Po of system (2.5) is locally asymptotically stable if R0 < 1, otherwise
unstable.

3.5 Global stability of disease-free equilibrium
We construct the following Lyapunov function L for system (2.5) to show the global sta-
bility of the disease-free equilibrium

L(E, I) = (μ + b + δ)I + δE. (3.8)

Differentiating (3.8) along the solution path of system (2.5), we have

L′ = (μ + b + δ)I ′ + δE′

= (μ + b + δ)
(
δE – (b + e + μ)I

)
+ δ

(
aSI – (μ + b + δ)E

)
= (μ + b + δ)δE – (μ + b + δ)(b + e + μ)I + δaSI – (μ + b + δ)δE

= δaSI – (μ + b + δ)(b + e + μ)I

=
(
δaS – (μ + b + δ)(b + e + μ)

)
I

= (μ + b + δ)(b + e + μ)
(

δaS
(μ + b + δ)(b + e + μ)

– 1
)

I.

At the disease-free equilibrium,

S = S0 =
�

μ

= (μ + b + δ)(b + e + μ)
(

δa�

μ(μ + b + δ)(b + e + μ)
– 1

)
I.

Therefore, L′ = (μ+ b +δ)(b + e+μ)(R0 – 1)I , L′ < 0 whenever R0 < 1 and I > 0; furthermore,
L′ = 0 whenever R0 = 1 and I ≥ 0, L′∗ ≤ 0 if R0 ≤ 1 and I ≥ 0.

Thus system (2.5) is globally asymptotically stable.

3.6 Local stability of the endemic equilibrium
We observed that the endemic equilibrium of system (2.5) can be re-written in terms of
the basic reproduction number R0 as follows:

S = P1 =
(b + μ + δ)(b + e + μ)

ad
=

μ(b + μ + δ)(b + e + μ)�
a�δμ

=
�

μ

1
R0

,
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E = P2 =
(c + μ)(b + e + μ)[�aδ – μ(b + μ + δ)(b + e + μ)]

aδ[(c + μ)(b + μ + δ)(b + e + μ) – bc(δ + b + e + μ)]

=
μ(c + μ)(b + e + μ)2(b + μ + δ)[ �aδ

μ(b+μ+δ)(b+e+μ) – 1]
aδ[μ(b + δ + e)(b + c) + δe(c + μ) + μ2(2b + c + δ + e + μ)]

,

E =
μ(c + μ)(b + e + μ)2(b + μ + δ)(R0 – 1)

aδ[μ(b + δ + e)(b + c) + δe(c + μ) + μ2(2b + c + δ + e + μ)]
,

I = P3 =
(c + μ)[�aδ – μ(b + μ + δ)(b + e + μ)]

aδ[(c + μ)(b + μ + δ)(b + e + μ) – bc(δ + b + e + μ)

=
μ(c + μ)(b + μ + δ)(b + e + μ)[ �aδ

μ(b+μ+δ)(b+e+μ) – 1]
aδ[μ(b + δ + e)(b + c) + δe(c + μ) + μ2(2b + c + δ + e + μ)]

.

Therefore, I can be written as

I =
μ(c + μ)(b + μ + δ)(b + e + μ)(R0 – 1)

aδ[μ(b + δ + e)(b + c) + δe(c + μ) + μ2(2b + c + δ + e + μ)]

so also,

R = P4 =
b(δ + b + e + μ)[�aδ – μ(b + μ + δ)(b + e + μ)]

aδ[(c + μ)(b + μ + δ)(b + e + μ) – bc(δ + b + e + μ)

=
μb(δ + b + e + μ)(b + μ + δ)(b + e + μ)[ �aδ

μ(b+μ+δ)(b+e+μ) – 1]
aδ[(c + μ)(b + μ + δ)(b + e + μ) – bc(δ + b + e + μ)

.

Similarly, R can also be written as

R =
μb(δ + b + e + μ)(b + |mu + δ)(b + e + μ)(R0 – 1)

aδ[μ(b + δ + e)(b + c) + δe(c + μ) + μ2(2b + c + δ + e + μ)]
.

The following result follows immediately.

Theorem 2 The endemic equilibrium P∗ of system (2.5) is unique and positive if R0 > 1.

Next, we discuss the stability of the endemic equilibrium point P∗ by obtaining the Ja-
cobian matrix of system (2.5) at P∗, thus

J
(
P∗) =

⎛
⎜⎜⎜⎜⎜⎜⎝

–(am2(R0 – 1) + μ) 0 –�a
μR0

c
am2(R0 – 1) –E0

�a
μR0

0
0 δ –I0 0
0 b b –r0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.9)

where

m1 =
μ(c + μ)(b + e + μ2(b + μ + δ)

aδ[μ(b + δ + e)(b + c) + δe(c + μ) + μ2(2b + c + δ + e + μ)]
,

m2 =
μ(c + μ)(b + |mu + δ)(b + e + μ)

aδ[μ(b + δ + e)(b + c) + δe(c + μ) + μ2(2b + c + δ + e + μ)]
,

m3 =
μb(δ + b + e + μ)(b + μ + δ)(b + e + μ)

aδ[μ(b + δ + e)(b + c) + δe(c + μ) + μ2(2b + c + δ + e + μ)]
,
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E0 = (b + μ + δ), I0 = (b + e + μ) and r0 = (c + μ).

It then follows that all the eigenvalues of (3.9) are real and negative if the following condi-
tion holds:

(i) Tr(J(P∗)) < 0 and
(ii) Det(J(P∗)) > 0.
Now, Tr(J(P∗)) = –am2(R0 – 1) – μ – E0 – I0 – r0 < 0 if R0 > 1.
Furthermore, Det(J(P∗)) = am2m4R0(R0–1)

R0
> 0 if R0 > 1, where m4 = b2μ+bcμ+bδμ+beμ+

2bμ2 + cδe + cδμ + ceμ + cμ2 + δeμ + δμ2 + eμ2 + μ3.
Thus all eigenvalues of (3.9) are real and negative. The foregoing can be stated as follows.

Theorem 3 The endemic equilibrium P∗ of system (2.5) is locally asymptotically stable if
R0 > 1, otherwise unstable.

3.7 Optimal control of the model
This is to find an optimal control strategy U throughout the length of 0 ≤ t ≤ tf such
that the number of infected individuals I and that of exposed individuals E are minimised
while minimising the cost of control U . Let U1 be the cost of the treatment of infected
and exposed individuals and U2 be the cost of the vaccine for them. From system (2.5), the
model now becomes

dS∗(t)
dt

= � – (1 – U1 – U2)aS(t)I(t) – μS(t) + cR(t),

dE∗(t)
dt

= (1 – U1 – U2)aS(t)I(t) – U1E(t) – U2E(t) – μE(t) – bE(t) – δE(t),

dI∗(t)
dt

= δE(t) – U1I(t) – eI(t) – μI(t),

dR∗(t)
dt

= U1I(t) + U1E(t) + U2E(t) – cR(t) – μR(t).

The objective function now is

J(U1, U2) =
∫ tf

0

(
m1I(t) + m2E(t) – m3U2

1 – m4U2
2
)

dt, (3.10)

where mi, i = 1 . . . 4, are the weights to balance the effects of the control measures. Thus,
we seek an optimal control

U∗ =
(
U∗

1 , U∗
2
)

such that

J
(
U∗

1 , U∗
2
)

= min
u1,u2

[
J(U1, U2)|u1,u2 in U

]
.

U = [(u1, u2)|u1,u2 : [0, tf ] → (0, 1)] is Lebesque measurable.
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3.8 Analysis of the optimal control problem of infectious diseases
Let H be the Hamiltonian function, and using the maximum principle given by Pontryagin
to derive necessary conditions for the optimal control problem, we have

H = m1I(t) + m2E(t) – m3U2
1 – m4U2

2

+ λ1
[
� – (1 – U1 – U2)aS(t)I(t) – μS + cR(t)

]
+ λ2

[
(1 – U1 – U2)aS(t)I(t) – (u1 + u2 + μ + δ)E(t)

]
+ λ3

[
δE(t) – (U1 + e + μ)I(t)

]
+ λ4

[
U1I(t) + U1E(t) + U2E(t) + (c + μ)R(t)

]
, (3.11)

where λi, i = 1 . . . 4, are the adjoint or the co-state variables.

3.9 The adjoint conditions
In this section, the adjoint condition is obtained as follows:

dλ1

dt
= –

dH
dS∗

= (λ1 – λ2)(1 – U1 – U2)aI(t) + λ1μ, (3.12)

dλ2

dt
= –

dH
dE∗

= λ2(U1 + U2 + μ + δ) – λ4(U1 + U2) – λ3δ – m2, (3.13)

dλ3

dt
= –

dH
dI∗

= (λ3(U1 + e + μ) – λ4U1 – m1, (3.14)

dλ4

dt
= –

dH
dR∗

= λ4(c + μ) – λ1c (3.15)

with the boundary conditions at the final time

tf : λ1(tf ) = 0, λ2(tf ) = 0, λ3(tf ) = 0, λ4(tf ) = 0. (3.16)

3.10 The optimality conditions
The optimality condition in this section is hereby found as follows:

∂H
∂U1

= –2m3U1 + λ1aS(t)I(t) – λ2aS(t)I(t) – λ2E(t) – λ3I(t) + λ4I(t) + λ4E(t). (3.17)

At the absolute minimum, the slope of the function is zero. Then

u∗
1 =

(λ2 – λ1)aS(t)I(t) + (λ2 – λ4)E(t) + (λ3 – λ4I(t)
–2m3

,

∂H
∂U2

= –2m4U2 + λ1aS(t)I(t) – λ2aS(t)I(t) – λ2E(t) + λ4E(t)

at ∂H
∂U2

= 0,

U∗
2 =

(λ2 – λ1)aS(t)I(t) + (λ2 – λ4)E(t)
–2m4

,
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U∗
1 = min

[1, max(0, (λ2 – λ1)aS(t)I(t) + (λ2 – λ4)E(t) + (λ3 – λ4)I(t))]
–2m3

, (3.18)

U∗
2 = min

[1, max(0, (λ2 – λ1)aS(t)I(t) + (λ2 – λ4)E(t))]
–2m3

. (3.19)

So, for the control system, the conditions have been set for U1 and U2.

4 Numerical simulation and discussion of results
In this section, we present the numerical simulation of the model using the parameters of
[15].

These are presented in Figs. 1–5.

5 Results
This paper has studied the dynamics of the spread of infectious diseases using the outbreak
of 2014 Ebola virus disease as a case study and presented a model which allowed move-

Figure 1 The variation of susceptible population at various levels of a

Figure 2 Effect of treatment on infected humans
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Figure 3 The optimal control strategy 1 using treatment only

Figure 4 The optimal control strategy 2 using vaccination only

ment in and out of the population during the outbreak of the epidemic. The reproduction
number R0 was found to be

R0 =
a�δ

μ(μ + b + δ)(b + e + μ)
.

It was noted that when R0 < 1, the disease died out, and when R0 > 1, the disease persisted
in the system which is endemic. The results in this study were in perfect agreement with
the parameters estimated in [16]. In Fig. 1, the variation of the susceptible population was
presented. The susceptible population dropped drastically at the onset of the epidemic
and reduced further as the rate of infection increased. In the study we also tested the
effect of treatment in Fig. 2. It showed that when the treatment of infected humans was
intensified from 0.0 to 0.8, the number of infected humans dropped drastically. Figures 3
and 4 showed the optimal control strategies of treatment and vaccination of susceptible
population. We found out that using a combination of treatment and vaccination in Fig. 5
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Figure 5 The optimal control system using the combination of the two strategies

proved to be more effective than using only one control, as we found out in Figs. 3 and 4,
in that the disease can die out in about 100 days of the outbreak.

5.1 Conclusion
The reproduction number which determines disease eradication or persistency was found
using the next generation matrix. The optimal control of the model was studied using
Pontryagin’s maximum principle. Control strategies for the model were considered using
time-dependent control: treatment U1(t) and vaccination U2(t). The simulation result re-
vealed that the combination of the two controls proved to be more effective. In the control
of infectious diseases such as Ebola, it is advised that the medical practitioners should start
preparing for vaccines which can curb the effect of Ebola virus and act as an immunity to
the susceptible population. Also during the outbreak, the treatment of the infected indi-
viduals should be combined with the vaccination to have a more robust strategy to curb
the effect.
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