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Abstract
In this paper, we investigate the optical solitons of the fractional complex
Ginzburg–Landau equation (CGLE) with Kerr law nonlinearity which shows various
phenomena in physics like nonlinear waves, second-order phase transition,
superconductivity, superfluidity, liquid crystals, and strings in field theory.
A comparative approach is practised between the three suggested definitions of
derivative viz. conformable, beta, and M-truncated. We have constructed the optical
solitons of the considered model with a new extended direct algebraic scheme. By
utilization of this technique, obtained solutions carry a variety of new families
including dark-bright, dark, dark-singular, and singular solutions of Type 1 and 2, and
sufficient conditions for the existence of these structures are given. Further, graphical
representations of the obtained solutions are depicted. A detailed comparison of
solutions to the considered problem, obtained by using different definitions of
derivatives, is reported as well.

Keywords: Fractional complex Ginzburg–Landau equation; New extended direct
algebraic method; Optical solitons; Conformable derivative; Beta derivative;
M-truncated derivative

1 Introduction
The study of nonlinearity in physical phenomena is a well-established field of interest and
its imperativeness is thought of through a sweer-amplitude wave oscillation investigated
in various areas including plasma, chemical reactions, fluids, biological and solid states,
to mention a few. In this manner, the enthralling perspective in nonlinear physical phe-
nomena are solitons. The accessibility of solitonic ideas is due to the philosophical equal-
ization of dispersion and nonlinearity [1]. A great deal of looks into solitons and related
parts of solitary wave solutions, for instance mono-pulse water wave which delineates the
main soliton, can be found in Miller and Ross [2], Podlubny [3], Oldham [4], Kiryakova
[5], El-Sayed and Gaber [6]. Also, different scientific understanding and modeling can be
deciphered through optical solitons for their numerical and analytical structures of vari-
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ous mechanisms. These stimulated numerous specialists and researchers to concentrate
on the establishments of solitons with optical structures with the assistance of different
integration schemes [7, 8].

Over the previous few years, different powerful strategies have been introduced for ex-
tracting the exact solutions of the NLDEs in scientific material science. For example, the
symmetry method [9], tanh-coth function method [10], sine-cosine technique [11], new
extended direct algebraic method [12, 13], extended trial equation method [14], and the
exp-function method [15] are utilized to examine nonlinear dispersive and dissipative
problems.

Besides, fractional calculus (FC) has started to be incredibly known in a few fields of
science and engineering. It has been applied to breakdown numerous dynamical pro-
cesses and complex nonlinear physical phenomena in physics, electromagnetic, engineer-
ing, anomalous diffusion, chemistry, visco-elasticity, and electro-chemistry. This subject
has attained a valuable importance over the last decades due to its widespread application
in the above mentioned fields. Recently, many efforts have been devoted to this subject, a
few of them are reported in [16–18]. It does provide potent tools for computing solutions
of differential equations. Also, it helps us to solve the problems arising in mathematical
physics as well as their extensions in more than one variable. Many recent developments
in analytical and numerical techniques for finding the solutions of fractional differential
equations are suggested in [19–22].

The nonlinear fractional differential equations (NFDEs) assume an imperative job in
numerous fields including control theory, biology, designing, signal processing, acoustic
waves, hydro magnetic waves, fractal dynamics, and many more. The concept of fractional
derivative with real order has been known throughout the previous few decades. The in-
vestigation of finding fractional derivative operators is always a hot topic of research. A lot
of efforts have been devoted in recent times, and many discoveries have been made in this
direction, some of them are listed in [23–27]. In this paper, we consider some of the mas-
terpiece definitions for derivatives known as conformable [25], beta [26], and M-truncated
[27].

The complex Ginzburg–Landau (CGL) equation of the form

iut + auxx + cF
(|u|2)u =

1
|u|2u∗

{
δ
(|u|2)xx|u|2 – N

((|u|2)x

)2} + Pu (1)

is one of well-known nonlinear PDEs in physics. It represents a lot of various phenomena
in physics like nonlinear waves, superfluidity, second-order phase transitions, supercon-
ductivity, Bose–Einstein condensation, strings and liquid crystals in field theory. The CGL
equation was generalized into its fractional form by Weitzner and Zaslavsky [28]. The
computation of optical solitons of Eq. (1) has been done by many researchers (see [29–31]
and the references therein). The purpose of this article is not only to find out new fami-
lies of optical solitons of fractional CGL equation but also to have a comparative analysis
between different definitions of derivatives on the obtained soliton structures. According
to the authors’ knowledge, such type of investigation has not been done before for the
considered model and thus it is interesting to report here.

The format of the paper in hand is as follows: Section (2) is devoted to some basic def-
initions from the literature. In Section (3), the analysis of the governing model with dif-
ferent definitions is presented. The general algorithm of the algebraic extended expansion
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method and its application are given in Section (4). A detailed comparative analysis is
practiced in Section (5). Conclusion is stated at the end.

2 Preliminaries
2.1 Conformable derivative and its properties
Here [32–35] is some important work on the conformable derivative in recent times.

Definition 2.1 Suppose that

g : [0,∞) → R

is a function. Then conformable derivative of g of α′s order is defined by [25]

Dα
t
(
g(t)

)
= lim

ε→0

g(t + εt1–α) – g(t)
ε

, (2)

in which t > 0 and α ∈ (0, 1].
Some properties for conformable derivative [25, 36] are reported as follows.

Theorem 2.1 Suppose that if 0 < α ≤ 1 and assuming g(t) and h(t) are differentiable of α′s
order at t > 0, then

1. Dα
t (tβ ) = βtβ–α for all β ∈ R;

2. Dα
t (c) = 0 for all constants;

3. Dα
t (μg(t)) = μDα

t (g(t)), where μ is a constant;
4. Dα

t (μg(t) + νh(t)) = μDα
t (g(t)) + νDα

t (h(t)) for all μ,ν ∈ R;
5. Dα

t (g(t) × h(t)) = h(t) × Dα
t (g(t)) + g(t) × Dα

t (h(t));
6. Dα

t ( g(t)
h(t) ) = h(t)Dα

t (g(t))–g(t)Dα
t (h(t))

h2(t) ;
7. Dα

t g(t) = t1–α dg
dt ;

8. Dα
t (g(t) ◦ h(t)) = t1–αh′(t)g ′(h(t)).

2.2 Beta derivative
Definition 2.2 Beta derivative [26] is defined as follows:

A
0 Tα

x
(
G(x)

)
= lim

ε→0

G(x + ε(x + 1
�(α) )) – G(x)
ε

, (3)

along with the properties as follows.

Theorem 2.2 If 0 < α ≤ 1, a, b ∈ R, F , G and differentiable of α order at a point t > 0, then:
1. A

0 Tα
x (aF(x) + bG(x)) = aA

0 Tα
x F(x) + bA

0 Tα
x G(x);

2. Tα
x (k) = 0, here k is a constant;

3. A
0 Tα

x (F(x) ∗ G(x)) = G(x)A
0 Tα

x F(x) + F(x)A
0 Tα

x G(x);
4. A

0 Tα
x ( F(x)

G(x) ) = G(x)A
0 Tα

x F(x)–F(x)A
0 Tα

x G(x)
G2(x) ,taking ε = (x + 1

�(α) )1–αh, h → 0 when ε → 0,
therefore, we have A

0 Tα
x F(x) = (x + 1

�(α) )1–α dF(x)
dx with ξ = μ

α
(x + 1

�(α) )α , where μ is a
constant;

5. A
0 Tα

x ( F(t)
G(x) ) = t dF(t)

dt .
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2.3 M-truncated derivative
Definition 2.3 The truncated Mittag-Leffler function [27] with one parameter is defined
as follows:

iEβ (z) =
i∑

k=0

zk

�(βk + 1)
, (4)

in which β > 0 and z ∈ C. It is defined in the sense of non-fuzzy concept as given below.

Definition 2.4 Suppose that

g : [0,∞) → R

and α ∈ (0, 1), the M-truncated derivative of g of order α is defined by

iTα,β
M g(t) = lim

ε→0

g(t + iEβ (εt–α)) – g(t)
ε

(5)

for t > 0 and iEβ (·), β > 0.

Theorem 2.3 Suppose that f is a differentiable function of α order at t0 > 0 with α ∈ (0, 1]
and β > 0. Then f is continuous at t0.

Theorem 2.4 If α ∈ (0, 1], β > 0, g , h are differentiable up to α order at t > 0, then:
1. iTα,β

M (pg + qh) = piTα,β
M (g) + qiTα,β

M (h), where p, q are real constants;
2. iTα,β

M (tν) = νtν–α ,ν ∈ R;
3. iTα,β

M (gh) = giTα,β
M (h) + hiTα,β

M (g);

4. iTα,β
M ( g

h ) = giT
α,β
M (h)–hiT

α,β
M (g)

h2 ;
5. iTα,β

M (g)(t) = t1–α

�(β+1)
dg
dt ;

6. iTα,β
M (g ◦ h)(t) = f ′(h(t))iTα,β

M h(t).

3 Governing equation
In this section, we present the fractional CGL equation [28] with respect to different def-
initions of derivatives.

(1): In conformable derivative, the equation can be defined as follows:

iDα
t u + auxx + cF

(|u|2)u =
1

|u|2u∗
{
δ
(|u|2)xx|u|2 – N

((|u|2)x

)2} + Pu, (6)

where Dα
t u is the conformable derivative of u with respect to t, 0 < α ≤ 1, a, c, δ, N and P

are real constants.
(2): By taking beta derivative into account, the considered equation can be written as

follows:

iA
0 Dα

t u + aA
0 D2α

x u + cF
(|u|2)u =

1
|u|2u∗

{
δA

0 D2α
x

(|u|2)|u|2 – N
(A

0 Dα
x
(|u|2))2} + Pu, (7)

where A
0 Dα

t and A
0 Dα

x are beta derivatives with t and x respectively.
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(3): Whereas by considering M-truncated derivative definition, the equation under study
takes the form

iA
0 Dα,β

M,tu + aA
0 D2α,β

M,x u + cF
(|u|2)u

=
1

|u|2u∗
{
δA

0 D2α,β
M,x

(|u|2)|u|2 – N
(A

0 Dα,β
M,x

(|u|2))2} + Pu, (8)

where A
0 Dα,β

M,t and A
0 Dα,β

M,x are beta derivatives with t and x respectively.
In Eq. (1), Eq. (7), and Eq. (8),F is a real-valued function, and its smoothness is possessed

by a complex function F (|u|2)u : C → C. Now, taking C as a complex plane to be a two-
dimensional linear space R2, the F (|u|2)u is k times continuously differentiable, so that

F
(|u|2)u ∈

∞⋃

p,q=1

Ck((–q, q) × (–p, p); R2). (9)

3.1 Mathematical analysis
To solve Eq. (1), Eq. (7), and Eq. (8), we will take the following transformation:

u(x, t) = U(ζ )ei
(x,t), (10)

where u(x, t) represents the pulse shape of soliton, while ζ and 
 are defined with respect
to different definitions:

(i): For conformable derivative, we take

ζ = x –
(

v
α

)
tα , (11)


(x, t) = –kx +
(

ω

α

)
tα + θ . (12)

(ii): In the sense of beta derivative, we have

ζ =
1
α

(
x +

1
�(α)

)α

–
v
α

(
t +

1
�(α)

)α

(13)

and


(x, t) = –
k
α

(
x +

1
�(α)

)α

+
w
α

(
t +

1
�(α)

)α

+ θ0(ζ ). (14)

(iii): By means of M-truncated derivative, we get

ζ =
�(β + 1)

α

(
xα – vtα

)
, (15)


(x, t) = –
�(β + 1)

α

(
kxα – vwtα

)
+ θ0(ζ ), (16)

where w, k, v, 
(x, t), and θ0(ζ ) represent the wave number, frequency, speed, phase com-
ponent, and phase function of solitons respectively.
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Substituting (10) in Eqs. (1)–(8) one by one and separating the resulting equation into
real and imaginary parts, we end up with the following equations:

–wU + a
(
U ′′ – k2U

)
+ cF

(
U2)U = 2(δ – 2N)

U ′2

U
+ 2δU ′′ + PU (17)

and

v = –2ak, (18)

putting δ = 2N into Eq. (17), we have

(a – 4N)U ′′ –
(
w + ak2 + P

)
U + cF

(
U2)U = 0. (19)

3.2 Kerr law nonlinearity
The main fact of the origin of this law is due to non-harmonic motion of electrons bounded
in molecules, light wave during its propagation faces nonlinear responses under applica-
tion of electric field. Although these effects are negligible, for long range distances these
responses are measured by light wavelength parameter. The Kerr law takes the value of
F (U) = U . Thus, Eq. (19) takes the following form:

(a – 4N)U ′′ –
(
w + ak2 + P

)
U + cU3 = 0. (20)

4 Optical solitons
In this section, we use a new extended direct algebraic method to find optical solitons for
the fractional CGL equation with conformable, beta, and M-truncated derivative.

4.1 Description of method
In this section, we present the description of the new extended direct algebraic method
[31, 37]. This technique is a more remarkable and effective approach in evaluating soli-
tary wave solutions for a number of classes of nonlinear problems and can be applied to
numerous other nonlinear partial differential equations arising in scientific development
area. When parameters including this technique are taken to be specific values, we can get
the solitary wave solutions from different techniques, for example, the (G′/G)-expansion
technique, the modified Kudryashov technique, the extended tanh-function technique,
etc. It is indicated that the new extended algebraic method technique, with the assistance
of symbolic calculation, gives a more impressive mathematical tool for all other nonlinear
partial differential equations.

Suppose a nonlinear ordinary differential equation of the form

J
(
U , U ′, U ′′, U ′′′ · · · ) = 0. (21)

We suppose the solution of ODE (21) of the type

U(ζ ) =
m∑

i=0

aiQi(ζ ), (22)
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where ai (0 < i ≤ n) are the coefficients which can be found later and Q(ζ ) satisfies ODE
of the form

Q′(ζ ) = ln(ρ)
(
ν + κQ(ζ ) + λQ2(ζ )

)
, ρ 	= 0, 1, (23)

where ν , κ , and λ are constants. The solutions of Eq. (23) can be written as follows:
1: When � < 0 and λ 	= 0,

Q1(ζ ) = –
κ

2λ
+

√
–�

2λ
tanρ

(√
–�

2
ζ

)
,

Q2(ζ ) = –
κ

2λ
–

√
–�

2λ
cotρ

(√
–�

2
ζ

)
,

Q3(ζ ) = –
κ

2λ
+

√
–�

2λ

(
tanρ(

√
–�ζ ) ± √

mn secρ(
√

–�ζ )
)
,

Q4(ζ ) = –
κ

2λ
–

√
–�

2λ

(
cotρ(

√
–�ζ ) ± √

mn cscρ(
√

–�ζ )
)
,

Q5(ζ ) = –
κ

2λ
+

√
–�

4λ

(
tanρ

(√
–�

4
ζ

)
– cotρ

(√
–�

4
ζ

))
.

2: When � > 0 and λ 	= 0,

Q6(ζ ) = –
κ

2λ
–

√
�

2λ
tanhρ

(√
�

2
ζ

)
,

Q7(ζ ) = –
κ

2λ
–

√
�

2λ
cothρ

(√
�

2
ζ

)
,

Q8(ζ ) = –
κ

2λ
–

√
�

2λ

(
tanhρ(

√
�ζ ) ± i

√
mn sechρ(

√
�ζ )

)
,

Q9(ζ ) = –
κ

2λ
–

√
�

2λ

(
cothρ(

√
�ζ ) ± √

mn cschρ(
√

�ζ )
)
,

Q10(ζ ) = –
κ

2λ
–

√
�

4λ

(
tanhρ

(√
�

4
ζ

)
+ cothρ

(√
�

4
ζ

))
.

3: When νλ > 0 and κ = 0,

Q11(ζ ) =
√

ν

λ
tanρ(

√
νλζ ),

Q12(ζ ) = –
√

ν

λ
cotρ(

√
νλζ ),

Q13(ζ ) =
√

ν

λ

(
tanρ(2

√
νλζ ) ± √

mn secρ(2
√

νλζ )
)
,

Q14(ζ ) = –(
√

ν

λ

(
cotρ(2

√
νλζ ) ± √

mn cscρ(2
√

νλζ )
)
,

Q15(ζ ) =
1
2

√
ν

λ

(
tanρ

(√
νλ

2
ζ

)
– cotρ

(√
νλ

2
ζ

))
.
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4: When νλ < 0 and κ = 0,

Q16(ζ ) = –
√

–
ν

λ
tanhρ(

√
–νλζ ),

Q17(ζ ) = –
√

–
ν

λ
cothρ(–

√
νλζ ),

Q18(ζ ) = –
√

–ν

λ

(
tanhρ(2

√
–νλζ ) ± i

√
mn sechρ(2

√
–νλζ )

)
,

Q19(ζ ) = –
√

–
ν

λ

(
cothρ(2

√
–νλζ ) ± √

mn cschρ(2
√

–νλζ )
)
,

Q20(ζ ) = –
1
2

√
–ν

λ

(
tanhρ

(√
–νλ

2
ζ

)
+ cothρ

(√
–νλ

2
ζ

))
.

5: When κ = 0 and λ = ν ,

Q21(ζ ) = tanρ(νζ ),

Q22(ζ ) = – cotρ(νζ ),

Q23(ζ ) = tanρ(2νζ ) ± √
mn secρ(2νζ ),

Q24(ζ ) = – cotρ(2νζ ) ± √
mn cscρ(2νζ ),

Q25(ζ ) =
1
2

(
tanρ

(
ν

2
ζ

)
– cotρ

(
ν

2
ζ

))
.

6: When κ = 0 and λ = –ν ,

Q26(ζ ) = – tanhρ(νζ ),

Q27(ζ ) = – cothρ(νζ ),

Q28(ζ ) = – tanhρ(2νζ ) ± i
√

mn sechρ(2νζ ),

Q29(ζ ) = – cothρ(2νζ ) ± √
mn cschρ(2νζ ),

Q30(ζ ) = –
1
2

(
tanhρ

(
ν

2
ζ

)
+ cothρ

(
ν

2
ζ

))
.

7: When κ2 = 4νλ,

Q31(ζ ) =
–2ν(κζ ln(ρ) + 2)

κ2ζ ln(ρ)
.

8: When κ = � , ν = q�(q 	= 0), and λ = 0,

Q32(ζ ) = ρ�ζ – q.

9: When κ = λ = 0,

Q33(ζ ) = νζ ln(ρ).
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10: When κ = ν = 0,

Q34(ζ ) =
–1

λζ ln(ρ)
.

11: When ν = 0 and κ 	= 0,

Q35(ζ ) = –
sκ

λ(coshρ(κζ ) – sinhρ(κζ ) + s)
,

Q36(ζ ) = –
κ(sinhρ(κζ ) + coshρ(κζ ))

λ(sinhρ(κζ ) + coshρ(κζ ) + r)
.

12: When κ = � , λ = qλ(q 	= 0), and ν = 0,

Q37(ζ ) =
sρ�ζ

r – qsρ�ζ
.

Here, we define the hyperbolic and trigonometric functions as follows:

sinhρ(ζ ) =
qρζ – sρ–ζ

2
, coshρ(ζ ) =

rρζ + sρ–ζ

2
,

tanhρ(ζ ) =
rρζ – sρ–ζ

rρζ + sρ–ζ
, cothρ(ζ ) =

rρζ + sρ–ζ

rρζ – sρ–ζ
,

cschρ(ζ ) =
2

rρζ – sρ–ζ
, sechρ(ζ ) =

2
rρζ + sρ–ζ

,

sinρ(ζ ) =
rριζ – sρ–ιζ

2ι
, cosρ(ζ ) =

rριζ + sρ–ιζ

2
,

tanρ(ζ ) = –i
rριζ – sρ–ιζ

rριζ + sρ–ιζ
, cotρ(ζ ) = i

rριζ + sρ–ιζ

rριζ – sρ–ιζ
,

cscρ(ζ ) =
2ι

rριζ – sρ–ιζ
, sechρ(ζ ) =

2
rριζ + sρ–ιζ

,

where r and s are constants also called deformation parameters, while � = κ2 – 4νλ.

4.2 Application of the new extended direct algebraic method
In this section, our aim is to obtain the optical solitons of Eqs. (1)–(8). For this, one needs
to solve only Eq. (20) first. After balancing the highest-order derivative terms with the
nonlinear terms appearing in Eq. (20), one can take the solution of the form

U(ζ ) = a0 + a1Q(ζ ). (24)
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After plugging (24) into (20) and equating coefficients of various powers of Q(ζ ), we get
the following system of algebraic equations:

Q3(ζ ) : 2aa1λ
2 ln(ρ)2 – 8Na1λ

2 ln(ρ)2 + ca3
1 = 0,

Q2(ζ ) : 3aa1κ ln(ρ)2λ – 12Na1κ ln(ρ)2λ + 3ca0a2
1 = 0,

Q1(ζ ) : aa1κ
2 ln(ρ)2 + 2aa1λ ln(ρ)2ν – 4Na1κ

2 ln(ρ)2 – 8Na1λ ln(ρ)2ν

– aa1k2 – a1P – a1w + 3ca2
0a1 = 0,

Q0(ζ ) : aa1κ ln(ρ)2ν – 4Na1κ ln(ρ)2ν – a0ak2 – a0P – a0w + ca3
0 = 0.

(25)

Solving the above system of (25) with the help of Maple for a0, a1, and w, we get the fol-
lowing solution:

a0 = ±�κ , a1 = ±2λ�,

w =
(

–κ2a – P + ln(ρ)2
(

1
2

a – 2N
)

(
4νλ – κ2)

)
,

(26)

where

� =
ln(ρ)

√
–2c(a – 4N)

2c
.

After substituting (26) into (24) and using transformation (10), we get the solutions as
follows.

Case 1. When � < 0 and λ 	= 0,

u1(x, t) = ±�
√

–� tanρ

(√
–�

2
ζ

)
ei
(x,t),

u2(x, t) = ±�
√

–� cotρ

(√
–�

2
ζ

)
ei
(x,t),

u3(x, t) = ±�
√

–�
(
tanρ(

√
–�ζ ) ± √

mn secρ(
√

–�ζ )
)
ei
(x,t),

u4(x, t) = ±�
√

–�
(
– cotρ(

√
–�ζ ) ± √

mn cscρ(
√

–�ζ )
)
ei
(x,t),

u5(x, t) = ±1
2
�

√
–�

(
tanρ

(√
–�

4
ζ

)
± cotρ

(√
–�

4
ζ

))
ei
(x,t).

Case 2. When � > 0 and λ 	= 0,

u6(x, t) = ±�
√

� tanhρ

(√
�

2
ζ

)
ei
(x,t),

u7(x, t) = ±�
√

� cothρ

(√
�

2
ζ

)
ei
(x,t),

u8(x, t) = ±�
√

�
(
– tanhρ(

√
�ζ ) ± i

√
mn sechρ(

√
�ζ )

)
ei
(x,t),

u9(x, t) = ±�
√

�
(
– cothρ(

√
�ζ ) ± √

mn cschρ(
√

�ζ )
)
ei
(x,t),

u10(x, t) = ±1
2
�

√
�

(
– tanhρ

(√
�

4
ζ

)
± cothρ

(√
�

4
ζ

))
ei
(x,t).
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Case 3. When λν > 0 and κ = 0,

u11(x, t) = ±2�
√

νλ tanρ(
√

νλζ )ei
(x,t),

u12(x, t) = ±2�
√

νλ cotρ(
√

νλζ )ei
(x,t),

u13(x, t) = ±2�
√

νλ
(
tanρ(2

√
νλζ ) ± √

mn secρ(2
√

νλζ )
)
ei
(x,t),

u14(x, t) = ±2�
√

νλ
(
– cotρ(2

√
νλζ ) ± √

mn cscρ(2
√

νλζ )
)
ei
(x,t),

u15(x, t) = ±�
√

νλ

(
tanρ

(√
νλ

2
ζ

)
± cotρ

(√
νλ

2
ζ

))
ei
(x,t).

Case 4. When λν < 0 and κ = 0,

u16(x, t) = ±2�
√

–νλ tanhρ(
√

–νλζ )ei
(x,t),

u17(x, t) = ±2�
√

–νλ cothρ(
√

–νλζ )ei
(x,t),

u18(x, t) = ±2�
√

–νλ
(
– tanhρ(2

√
–νλζ ) ± i

√
mn sechρ(2

√
–νλζ )

)
ei
(x,t),

u19(x, t) = ±2�
√

νλ
(
– cothρ(2

√
–νλζ ) ± √

mn cschρ(2
√

–νλζ )
)
ei
(x,t),

u20(x, t) = ±�
√

2νλ

(
– tanhρ

(√
–νλ

2
ζ

)
± cothρ

(√
–νλ

2
ζ

))
ei
(x,t).

Case 5. When κ = 0 and λ = ν ,

u21(x, t) = ±2�ν tanρ(νζ )ei
(x,t),

u21(x, t) = ±2�ν cotρ(νζ )ei
(x,t),

u23(x, t) = ±2�ν(tanρ(2νζ ) ± √
mn secρ(2νζ )ei
(x,t),

u24(x, t) = ±2�ν(– cotρ(2νζ ) ± √
mn cscρ(2νζ )ei
(x,t),

u25(x, t) = ±�ν

(
tanρ

(
ν

2
ζ

)
± cotρ

(
ν

2
ζ

))
ei
(x,t).

Case 6. When κ = 0 and λ = –ν ,

u26(x, t) = ±2�ν tanhρ(νζ )ei
(x,t),

u27(x, t) = ±2�ν cothρ(νζ )ei
(x,t),

u28(x, t) = ±2�ν(– tanhρ(2νζ ) ± i
√

mn sechρ(2νζ )ei
(x,t),

u29(x, t) = ±2�ν(– cothρ(2νζ ) ± √
mn cschρ(2νζ )ei
(x,t),

u30(x, t) = ±�ν

(
– tanρ

(
ν

2
ζ

)
± cothρ

(
ν

2
ζ

))
ei
(x,t).

Case 7. When κ2 = 4νλ,

u31(x, t) = ±�

(
κ +

(κζ ln(ρ) + 2)
ζ lnρ

)
ei
(x,t),
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Case 8. When κ = ν = 0,

u32(x, t) = ±�

(
–2

ln(ρ)ζ

)
ei
(x,t).

Case 9. When κ = 0, λ = 0,

u33(x, t) = 0.

Case 10. When κ = λ = 0,

u34(x, t) = 0.

Case 11. When ν = 0 and κ 	= 0,

u35(x, t) = ±κ�

(
1 –

2q
[coshρ(κζ ) – sinhρ(κζ ) + s]

)
ei
(x,t),

u36(x, t) = ±κ�

(
2[coshρ(κζ ) + sinhρ(κζ )]

[coshρ(κζ ) + sinhρ(κζ ) + r]

)
ei
(x,t).

Case 12. When κ = �, λ = m�(m 	= 0), and ν = 0,

u37(x, t) = ±��
2rmρ�ζ

r – mqρ�ζ
ei
(x,t),

where ζ and 
 are defined by Eq. (11) and Eq. (12) for conformable derivative, Eq. (13)
and Eq. (14) for beta derivative, and Eq. (15) and Eq. (16) for M-truncated derivative.

Remark Sufficient conditions for the existence of the obtained solutions are presented in
the form of the following proposition.

Proposition 1 If u(x, t) represents the solitary wave solution of Eq. (1), then necessary and
sufficient conditions for its existence are c > 0 and a – 4N < 0.

It is important to note here that the obtained solutions of Eq. (1) represent different types
of soliton solutions. As u6, u16, and u26 represent dark soliton solutions, u8, u18, and u28

are the dark-bright soliton solutions, u10, u20, and u30 show the dark-singular solutions,
u9, u19, and u29 belong to a family of singular solutions of Type 1 and 2, while u7, u17, and
u27 are labeled as singular solution of Type 2.

5 Comparative analysis of solutions with different fractional derivatives
In this section, two solutions u1(x, t) and u8(x, t) are taken into consideration in the sense
of different derivatives and shown in Figs. 1–10 for different values of fractional parameter
α.

Figure 1: In this figure, we took a = 1, ρ = 2, c = 1, α = 0.5, κ = 1, λ = 1, ν = 1, v = 1, k = 1,
P = 1, θ = 1 in u1(x, t) where 1(a) represents its 3D shape with conformable derivative
definition, 1(b) shows its behavior with beta derivative, while 1(c) presents its graphs with
M-truncated derivative with β = 0.9. Figure 1(d) represents a 2D-graph of u1(x, t) at t = 1
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Figure 1 (a) 3D-plot of u1 with conformable, (b) 3D-plot of u1 for beta with α = 0.5. (c) 3D-plot of u1 for
M-truncated with α = 0.5, (d) 2D-plot of u1 with t = 1

Figure 2 (a) 3D-plot of u1 for conformable, (b) 3D-plot of u1 for beta with α = 0.7. (c) 3D-plot of u1 for
M-truncated with α = 0.7, (d) 2D-plot of u1 with t = 1
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Figure 3 (a) 3D-plot of u1 for conformable, (b) 3D-plot of u1 for beta with α = 0.9. (c) 3D-plot of u1 for
M-truncated with α = 0.9, (d) 2D-plot of u1 with t = 1

Figure 4 2D-plot of u1 for different derivatives at t = 1 for different values of α

by using different definitions of derivatives. It is observed that at t = 1 all definitions lead
to different structures. The amplitude of soliton is much higher as compared to other two
definitions with the same value of fractional parameter α.

Figure 2: In this figure, we take a = 1, ρ = 2, c = 1, α = 0.7, κ = 1, λ = 1, ν = 1,
v = 1, k = 1, P = 1, θ = 1 in u1(x, t) where 2(a) shows its 3D structure for conformable
derivative, 2(b) presents its graphs with beta derivative, 2(c) shows a 3D graph at β =
0.9 with M-truncated derivative, and 2(d) is for the 2D-graph of u1(x, t) at t = 1 by
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Figure 5 2D-plot with α = 1,β = 0 of u1(x, t) for different derivatives

Figure 6 (a) 3D-plot of u8 for conformable, (b) 3D-plot of u8 for beta with α = 0.5. (c) 3D-plot of u8 for
conformable, (d) 2D-plot of u8 with t = 1

using different definitions of derivatives. No overlapping exists by changing the def-
initions for solution u1(x, t) with α = 0.7, but it is very interesting to note that this
time curves have very similar behavior, which was not the case for α = 0.5 given in
Fig. 1(d).

Figure 3: In this graph, we assume a = 1, ρ = 2, c = 1, α = 0.9, κ = 1, λ = 1, ν = 1, v = 1,
k = 1, P = 1, θ = 1 in u1(x, t) where 3(a) shows its 3D structure for conformable derivative,
3(b) presents its graphs with beta derivative, in 3(d) at t = 1 2D behavior is observed by
using different definitions of derivative. It is important to mention that at α = 0.9 con-
formable and M-truncated derivatives come very close to each other but beta derivative
shows different behavior. In Fig. 4, a change within the same definition of derivative for
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Figure 7 (a) 3D-plot of u8 for conformable, (b) 3D-plot of u8 for beta with α = 0.7. (c) 3D-plot of u8 for
M-truncated with α = 0.7, (d) 2D-plot of u8 with t = 1

Figure 8 (a) 3D-plot of u8 for conformable, (b) 3D-plot of u8 for beta with α = 0.9. (c) 3D-plot of u8 for
M-truncated, (d) 2D-plot of u8 with t = 1

different values of α is presented for t = 1. Here, it is very important to note that the ampli-
tude of the soliton’s profile decreases by increasing the value of α in case of three different
definitions of derivatives.
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Figure 9 2D-plot of u8 for different derivatives at t = 1 for different values of α

Figure 10 2D-plot with α = 1,β = 0 of u8(x, t) for different derivatives

Here, it is important to mention that for u1(x, t) no overlapping is seen between the
curves by testing different fractional values of α, but in Fig. 5 the same curves are obtained
for conformable and M-truncated derivative with α = 1, while the same solution shows
different behavior for the same values of physical parameters for beta derivative.

Remark In Figs. 6–10, the same comparison is done for the solution u8(x, t) by taking the
same parametric values as taken for u8(x, t). Surprisingly, it is observed that for α = 1 and
t = 1 all definitions have different structures, which was not the case for u1(x, t).

6 Conclusion
In this study, we have used conformable, beta, and M-truncated derivatives to find the
optical solitons of the fractional CGL equation with Kerr law. The new extended algebraic
method is used to obtain these solutions in detail. The physical features of the obtained
solutions have been accounted for in this equation. Here, we have acquired the optical
solitons with three different definitions. We have seen the different classes of soliton so-
lutions in both discussed models in terms of dark soliton solutions, dark-bright soliton,
dark singular soliton, singular soliton of Type 1 and 2, and sufficient conditions for the
existence of these structures are presented. The optical solitons with beta definition are
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found to have different behavior for different values of α as compared to other two defini-
tions which were found very close in shape and structure. An overlapping was found for
α = 1,β = 0 when using conformable and M-truncated derivatives for solution u1(x, t), but
that was not true for u8(x, t). These discussions have been presented in Figures 1–10 by
taking appropriate values of parameters. The applied technique is simple, concise, direct,
and clear to apply as contrasted to other existing techniques in the literature. Likewise, it is
very skilled and practically well developed for obtaining new exact solutions of nonlinear
dispersive equations arising in science and engineering.

Acknowledgements
Researchers Supporting Project Number (RSP-2019/33), King Saud University, Riyadh, Saudi Arabia.

Funding
No specific funding received for this work.

Availability of data and materials
Data sharing not applicable to this article as no data-sets were generated or analysed during the current study.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Formal analysis, NA, AJ, AH, ESMS; Investigation, NA, AJ, AH, IK; Methodology, AJ, NA; Resources, IK; Software, NA, AJ;
Supervision funding, ESMS. All authors equally contributed and approved the final manuscript.

Author details
1Department of Mathematics, Quaid-I-Azam University, 45320, Islamabad, 44000, Pakistan. 2Department of Mathematics,
Namal Institute, Talagang Road, 42250, Mianwali, Pakistan. 3Faculty of Mathematics and Statistics, Ton DucThang
University, 72915, Ho Chi Minh City, Vietnam. 4Mechanical Engineering Department, College of Engineering, King Saud
University, P.O. Box 800, Al-Riyadh, 11421, Saudi Arabia. 5Electrochemistry and Corrosion Laboratory, Department of
Physical Chemistry, National Research Centre, El-Buhouth, St. Dokki, 12622, Cairo, Egypt.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 6 May 2020 Accepted: 12 October 2020

References
1. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)
2. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York

(1993)
3. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
4. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, San Diego (1974)
5. Bas, E., Ozarslan, R.: Real world applications of fractional models by Atangana–Baleanu fractional derivative. Chaos

Solitons Fractals 116, 121–125 (2018)
6. El-Sayed, A.M.A., Gaber, M.: The Adomian decomposition method for solving partial differential equations of fractal

order in finite domains. Phys. Lett. A 359, 175–182 (2006)
7. Mirzazadeh, M., Eslami, M., Biswas, A.: Dispersive optical solitons by Kudryashova method. Optik 125, 6874–6880

(2014)
8. Nazarzadeh, A., Mirzazadeh, M.: Exact solutions of some nonlinear partial differential equations using functional

variable method. Pramana 81, 225–236 (2013)
9. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, Berlin (1989)
10. Fan, E.G.: Extended tanh-function method and its applications to nonlinear equation. Phys. Lett. A 277, 212–218

(2000)
11. Wazwaz, A.M.: The tanh and the sine-cosine methods for the complex modified KdV and the generalized KdV

equations. Comput. Math. Appl. 49, 1101–1112 (2005)
12. Afzal, S.S., Younis, M., Rizvi, S.T.R.: Optical dark and dark-singular solitons with anti-cubic nonlinearity. Comput. Math.

Appl. 147, 27–31 (2017)
13. Jhangeer, A., Hussain, A., Tahir, S., Sharif, S.: Solitonic, super nonlinear, periodic, quasiperiodic, chaotic waves and

conservation laws of modified Zakharov–Kuznetsov equation in transmission line. Commun. Nonlinear Sci. Numer.
Simul. 86, 105254 (2020)

14. Nawaz, B., Ali, K., Rizvi, S.T.R., Younis, M.: Soliton solutions for quintic complex Ginzburg–Landau model. Superlattices
Microstruct. 110, 49–56 (2017)

15. Wang, M., Li, X.: Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation.
Chaos Solitons Fractals 24, 1257–1268 (2005)



Hussain et al. Advances in Difference Equations        (2020) 2020:612 Page 19 of 19

16. Kumar, D., Singh, J., Tanwar, K., Baleanu, D.: A new fractional exothermic reactions model having constant heat source
in porous media with power, exponential and Mittag-Leffler laws. Int. J. Heat Mass Transf. 138, 1222–1227 (2019)

17. Kumar, D., Singh, J., Baleanu, D.: On the analysis of vibration equation involving a fractional derivative with
Mittag-Leffler law. Math. Methods Appl. Sci. 43(1), 443–457 (2020)

18. Singh, J., Kumar, D., Baleanu, D.: A new analysis of fractional fish farm model associated with Mittag-Leffler type
kernel. Int. J. Biomath. 13(2), 2050010 (2020)

19. Kumar, D., Singh, J., Dutt Purohit, S., Swroop, R.: A hybrid analytical algorithm for nonlinear fractional wave-like
equations. Math. Model. Nat. Phenom. 14, 304 (2019)

20. Goswami, A., Singh, J., Kumar, D., Sushila: An efficient analytical approach for fractional equal width equations
describing hydro-magnetic waves in cold plasma. Physica A 524, 563–575 (2019)

21. Veeresha, P., Prakasha, D.G., Baleanu, D., Singh, J.: An efficient computational technique for fractional model of
generalized Hirota–Satsuma coupled KdV and coupled mKdV equations. J. Comput. Nonlinear Dyn. 15, 071003
(2020)

22. Goswami, A., Sushila, S.J., Kumar, D.: Numerical computation of fractional Kersten–Krasil’shchik coupled KdV–mKdV
system arising in multi-component plasmas. AIMS Math. 5(3), 2346–2368 (2020)
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