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Abstract
In this paper, we study the global existence of a bifurcating periodic solution for a two
zooplankton-phytoplankton model with two delays. First, we demonstrate that the
bifurcating periodic solution exists when one delay increases and the other delay
remains unchanged. Second, we give simulation to describe the bifurcating periodic
solution when one delay increases. Our work answers the question in Sect. 5 (Shi and
Yu in Chaos Solitons Fractals 100:62–73, 2017).
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1 Introduction
The dynamics of a plankton model is important for an aquatic system: phytoplankton pro-
duce oxygen by photosynthesis and absorb nearly half carbon dioxide, so phytoplankton
exert great influence on our ecosystem. There have been many works about the dynamics
of a phytoplankton-zooplankton model in recent years. As we know, delays always exist in
nature, which could bring rich dynamics in a large range of biological systems. So the de-
layed phytoplankton-zooplankton model has attracted much interest [1–10]; the model
contains two delays, that is, gestation delay for zooplankton and the maturity delay for
toxic phytoplankton, which have been studied by many researchers [1, 4, 6, 8–10] in re-
cent years. In [1, 9, 10], the authors took the gestation delay as a parameter, and the Hopf
bifurcation was discussed. In [4, 6, 8], the author took the delay required for the matura-
tion of toxic phytoplankton as a parameter, and the dynamics of system was studied. We
know that there always exist more than one delay in the world, so the dynamics of mul-
tiple delays should be more real and interesting. The dynamics of more than one delay
have turned up in recent years [1, 6, 11–13]. For example, the author [6] discussed Hopf
bifurcation of the following phytoplankton-zooplankton system with two delays:

⎧
⎪⎪⎨

⎪⎪⎩

dP1
dt = r1P1(1 – P1

K ) – α1P1P2 – ρ1P1Z,
dP2
dt = r2P2(1 – P2

K ) – α2P1P2 – ρ2P2Z,
dZ
dt = (r1P1 + r2P2)Z – dZ – θ1P1(t – τ1)Z – θ2P2(t – τ2)Z,

(1.1)

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-03060-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-03060-7&domain=pdf
mailto:yangwenguo@njucm.edu.cn


Shi and Yang Advances in Difference Equations        (2020) 2020:603 Page 2 of 9

where the delays τ1 and τ2 stand for the time required for maturity of two toxic phytoplank-
ton. Besides we studied the Hopf bifurcation with two delays caused by the gestation of
two zooplankton [1]:

⎧
⎪⎪⎨

⎪⎪⎩

dP
dt = rP(1 – P

K ) – μ1PZ1
α1+P – μ2PZ2

α2+P ,
dZ1
dt = β1P(t–τ1)Z1(t–τ1)

α1+P(t–τ1) – ρ1P(t)Z1
α1+P(t) – d1Z1 – g1Z2

1,
dZ2
dt = β2P(t–τ2)Z2(t–τ2)

α2+P(t–τ2) – ρ2P(t)Z2
α2+P(t) – d2Z2 – g2Z2

2,

(1.2)

where P(t), Zi(t) (i = 1, 2) denote the density of phytoplankton and zooplankton respec-
tively, r is the intrinsic growth rate for phytoplankton, K is the environmental carrying
capacity of phytoplankton, μi denotes the maximum uptake rate for zooplankton. P

αi+P
denotes the Holling � functional response which describes the grazing for zooplankton.
βi,ρi are the ratio of biomass conversion and the rate of toxic substance produced by per
unit biomass of phytoplankton, di is the death rate, gi denotes the intrinsic competition co-
efficients, αi is the half saturation constant for Holling � functional response, apparently
βi < μi holds. We know that Wu [14] gave the condition about the global Hopf bifurca-
tion for a delay differential system. There exist much work about the global Hopf bifurca-
tion [5, 7–11, 15–17]. Especially there are many works on a phytoplankton-zooplankton
system [5, 7–10]. For example, we take the gestation delay as a parameter, and the global
Hopf bifurcation of the following system is discussed [10]:

⎧
⎨

⎩

dP
dt = rP(1 – P

K ) – μPZ
α+P ,

dZ
dt = ρP(t–τ )Z(t–τ )

α+P(t–τ ) – ρP(t)Z
α+P(t) – dZ – gZ2.

(1.3)

By now, there have been little work about the global Hopf bifurcation with two delays.
In paper [11], the global existence of a bifurcating periodic solution of a neural network
model with two delays was studied by limiting τ1 ∈ (0, τ10) and taking τ2 as a bifurcation
parameter.

Based on the above works, we shall study the global Hopf bifurcation of system (1.2)
with delays, which is the second question given in Sect. 5 [1]. In this paper we should
answer this question: if two delays coexists for system (1.2), limiting τ1 ∈ (0, τ10), when τ2

increases, does the periodic solution exist for ever? This paper is organized as follows: in
Sect. 2, we give some preliminary work about system (1.2). In Sect. 3, based on [14], we
demonstrate the global existence of a periodic solution, then we give some simulation of
the periodic solution of system (1.2).

2 The mathematical model
Before our discussion, we give the condition for the existence and uniqueness of positive
equilibrium.

We know when delays do not exist, dzi
dt < 0 as βi – ρi – di < 0. Hence we assume that

βi – ρi – di > 0 holds. From [4], we know that, for system (1.2), a positive equilibrium
exists when h3( d1α1

β1–ρ1–d1
) > 0, h3( d2α2

β2–ρ2–d2
) > 0 hold, where

h3(P) = r(1 –
P
K

(α1 + P)2(α2 + P)2 –
μ1

g1

(
(β1 – ρ1 – d1)P – d1α1

)
(α2 + P)2
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–
μ2

g2

(
(β2 – ρ2 – d2)P – d2α2

)
(α1 + P)2.

Furthermore, the positive equilibrium is unique when h3(P) is monotone on (P0, P1), the
definition of P0, P1 could be found in [4].

In [1], we discussed the dynamics of system (1.2) under six cases (1)τ1 = τ2 = 0, (2)τ1 >
0, τ2 = 0, (3)τ1 = 0, τ2 > 0, (4)τ1 = τ2 = τ > 0, (5)τ1 ∈ (0, τ10), τ2 > 0, (6)τ2 ∈ (0, τ20), τ1 > 0.
Now we give two results about case (2) and case (5), which is necessary for our work in
this paper.

Lemma 2.1 (Theorem 3.1 [1]) For system (1.2), when τ1 > 0, τ2 = 0, if H21, H22 hold, the
equilibrium (P∗, Z∗

1 , Z∗
2) is asymptotically stable for τ1 ∈ [0, τ10), Hopf bifurcation occurs

when τ1 = τ10.

Lemma 2.2 (Theorem 3.4 [1]) For system (1.2), when τ1 ∈ (0, τ10), if H51, H52 hold, the
equilibrium (P∗, Z∗

1 , Z∗
2) is asymptotically stable when τ2 ∈ (0, τ ∗

20), Hopf bifurcation occurs
when τ2 = τ ∗

20.

From the description of dynamics of system (1.2) under case (5), we could obtain

Re
(

dλ

dτ2

)–1

λ=iω∗
20,τ=τ∗

20

> 0, (2.1)

where

τ
∗(j)
2k =

1
ω∗

2k
arccos

(
R52R53 – R51R54

R2
51 + R2

52

)

+
2jπ
ω∗

2k
, (2.2)

τ ∗
20 = min τ

∗(0)
2k , (k = 0, 1, 2, . . .), (2.3)

the definition of H21, H22, H51, H52, R51, R52, R53, R54, and ω∗
20 could be found in [1].

3 Global Hopf bifurcation
In appendix [1], assuming τ1 < τ ∗

20, we give the property of Hopf bifurcation for Lemma 2.2
by the center manifold theorem and normal form [18]. Based on the above fact, we study
the global Hopf bifurcation under case (5) of system (1.2).

Let X = C([–τ2, 0], R3), ut(θ ) = (P(t + θ ), Z1(t + θ ), Z2(t + θ )), t ≥ 0, θ ∈ [–τ2, 0], then sys-
tem (1.2) becomes

u̇t = F(ut , τ2, T), (3.1)

F(�, τ2, T) =

⎛

⎜
⎝

rφ1(0)(1 – φ1(0)
K ) – μ1φ1(0)φ2(0)

α1+φ1(0) – μ2φ1(0)φ3(0)
α2+φ1(0)

β1φ1(–τ1)φ2(–τ1)
α1+φ1(–τ1) – ρ1φ1(0)φ2(0)

α1+φ1(0) – d1φ2(0) – g1φ
2
2 (0)

β2φ1(–τ2)φ3(–τ2)
α2+φ1(–τ2) – ρ2φ1(0)φ3(0)

α2+φ1(0) – d2φ3(0) – g2φ
2
3 (0)

⎞

⎟
⎠ (3.2)

with � = (φ1,φ2,φ3) and F : X × R+ × R+ → R3
+ is a mapping, we have a mapping F̂ =

F|R3
+×R+×R+ by restricting F to the subspace of a constant function in X. If F̂(û, τ̂2, T̂) = 0,
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then (û, τ̂2, T̂) is called a stationary point, where

F̂(u, τ2, T) =

⎛

⎜
⎝

rP(1 – P
K ) – μ1PZ1

α1+P – μ2PZ2
α2+P

β1PZ1
α1+P – ρ1PZ1

α1+P – d1Z1 – g1Z2
1

β2PZ2
α2+P – ρ2PZ2

α2+P – d2Z2 – g2Z2
2

⎞

⎟
⎠ (3.3)

and

DuF̂(u, τ2, T) =

⎛

⎜
⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎟
⎠ ,

where

a11 = r –
2rP
K

–
μ1Z1

α1 + P
+

μ1PZ1

(α1 + P)2 –
μ2Z2

α2 + P
+

μ2PZ2

(α2 + P)2 ,

a12 = –
μ1P

α1 + P
, a13 = –

μ2P
α2 + P

,

a21 =
(β1 – ρ1)Z1

α1 + P
–

(β1 – ρ1)PZ1

(α1 + P)2 , a22 =
(β1 – ρ1)P

α1 + P
– d1 – 2g1Z1, a23 = 0,

a31 =
(β2 – ρ2)Z2

α2 + P
–

(β2 – ρ2)PZ2

(α2 + P)2 , a32 = 0, a33 =
(β2 – ρ2)P

α2 + P
– d2 – 2g2Z2.

F and F̂ satisfy the following conditions:
(A1) F̂ ∈ C2(R3

+ × R+ × R+, R3
+),

(A2) DûF̂(û, τ2, T) is an isomorphism at equilibrium (û, τ2, T),
(A3) F(�, τ2, T) is differentiable with respect to �.
For any stationary solution (û, τ̂2, T̂), the characteristic matrix of system (1.2) is (û, τ2,

T)(λ) = λI – DF(û, τ2, T)(eλ·I), that is,

(û, τ2, T)(λ) =

⎛

⎜
⎝

b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞

⎟
⎠ ,

where

b11 = λ – r +
2rP̂
K

+
μ1Ẑ1

α1 + P̂
–

μ1P̂Ẑ1

(α1 + P̂)2
+

μ2Ẑ2

α2 + P̂
–

μ2P̂Ẑ2

(α2 + P̂)2
,

b12 =
μ1P̂

α1 + P̂
, b13 =

μ2P̂
α2 + P̂

,

b21 =
ρ1Ẑ1

α1 + P̂
–

ρ1P̂Ẑ1

(α1 + P̂)2
–

(
β1Ẑ1

α1 + P̂
–

β1P̂Ẑ1

(α1 + P̂)2

)

e–λτ1 ,

b22 = λ + d1 + 2g1Ẑ1 +
ρ1P̂

α1 + P̂
–

β1P̂
α1 + P̂

e–λτ1 , b23 = 0,

b31 =
ρ2Ẑ2

α2 + P̂
–

ρ2P̂Ẑ2

(α2 + P̂)2
, –

(
β2Ẑ2

α2 + P̂
–

β2P̂Ẑ2

(α2 + P̂)2

)

e–λτ2 ,
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b32 = 0, b33 = λ + d2 + 2g2Ẑ2 +
ρ2P̂

α2 + P̂
–

β2P̂
α2 + P̂

e–λτ2 .

The zeros of det((û, τ2, T))(λ) = 0 are called characteristic roots. From (A2) we know
that λ = 0 is not a characteristic root. (û, τ̂2, T̂) is called a center if det(û(im 2π

T̂
)) = 0. A cen-

ter (û, τ̂2, T̂) is said to be isolated if it is the only center in some neighborhood of (û, τ̂2, T̂)
and it has a finite characteristic value of form im 2π

T̂
.

From Lemma 2.2 we conclude that (u∗, τ ∗(j)
20 , 2π

ω∗
20

), j = 0, 1, 2, . . . , is an isolated cen-

ter. There exists a smooth curve λ : (τ ∗(j)
20 – δ, τ ∗(j)

20 + δ) → C such that det ((u∗, τ ∗(j)
20 ,

2π
ω∗

20
)(λ(τ2)) = 0, |λ(τ2) – iω∗

20| < ε for τ2 ∈ (τ ∗(j)
20 – δ, τ ∗(j)

20 + δ),λ(τ ∗(j)
20 ) = iω∗

20 and

Re
dλ

dτ2

∣
∣
∣
∣
τ2=τ

∗(j)
20

> 0. (3.4)

Define �ε, 2π
ω∗

20
= {(v, T) : 0 < v < ε, |T – 2π

ω∗
20

| < ε}.

(A4) If and only if v = 0, τ2 = τ
∗(j)
20 , T = 2π

ω∗
20

, j = 0, 1, 2, . . . , det((u∗, τ2, T)(v + i 2π
T )) = 0,

hypotheses (A1)–(A4) in [14] hold, we put H±(u∗, τ ∗(j)
20 , 2π

ω∗
20

)(v, T) = det((u∗, τ ∗(j)
20 ±

δ, 2π
ω∗

20
)(v + 2π i

T )).

The crossing number γ (u∗, τ ∗(j)
20 , 2π

ω∗
20

) of center (u∗, τ ∗(j)
20 , 2π

ω∗
20

) can be defined as follows:

γ

(

u∗, τ ∗(j)
20 ,

2π

ω∗
20

)

= degB

(

H–
(

u∗, τ ∗(j)
20 ,

2π

ω∗
20

)

,�(ε, 2π
ω∗

20
)

)

– degB

(

H+
(

u∗, τ ∗(j)
20 ,

2π

ω∗
20

)

,�(ε, 2π
ω∗

20
)

)

= –1.

For the periodic solution of (1.2), we define�(F) = Cl((u, τ2, T) ∈ X × R+ × R+|u is a
T-periodic solution) N(F) = ((û, τ̂2, T̂) ∈ R5

+|F(û, τ̂2, T̂) = 0).
Let l(u∗, τ ∗(j)

20 , 2π
ω∗

20
) denote the connected component of (u∗, τ ∗(j)

20 , 2π
ω∗

20
) in �(F) for (û, τ̂2,

T̂) = (u∗, τ ∗(j)
20 , 2π

ω∗
20

), we obtain

�(û,τ̂2,T̂)∈l(u∗ ,τ∗(j)
20 , 2π

ω∗
20

)∩N(F)γ (û, τ̂2, T̂) < 0.

The connected component l(u∗, τ ∗(j)
20 , 2π

ω∗
20

) through (u∗, τ ∗(j)
20 , 2π

ω∗
20

) in �(F) is not empty,
since the first crossing number of each center is always –1. By Theorem 3.3 [14], we con-
clude that l(u∗, τ ∗(j)

20 , 2π
ω∗

20
) is unbounded, which is presented as follows.

Lemma 3.1 l(u∗, τ ∗(j)
20 , 2π

ω∗
20

) is unbounded for each center (u∗, τ ∗(j)
20 , 2π

ω∗
20

).

By the fundamental theory [19], system (1.2) admits the existence and uniqueness of the
solution with the initial condition

P(θ ) = φ(θ ) ≥ 0,

Zi(θ ) = ψi(θ ) ≥ 0, θ ∈ [–τ2, 0],φ(0) > 0,ψi(0) > 0, (i = 1, 2).
(3.5)
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Lemma 3.2 (Lemma 2.1 [1]) All the solutions of system (1.2) with initial condition (3.5)
are positive and bounded on [0, +∞).

In [1], we have demonstrated this theorem, so we omit here.

Lemma 3.3 If system (1.2) has no nontrivial periodic solution with period τ2.

Proof: For system (1.2), suppose that there is a nontrivial periodic solution with period
τ2, then the following system has a nontrivial periodic solution:

⎧
⎪⎪⎨

⎪⎪⎩

dP
dt = rP(1 – P

K ) – μ1PZ1
α1+P – μ2PZ2

α2+P ,
dZ1
dt = β1P(t–τ1)Z1(t–τ1)

α1+P(t–τ1) – ρ1PZ1
α1+P – d1Z1 – g1Z2

1,
dZ2
dt = β2PZ2

α2+P – ρ2PZ2
α2+P – d2Z2 – g2Z2

2.

(3.6)

We know that the P – Z1-plane and the Z1 – Z2-plane are invariant manifolds for system
(3.6), there are no orbits crossing these two planes for the orbits do not intersect each other.
Let t′ = inf{t : Z1(t) = 0}, combining with initial condition (3.5) and the second equation of
(3.6), we get

dZ1

dt

∣
∣
∣
∣
t=t′

=
β1P(t′ – τ1)Z1(t′ – τ1)

α1 + P(t′ – τ1)
≥ 0,

from which the orbits do not cross the P – Z2-plane, so all the orbits must lie in the
first quadrant and equilibrium E∗ should be in the interior of a periodic solution. From
Lemma 2.1 (τ1 ∈ (0, τ10), τ2 = 0), E∗ is stable and unique, so it is globally stable in the first
quadrant, the periodic solution does not exist. Thus there is no periodic orbit in the first
quadrant.

Theorem 3.1 For each τ2 > τ
∗(j)
20 , j = 0, 1, 2, . . . , system (1.2) has at least j + 1 periodic solu-

tions.

Proof It is sufficient to prove that the connected component l(u∗, τ ∗(j)
20 , 2π

ω∗
20

) onto the τ2

space is (τ̄ , +∞), where τ̄ ≤ τ
∗(j)
20 , j = 0, 1, 2, . . . . From Lemma 3.3, we know that system

(3.6) does not have a nontrivial periodic solution, so the projection of l(u∗, τ ∗(j)
20 , 2π

ω∗
20

) onto
the τ2 space is always from zeros. From expression (2.2), we get

τ
∗(j)
20 =

1
ω∗

20
arcos

(
R52R53 – R51R54

R2
51 + R2

52

)

+
2jπ
ω∗

20
, (3.7)

so we obtain 2π
ω∗

20
< τ

∗(j)
20 for j > 0. Suppose that the projection of l(u∗, τ ∗(j)

20 , 2π
ω∗

20
) onto

the τ2 space is bounded, there exists τ ∗ > 0, so the projection of l(u∗, τ ∗(j)
20 , 2π

ω∗
20

) onto

the τ2 space is in the interval (0, τ ∗). From 2π
ω∗

20
< τ

∗(j)
20 (j ≥ 1) and Lemma 3.3, 0 < T <

τ ∗ for (u(t), τ2, T) ∈ l(u∗, τ ∗(j)
20 , 2π

ω∗
20

), which means that the projection of l(u∗, τ ∗(j)
20 , 2π

ω∗
20

)
onto the T space is also bounded. By Lemma 3.2, we obtain that the connected com-
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Figure 1 When τ1 = 0.2,τ2 = 0.78853, the periodic solution bifurcates from E∗

ponent l(u∗, τ ∗(j)
20 , 2π

ω∗
20

) is bounded, which contradicts Lemma 3.1, so the proof is com-
pleted. �

4 Numerical simulation
We give some simulation to support our result. We take the same parameter to [1], system
(1.2) becomes

⎧
⎪⎪⎨

⎪⎪⎩

dP
dt = 5P(1 – P

4 ) – 0.6PZ1
2+P – 0.64PZ1

2+P ,
dZ1
dt = 0.43P(t–τ1)Z1(t–τ1)

2+P(t–τ1) – 0.1PZ1
2+P – 0.11Z1 – 0.0008Z2

1,
dZ2
dt = 0.53P(t–τ2)Z2(t–τ2)

2+P(t–τ2) – 0.1PZ2
2+P – 0.11Z2 – 0.01Z2

2.

(4.1)

From [1] we know that system (4.1) has a unique equilibrium E∗ = (1.15632, 13.62813,
4.75297). For case (2), τ10 = 0.79432. For case (5), fixing τ1 = 0.2, then τ ∗

20 = 0.32688, when
τ2 = 0.30115 < τ ∗

20, E∗ is asymptotically stable, when τ2 = 0.94733 > τ ∗
20, Hopf bifurcation

occurs and a periodic solution bifurcates from E∗, which is illustrated in Figs. 7 and 8 in
[1].

Furthermore, we know that system (1.2) has a periodic solution for large τ2, (τ1 ∈ (0, τ10))
from global Hopf bifurcation. Figures 1, 2, and 3 show the amplitude and period of a bi-
furcating periodic solution for different values of τ2(τ2 = 0.78853, 2.20041, 5.75432). We
conclude that the amplitude and period increase as τ2 increases.

5 Conclusion
In this paper, we study the global Hopf bifurcation of two zooplankton-phytoplankton
system with two delays. Fixing the delay τ1 in its stable interval and taking the delay τ2 as
a parameter, we demonstrate that the bifurcating periodic solution exists as τ2 increases,
where the delays τ1, τ2 are due to gestation of two zooplankton. We conclude the global
oscillatory nature for the solution of a delayed system when it exhibits oscillatory behavior.
Our work answers the question in Sect. 5 [1].
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Figure 2 When τ1 = 0.2,τ2 = 2.20041, the periodic solution bifurcates from E∗

Figure 3 When τ1 = 0.2,τ2 = 5.75432, the periodic solution bifurcates from E∗
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