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Abstract
In this article, a new explicit group iterative scheme is developed for the solution of
two-dimensional fractional Rayleigh–Stokes problem for a heated generalized
second-grade fluid. The proposed scheme is based on the high-order compact
Crank–Nicolson finite difference method. The resulting scheme consists of three-level
finite difference approximations. The stability and convergence of the proposed
method are studied using the matrix energy method. Finally, some numerical
examples are provided to show the accuracy of the proposed method.
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1 Introduction
The fractional calculus has gained attention because of its application in engineering,
physics, and chemistry [1–5]. Fractional differential equations represent more complex
models, but mostly it is difficult to solve them analytically. Therefore different researchers
are looking for numerical methods, e.g., finite element method, spectral method, and fi-
nite difference method, to find the solution to these fractional differential equations [6–
22]. The finite difference method is relatively simple and easy; that is why it has been seen
more in the literature for the solution of fractional differential equations.

In this paper, we consider two dimensional (2D) Rayleigh–Stokes problem for a heated
generalized second-grade fluid with fractional derivative and a nonhomogeneous term of
the form:

∂w(x, y, t)
∂t

= 0D1–γ
t

(
∂2w(x, y, t)

∂x2 +
∂2w(x, y, t)

∂y2

)

+
∂2w(x, y, t)

∂x2 +
∂2w(x, y, t)

∂y2 + f (x, y, t) (1)
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with initial and boundary conditions

w(x, y, t) = g(x, y, t), (x, y) ∈ ∂�,

w(x, y, 0) = h(x, y), (x, y) ∈ �,
(2)

where 0 < γ < 1, � = {(x, y)|0 ≤ x ≤ L, 0 ≤ y ≤ L}.
The Rayleigh–Stokes problem has gained attention in recent years. This problem plays a

vital role to show the dynamic behavior of some non-Newtonian fluids, and the fractional
derivative in this model is used to capture the viscoelastic behavior of the flow [23, 24].

Several numerical methods are presented in the literature for the solution of frac-
tional Rayleigh–Stokes problem, for example, Chen et al. [25] have solved the problem
using explicit and implicit finite difference methods, they have also presented its stabil-
ity and convergence using Fourier analysis. The convergence order for both schemes is
O(τ + �x2 + �y2). Ramy et al. [26] solved Rayleigh–Stokes problem using Jacobi spectral
Galerkin method. The method they derived is efficient and easily generalizes to multi-
ple dimensions. The advantages of this method are reasonable accuracy and relatively
fewer degrees of freedom. Mohebbi et al. [27] used a higher-order implicit finite differ-
ence scheme for two-dimensional Rayleigh–Stokes problem and discussed its convergence
and stability by Fourier analysis. The convergence order of their scheme is shown to be
O(τ + �x4 + �y4).

High-order schemes produce more accurate results, but suffer from slow convergence
due to the increase of complexity in the algorithm. Since explicit group methods reduce
algorithm complexity [28–31], we propose the use of explicit group method for the solu-
tion of two-dimensional Rayleigh–Stokes problem for a heated generalized second-grade
fluid. The main purpose of this article is to solve two-dimensional Rayleigh–Stokes prob-
lem with the high-order explicit group method (HEGM).

The paper is arranged as follows; in Sect. 2, we give the formulation of the high-order
compact explicit group scheme, and its stability is discussed in Sect. 3. In Sect. 4, the
convergence of the proposed scheme is discussed. In Sect. 5, some numerical examples
are presented with discussion, and finally, the conclusion is presented in Sect. 6.

2 The group explicit scheme
First, let us define the following notations:

δ2
x wk

i,j = wk
i+1,j – 2wk

i,j + wk
i–1,j, δ2

y wk
i,j = wk

i,j+1 – 2wk
i,j + wk

i,j–1,

wk+ 1
2

i,j =
wk+1

i,j + wk
i,j

2
, xi = i�x, yj = j�y, {i, j = 0, 1, 2, 3, . . . , M},

tk = kτ , {k = 0, 1, 2, 3, . . . , N},

where �x = �y = h = L
M which represent the space step and �t = T

N represents the time
step. The operators δ2

x and δ2
y , which consist of the three-point stencil [32], satisfy

δ2
x

h2(1 + 1
12δ2

x )
wk

i,j =
∂2w
∂x2

∣∣∣∣
k

i,j
–

1
240

∂4w
∂x4

∣∣∣∣
k

i,j
+ O

(
h6) (3)



Khan et al. Advances in Difference Equations        (2020) 2020:598 Page 3 of 22

and

δ2
y

h2(1 + 1
12δ2

y )
wk

i,j =
∂2w
∂y2

∣∣∣∣
k

i,j
–

1
240

∂4w
∂y4

∣∣∣∣
k

i,j
+ O

(
h6). (4)

The relationship between the Grunwald–Letnikov and Riemann–Liouville fractional
derivatives is defined as [27, 33]

0D1–γ

l f (t) =
1

τ 1–γ

[ t
τ ]∑

k=0

ω
1–γ

k f (t – kτ ) + O
(
τ p), (5)

where ω
1–γ

k are the coefficients of the generating function, that is, ω(z,γ ) =
∑∞

k=0 ω
γ

k zk . We
consider ω(z,γ ) = (1 – z)γ for p = 1, so the coefficients are ω

γ
0 = 1 and

ω
γ

k = (–1)k

(
γ

k

)
= (–1)k γ (γ – 1) · · · (γ – k + 1)

k!

=
(

1 –
2 – γ

k

)
ω

γ

k–1, k ≥ 1. (6)

Let ηl = ω
1–γ

l , then

η0 = 1 and ηl = (–1)l

(
1 – γ

l

)
=

(
1 –

2 – γ

k

)
ηl–1, k ≥ 1.

From (5) we can obtain the following:

0D1–γ
t

∂2w(x, y, t)
∂x2 = τ γ –1

[ t
τ ]∑

l=0

ηl
∂2w(x, y, t – lτ )

∂x2 + O
(
τ p), (7)

0D1–γ
t

∂2w(x, y, t)
∂y2 = τ γ –1

[ t
τ ]∑

l=0

ηl
∂2w(x, y, t – lτ )

∂y2 + O
(
τ p). (8)

Using (3), (4), (7), (8), and (1), we have

wk+1
i,j – wk

i,j

τ
= τ 1–γ

( k∑
l=0

ηl
δ2

x

h2(1 + 1
12δ2

x )
+

k∑
l=0

ηl
δ2

y

h2(1 + 1
12δ2

y )

)
wk–l+ 1

2
i,j

+
δ2

x

h2(1 + 1
12δ2

x )
wk+ 1

2
i,j +

δ2
y

h2(1 + 1
12δ2

y )
wk+ 1

2
i,j + f k+ 1

2
i,j . (9)

Multiplying both sides by τ (1 + 1
12δ2

x )(1 + 1
12δ2

y ), we have

(
1 +

1
12

δ2
x

)(
1 +

1
12

δ2
y

)(
wk+1

i,j – wk
i,j
)

=
τ 2–γ

2h2

k+1∑
l=0

ηl

(
δ2

x + δ2
y +

δ2
xδ

2
y

6

)
wk+1–l

i,j

+
τ 2–γ

2h2

k∑
l=0

ηl

(
δ2

x + δ2
y +

δ2
xδ

2
y

6

)
wk–l

i,j
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+
τ

2h2

(
δ2

x + δ2
y +

δ2
xδ

2
y

6

)(
wk+1

i,j + wk
i,j
)

+ τ

(
1 +

1
12

δ2
x

)(
1 +

1
12

δ2
y

)
f k+ 1

2
i,j .

After simplifying and rearranging, we get Crank–Nicoslon (C–N) high-order compact
scheme

a1wk+1
i,j = a2

(
wk+1

i+1,j + wk+1
i–1,j + wk+1

i,j+1 + wk+1
i,j–1

)
+ a3

(
wk+1

i+1,j+1 + wk+1
i–1,j+1

+ wk+1
i+1,j–1 + wk+1

i–1,j–1
)

+ a4wk
i,j + a5

(
wk

i+1,j + wk
i–1,j + wk

i,j+1 + wk
i,j–1

)

+ a6
(
wk

i+1,j+1 + wk
i–1,j+1 + wk

i+1,j–1 + wk
i–1,j–1

)
+

25τ

36
f k+ 1

2
i,j +

5τ

72
(
f k+ 1

2
i+1,j

+ f k+ 1
2

i–1,j + f k+ 1
2

i,j+1 + f k+ 1
2

i,j–1
)

+
τ

144
(
f k+ 1

2
i+1,j+1 + f k+ 1

2
i–1,j+1 + f k+ 1

2
i+1,j–1 + f k+ 1

2
i–1,j–1

)

+ S1

[ k+1∑
l=2

ηl

(
–10

3
wk+1–l

i,j +
2
3
(
wk+1–l

i+1,j + wk+1–l
i–1,j + wk+1–l

i,j+1 + wk+1–l
i,j–1

))]

+
S1

6
(
wk+1–l

i+1,j+1 + wk+1–l
i–1,j+1 + wk+1–l

i+1,j–1 + wk+1–l
i–1,j–1

)
+ S1

[ k∑
l=1

ηl

(
–10

3
wk–l

i,j

+
2
3
(
wk–l

i+1,j + wk–l
i–1,j + wk–l

i,j+1 + wk–l
i,j–1

))]
+

S1

6
(
wk–l

i+1,j+1 + wk–l
i–1,j+1

+ wk–l
i+1,j–1 + wk–l

i–1,j–1
)

+ O
(
τ + h4), (10)

where

S1 =
τ γ

2h2 , S2 =
τ

2h2 , H = S1 + S2,

a1 =
5

36
(5 + 24H), a2 =

1
144

(–10 + 96H), a3 =
1

144
(–1 + 24H),

a4 =
1

144
(
100 – 480(H + S1η1)

)
, a5 =

1
144

(
10 + 96(H + S1η1)

)
,

a6 =
1

144
(
1 + 24(H + S1η1)

)
.

Applying (8) to the group of four points (as shown in Fig. 1) will result in the following
4 × 4 system:

⎡
⎢⎢⎢⎣

a1 –a2 –a3 –a2

–a2 a1 –a2 –a3

–a3 –a2 a1 –a2

–a2 –a3 –a2 a1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

wi,j

wi+1,j

wi+1,j+1

wi,j+1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

rhsi,j

rhsi+1,j

rhsi+1,j+1

rhsi,j+1

⎤
⎥⎥⎥⎦ , (11)

where

rhsi,j = a2
(
wk+1

i–1,j + wk+1
i,j–1

)
+ a3

(
wk+1

i–1,j+1 + wk+1
i+1,j–1 + wk+1

i–1,j–1
)

+ a4wk
i,j

+ a5
(
wk

i+1,j + wk
i–1,j + wk

i,j+1 + wk
i,j–1

)
+ a6

(
wk

i+1,j+1 + wk
i–1,j+1
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Figure 1 Groups of four points for HEGM

+ wk
i+1,j–1 + wk

i–1,j–1
)

+
25
36

τ f k+ 1
2

i,j +
5

72
τ
(
f k+ 1

2
i+1,j + f k+ 1

2
i–1,j + f k+ 1

2
i,j+1

+ f k+ 1
2

i,j–1
)

+
τ

144
(
f k+ 1

2
i+1,j+1 + f k+ 1

2
i–1,j+1 + f k+ 1

2
i+1,j–1 + f k+ 1

2
i–1,j–1

)

+ s1

k+1∑
l=2

λl

(
–10

3
wk+1–l

i,j +
2
3
(
wk+1–l

i+1,j + wk+1–l
i–1,j + wk+1–l

i,j+1

+ wk+1–l
i,j–1

)
+

1
6
(
wk+1–l

i+1,j+1 + wk+1–l
i–1,j+1 + wk+1–l

i+1,j–1 + wk+1–l
i–1,j–1

))

+ +s1

k∑
l=1

λl

(
–10

3
wk–l

i,j +
2
3
(
wk–l

i+1,j + wk–l
i–1,j + wk–l

i,j+1 + wk–l
i,j–1

)

+
1
6
(
wk–l

i+1,j+1 + wk–l
i–1,j+1 + wk–l

i+1,j–1 + wk–l
i–1,j–1

))
,

rhsi+1,j = a2
(
wk+1

i+2,j + wk+1
i+1,j–1

)
+ a3

(
wk+1

i+2,j+1 + wk+1
i+2,j–1 + wk+1

i,j–1
)

+ a4wk
i+1,j

+ a5
(
wk

i+2,j + wk
i,j + wk

i+1,j+1 + wk
i+1,j–1

)
+ a6

(
wk

i+2,j+1 + wk
i,j+1

+ wk
i+2,j–1 + wk

i,j–1
)

+
25
36

τ f k+ 1
2

i+1,j +
5

72
τ
(
f k+ 1

2
i+2,j + f k+ 1

2
i,j + f k+ 1

2
i+1,j+1

+ f k+ 1
2

i+1,j–1
)

+
τ

144
(
f k+ 1

2
i+2,j+1 + f k+ 1

2
i,j+1 + f k+ 1

2
i+2,j–1 + f k+ 1

2
i,j–1

)

+ s1

k+1∑
l=2

λl

(
–10

3
wk+1–l

i+1,j +
2
3
(
wk+1–l

i+2,j + wk+1–l
i,j + wk+1–l

i+1,j+1

+ wk+1–l
i+1,j–1

)
+

1
6
(
wk+1–l

i+2,j+1 + wk+1–l
i,j+1 + wk+1–l

i+2,j–1 + wk+1–l
i,j–1

))

+ s1

k∑
l=1

λl

(
–10

3
wk–l

i+1,j +
2
3
(
wk–l

i+2,j + wk–l
i,j + wk–l

i+1,j+1 + wk–l
i+1,j–1

)

+
1
6
(
wk–l

i+2,j+1 + wk–l
i,j+1 + wk–l

i+2,j–1 + wk–l
i,j–1

))
,

rhsi+1,j+1 = a2
(
wk+1

i+2,j+1 + wk+1
i+1,j+2

)
+ a3

(
wk+1

i+2,j+2 + wk+1
i,j+2 + wk+1

i+2,j
)

+ a4wk
i+1,j+1

+ a5
(
wk

i+2,j+1 + wk
i,j+1 + wk

i+1,j+2 + wk
i+1,j

)
+ a6

(
wk

i+2,j+2 + wk
i,j+2
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+ wk
i+2,j + wk

i,j
)

+
25
36

τ f k+ 1
2

i+1,j+1 +
5

72
τ
(
f k+ 1

2
i+2,j+1 + f k+ 1

2
i,j+1 + f k+ 1

2
i+1,j+2

+ f k+ 1
2

i+1,j
)

+
τ

144
(
f k+ 1

2
i+2,j+2 + f k+ 1

2
i,j+2 + f k+ 1

2
i+2,j + f k+ 1

2
i,j

)

+ s1

k+1∑
l=2

λl

(
–10

3
wk+1–l

i+1,j+1 +
2
3
(
wk+1–l

i+2,j+1 + wk+1–l
i,j+1 + wk+1–l

i+1,j+2

+ wk+1–l
i+1,j

)
+

1
6
(
wk+1–l

i+2,j+2 + wk+1–l
i,j+2 + wk+1–l

i+2,j + wk+1–l
i,j

))

+ +s1

k∑
l=1

λl

(
–10

3
wk–l

i+1,j+1 +
2
3
(
wk–l

i+2,j+1 + wk–l
i,j+1 + wk–l

i+1,j+2 + wk–l
i+1,j

)

+
1
6
(
wk–l

i+2,j+2 + wk–l
i,j+2 + wk–l

i+2,j + wk–l
i,j

))
,

rhsi,j+1 = a2
(
wk+1

i–1,j+1 + wk+1
i,j+2

)
+ a3

(
wk+1

i–1,j+2 + wk+1
i+1,j+2 + wk+1

i–1,j
)

+ a4wk
i,j+1

+ a5
(
wk

i+1,j+1 + wk
i–1,j+1 + wk

i,j+2 + wk
i,j
)

+ a6
(
wk

i+1,j+2 + wk
i–1,j+2

+ wk
i+1,j + wk

i–1,j
)

+
25
36

τ f k+ 1
2

i,j+1 +
5

72
τ
(
f k+ 1

2
i+1,j+1 + f k+ 1

2
i–1,j+1 + f k+ 1

2
i,j+2

+ f k+ 1
2

i,j
)

+
τ

144
(
f k+ 1

2
i+1,j+2 + f k+ 1

2
i–1,j+2 + f k+ 1

2
i+1,j + f k+ 1

2
i–1,j

)

+ s1

k+1∑
l=2

λl

(
–10

3
wk+1–l

i,j+1 +
2
3
(
wk+1–l

i+1,j+1 + wk+1–l
i–1,j+1 + wk+1–l

i,j+2

+ wk+1–l
i,j

)
+

1
6
(
wk+1–l

i+1,j+2 + wk+1–l
i–1,j+2 + wk+1–l

i+1,j + wk+1–l
i–1,j

))

+ s1

k∑
l=1

λl

(
–10

3
wk–l

i,j+1 +
2
3
(
wk–l

i+1,j+1 + wk–l
i–1,j+1 + wk–l

i,j+2 + wk–l
i,j

)

+
1
6
(
wk–l

i+1,j+2 + wk–l
i–1,j+2 + wk–l

i+1,j + wk–l
i–1,j

))
.

The matrix (9) is inverted to get the high-order compact explicit group equation

⎡
⎢⎢⎢⎣

wi,j

wi+1,j

wi+1,j+1

wi,j+1

⎤
⎥⎥⎥⎦ =

1
d

⎡
⎢⎢⎢⎣

φ1 φ2 φ3 φ2

φ2 φ1 φ2 φ3

φ3 φ2 φ1 φ2

φ2 φ3 φ2 φ1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

rhsi,j

rhsi+1,j

rhsi+1,j+1

rhsi,j+1

⎤
⎥⎥⎥⎦ , (12)

where

φ1 = a3
1 – 2a1a2

2 – 2a2
2a3 – a1a2

3, φ2 = a2
1a2 + 2a1a2a3 + a2a2

3,

φ3 = 2a1a2
2 + a2

1a3 + 2a2
2a3 – a3

3, d =
(
–4a2

2 + (a1 – a3)2)(a1 + a3)2.

Figure 1 shows grid points on the x–y plane with mesh size m = 10, where the groups of
four points are computed using (10) and the remaining points are computed using (8).
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3 Stability of the proposed method

First we recall the following lemma.

Lemma 1 ([34]) The coefficients ηl satisfy the following relations:

(1) η0 = 1, η1 = γ – 1, ηl < 0, l = 1, 2, . . . ,

(2)
∞∑
l=0

ηl = 0, ∀n ∈ N , –
n∑

l=1

ηl < 1.

The stability of the proposed method is analyzed using the matrix analysis method. Form
(9), we obtain

M1w1 = N1w0 + τP1
(
F

1
2
)
, k = 0,

M1wk+1 = N1wk + s1

k+1∑
l=2

λlP1
(
wk+1–l)

+ s1

k∑
l=1

λlP1
(
wk–l) + τP1

(
Fk+ 1

2
)
, k > 0,

(13)

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R1 R3 0
R2 R1 R3

R2 R1
. . . R3

0 R2 R1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, N1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P1 P3 0
P2 P1 P3

P2 P1
. . . P3

0 P2 P1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

P1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q1 Q3 0
Q2 Q1 Q3

Q2 Q1
. . . Q3

0 Q2 Q1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, R1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G1 G3

G2 G1 G3

G2 G1
. . . G3

G2 G1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

R2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G6 G4

G8 G6 G4

G8 G6
. . . G4

G8 G6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, R3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G7 G9

G5 G7 G9

G5 G7
. . . G9

G5 G7

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

P1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H1 H3

H2 H1 H3

H2 H1
. . . H3

H2 H1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, p2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H6 H4

H8 H6 H4

H8 H6
. . . H4

H8 H6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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P3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H7 H9

H5 H7 H9

H5 H7
. . . H9

H5 H7

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L1 L3

L2 L1 L3

L2 L1
. . . L3

L2 L1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L6 L4

L8 L6 L4

L8 L6
. . . L4

L8 L6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Q3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L7 L9

L5 L7 L9

L5 L7
. . . L9

L5 L7

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

G1 =

⎡
⎢⎢⎢⎣

a1 –a2 –a3 –a2

–a2 a1 –a2 –a3

–a3 –a2 a1 –a2

–a2 –a3 –a2 a1

⎤
⎥⎥⎥⎦ , G2 =

⎡
⎢⎢⎢⎣

0 0 –a3 –a2

0 0 –a2 –a3

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ ,

G3 =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 0

–a3 –a2 0 0
–a2 –a3 0 0

⎤
⎥⎥⎥⎦ , G4 =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 –a3 0 0

⎤
⎥⎥⎥⎦ ,

G5 =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 –a3

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ , G6 =

⎡
⎢⎢⎢⎣

0 –a2 –a3 0
0 0 0 0
0 0 0 0
0 –a3 –a2 0

⎤
⎥⎥⎥⎦ ,

G7 =

⎡
⎢⎢⎢⎣

0 0 0 0
–a2 0 0 –a3

–a3 0 0 –a2

0 0 0 0

⎤
⎥⎥⎥⎦ , G8 =

⎡
⎢⎢⎢⎣

0 0 –a3 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ ,

G9 =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 0

–a3 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ ,

H1 =

⎡
⎢⎢⎢⎣

a4 a5 a6 a5

a5 a4 a5 a6

a6 a5 a4 a5

a5 a6 a5 a4

⎤
⎥⎥⎥⎦ , H2 =

⎡
⎢⎢⎢⎣

0 0 a6 a5

0 0 a5 a6

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ ,

H3 =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 0
a6 a5 0 0
a5 a6 0 0

⎤
⎥⎥⎥⎦ , H4 =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 a6 0 0

⎤
⎥⎥⎥⎦ ,
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H5 =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 a6

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ , H6 =

⎡
⎢⎢⎢⎣

0 a5 a6 0
0 0 0 0
0 0 0 0
0 a6 a5 0

⎤
⎥⎥⎥⎦ ,

H7 =

⎡
⎢⎢⎢⎣

0 0 0 0
a5 0 0 a6

a6 0 0 a5

0 0 0 0

⎤
⎥⎥⎥⎦ , H8 =

⎡
⎢⎢⎢⎣

0 0 a6 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ , H9 =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 0
a6 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ ,

L1 =
1
3

⎡
⎢⎢⎢⎣

–10 2 1
2 2

2 –10 2 1
2

1
2 2 –10 2
2 1

2 2 –10

⎤
⎥⎥⎥⎦ , L2 =

1
3

⎡
⎢⎢⎢⎣

0 0 1
2 2

0 0 2 1
2

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ ,

L3 =
1
3

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 0
1
2 2 0 0
2 1

2 0 0

⎤
⎥⎥⎥⎦ , L4 =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 1

6 0 0

⎤
⎥⎥⎥⎦ ,

L5 =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 1

6
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ , L6 =

1
3

⎡
⎢⎢⎢⎣

0 2 1
2 0

0 0 0 0
0 0 0 0
0 1

2 2 0

⎤
⎥⎥⎥⎦ ,

L7 =
1
3

⎡
⎢⎢⎢⎣

0 0 0 0
2 0 0 1

2
1
2 0 0 2
0 0 0 0

⎤
⎥⎥⎥⎦ , L8 =

⎡
⎢⎢⎢⎣

0 0 1
6 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ , L9 =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 0
1
6 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ .

Proposition 1 The high-order explicit group scheme (12) is unconditionally stable.

Proof Let wk
i,j and W k

i,j be the approximate and exact solutions, respectively, for (1), and
let εk

i,j = W k
i,j – wk

i,j denote the error at time level k. Then from (11),

ME1 = NE0 + τP1
(
F

1
2
)
, k = 0,

MEk+1 = NEk + s1

k+1∑
l=2

λlP1
(
Ek+1–l) + s1

k∑
l=1

λlP1
(
Ek+1–l) + τP1

(
Fk+ 1

2
)
, k > 0,

(14)

where

Ek+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ek+1
1

Ek+1
1
...

Ek+1
1

Ek+1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Ek+1
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

εk+1
1

εk+1
2
...

εk+1
m–2

εk+1
m–1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, εk+1
i =

⎡
⎢⎢⎢⎣

εk+1
i,j

εk+1
i+1,j

εk+1
i+1,j+1

εk+1
i,j+1

⎤
⎥⎥⎥⎦ , i = 1, 2, . . . , m – 1,

j = 1, 2, . . . , m – 1.
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From (11) we know

M1 = G1I + (G2 + G3)E + G6I + (G4 + G8)E + G7I + (G5 + G9)E,

N1 = H1I + (H2 + H3)E + H6I + (H4 + H8)E + H7I + (H5 + H9)E,

P1 = L1I + (L2 + L3)E + L6I + (L4 + L8)E + L7I + (L5 + L9)E,

(15)

where I is the identity matrix and E is the matrix with unity values along each diagonal
immediately below and above the main diagonal. Let ρ1,ρ2, and ρ3 represent the maximum
eigenvalues for M1, N1, and P1, respectively, then

ρ1 = a1 – a3 – 2a2, ρ2 = a4 – 2a6 + a5, ρ3 =
9
2

. (16)

From (12), when k = 0,

E1 = M–1
1 N1E0,

∥∥E1∥∥ ≤ ∥∥M–1
1 N1

∥∥∥∥E0∥∥ ≤ |a4 + 2a6 + a5|
|a1 – a3 – 2a2|

∥∥E0∥∥,

∥∥E1∥∥ ≤ |121h2 – 132(τ + γ τγ )|
|81(h2 + 4(τ + τ γ ))|

∥∥E0∥∥,

∥∥E1∥∥ ≤ ∥∥E0∥∥ ∵ denominator > numerator.

Supposing

∥∥Es∥∥ ≤ ∥∥E0∥∥, s = 2, 3, . . . , k, (17)

we will prove it for s = k + 1. Indeed, from (12)

∥∥Ek+1∥∥ =

∥∥∥∥∥M–1
1

(
N1Ek + s1

k+1∑
l=2

λlP1Ek+1–l + s1

k∑
l=1

λlP1Ek–l

)
)

∥∥∥∥∥

≤ ∥∥M–1
1 N1

∥∥∥∥Ek∥∥ + s1

k+1∑
l=2

λlP1Ek+1–l∥∥M–1
1 P1

∥∥∥∥Ek+1–l∥∥

+ s1

k∑
l=1

λl
∥∥M–1

1 P1
∥∥∥∥Ek–l∥∥

≤ ∥∥M–1
1 N1

∥∥∥∥Ek∥∥ + s1
∥∥M–1

1 P1
∥∥
( k+1∑

l=2

λl
∥∥Ek+1–l∥∥ +

k∑
l=1

λl
∥∥Ek–l∥∥

)

≤
(∥∥M–1

1 N1
∥∥ + s1

∥∥M–1
1 P1

∥∥
( k+1∑

l=2

λl +
k∑

l=1

λl

))∥∥E0∥∥ ∵ using (17)

=

(
a4 – 2a6 + a5

a1 – a3 – 2a2
+

9s1

2(a1 – a3 – 2a2)

( k+1∑
l=2

λl +
k∑

l=1

λl

))∥∥E0∥∥

≤
(

a4 – 2a6 + a5

a1 – a3 – 2a2
+

9s1

2(a1 – a3 – 2a2)

( k+1∑
l=2

λl – 1

))∥∥E0∥∥ ∵ using Lemma 1
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=

(
a4 – 2a6 + a5

a1 – a3 – 2a2
+

9s1

2(a1 – a3 – 2a2)

( k+1∑
l=1

λl – 1 – λ1

))∥∥E0∥∥

≤
(

a4 – 2a6 + a5

a1 – a3 – 2a2
+

9s1

2(a1 – a3 – 2a2)
(–1 – 1 – λ1)

)∥∥E0∥∥ ∵ using Lemma 1

=
(

81h2 – 324(γ τγ + τ ) – 4.5s1(γ + 1)
79h2 + 348(τ γ + τ )

)∥∥E0∥∥

=
(

81h2 – (324d0 + 4.5d1)
79h2 + 348d0

)∥∥E0∥∥ where d0 =
(
γ τγ + τ

)
and d1 = s1(γ + 1)

∥∥Ek+1∥∥ ≤ ∥∥E0∥∥, ∵ denominator > numerator, because d0, d1 > 0 and h ∈ (0, 1).

So, using matrix analysis via mathematical induction, we proved that the proposed method
is unconditionally stable. �

4 Convergence of the proposed method
Let us denote the truncation errors for the group of four points wk+ 1

2
i,j , wk+ 1

2
i+1,j, wk+ 1

2
i+1,j+1, wk+ 1

2
i,j+1

by ek+ 1
2

i,j , ek+ 1
2

i+1,j, ek+ 1
2

i+1,j+1, ek+ 1
2

i,j+1 then let Rk+ 1
2 = {Rk+ 1

2
1,1 , Rk+ 1

2
1,2 , . . . , Rk+ 1

2
1, m–1

4
, Rk+ 1

2
2,1 , Rk+ 1

2
2,2 , . . . , Rk+ 1

2
m–1

4 , m–1
4

}
where Rk+ 1

2
i,j = {ek+ 1

2
i,j , ek+ 1

2
i+1,j, ek+ 1

2
i+1,j+1, ek+ 1

2
i,j+1} and i, j = 1, 2, . . . , m–1

4 . Then from (8) we have

∥∥Rk+ 1
2
∥∥ ≤ ϕ

(
τ + h4), k = 0, 1, 2, . . . , N – 1, (18)

where ϕ is a constant.
Define the error as

Ek+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ek+1
1

Ek+1
1
...

Ek+1
1

Ek+1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Ek+1
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

εk+1
1

εk+1
2
...

εk+1
m–2

εk+1
m–1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, εk+1
i =

⎡
⎢⎢⎢⎣

εk+1
i,j

εk+1
i+1,j

εk+1
i+1,j+1

εk+1
i,j+1

⎤
⎥⎥⎥⎦ , i = 1, 2, . . . , m – 1,

j = 1, 2, . . . , m – 1. (19)

By substituting (19) into (11) and using E0 = 0, we get

M1E1 = R
1
2 , k = 0,

M1Ek+1 = N1Ek + s1

k+1∑
l=2

λlP1
(
Ek+1–l) + s1

k∑
l=1

λlP1
(
Ek–l) +

(
Rk+ 1

2
)
, k > 0.

(20)

Proposition 2 Suppose Ek+1 (k = 0, 1, . . . , N) satisfy (20), then

∥∥Ek+1∥∥ ≤ ∥∥Rk+ 1
2
∥∥.

Proof We will use mathematical induction. When k = 0,

M1E1 = R
1
2 ,
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∥∥E1∥∥ ≤ ∥∥M–1
1

∥∥∥∥R
1
2
∥∥ =

1
|a1 – a3 – 2a2|

∥∥R
1
2
∥∥ ≤ 1

81(h2 + 4(τ + τ γ ))
∥∥R

1
2
∥∥,

∥∥E1∥∥ ≤ μ0
∥∥R

1
2
∥∥, where μ0 =

1
81(h2 + 4(τ + τ γ ))

,

∥∥E1∥∥ ≤ ∥∥R
1
2
∥∥.

Assume that

∥∥Es∥∥ ≤ ∥∥R(s–1)+ 1
2
∥∥, s = 2, 3, . . . , k, (21)

then for s = k + 1,

M1Ek+1 = N1Ek + s1

k+1∑
l=2

P1
(
Ek+1–s) + s1

k∑
l=1

P1
(
Ek–s) + Rk+ 1

2 ,

∥∥Ek+1∥∥ =

∥∥∥∥∥M–1
1

(
N1Ek + s1

k+1∑
l=2

λlP1
(
Ek+1–s) + s1

k∑
l=1

λlP1
(
Ek–s) + Rk+ 1

2

)∥∥∥∥∥,

∥∥Ek+1∥∥ ≤ ∥∥M–1
1 N1

∥∥∥∥Ek∥∥ +
∥∥M–1

1 P1
∥∥s1

( k+1∑
l=2

λl
∥∥Ek+1–s∥∥ +

k∑
l=1

λl
∥∥Ek–s∥∥

)

+
∥∥M–1

1 Rk+ 1
2
∥∥,

∥∥Ek+1∥∥ ≤ ∥∥M–1
1 N1

∥∥∥∥Ek∥∥ +
∥∥M–1

1 P1
∥∥s1

( k+1∑
l=2

λl
∥∥Ek+1–s∥∥ +

k∑
l=1

λl
∥∥Ek–s∥∥

)

+
∥∥M–1

1 Rk+ 1
2
∥∥,

∥∥Ek+1∥∥ ≤ ∥∥M–1
1 N1

∥∥∥∥R(k–1)+ 1
2
∥∥ +

∥∥M–1
1 P1

∥∥s1

( k+1∑
l=2

λl +
k∑

l=1

λl

)∥∥R(k–1)+ 1
2
∥∥

+
∥∥M–1

1
∥∥∥∥Rk+ 1

2
∥∥,

∥∥Ek+1∥∥ =

(∥∥M–1
1 N1

∥∥ +
∥∥M–1

1 P1
∥∥s1

( k+1∑
l=2

λl +
k∑

l=1

λl

)
+

∥∥M–1
1

∥∥
)

Rk+ 1
2 ‖,

∥∥Ek+1∥∥ ≤ (∥∥M–1
1 N1

∥∥ + s1
∥∥M–1P1

∥∥(–2 + λ1) +
∥∥M–1

1
∥∥)∥∥Rk+ 1

2
∥∥

=
(

a4 – 2a6 + a5

a1 – a3 – 2a2
+

9s1(–2 – λ1)
2(a1 – a3 – 2a2)

+
1

a1 – a3 – 2a2

)∥∥Rk+ 1
2
∥∥

=
(

a4 – 2a6 + a5 – 9s1(2 + λ1) + 2
2(a1 – a3 – 2a2)

)∥∥Rk+ 1
2
∥∥

=
(

81h2 – 324(γ τγ + τ ) – 4.5s1(γ + 1) + 2
79h2 + 348(τ γ + τ )

)∥∥Rk+ 1
2
∥∥,

∥∥Ek+1∥∥ ≤ φ
∥∥Rk+ 1

2
∥∥,

where φ = 81h2–324(γ τγ +τ )–4.5s1(γ +1)+2
79h2+348(τγ +τ ) and φ ∈ (0, 1), so

∥∥Ek+1∥∥ ≤ ∥∥Rk+ 1
2
∥∥. �
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Theorem 1 The high-order explicit group scheme (10) is convergent with the order of con-
vergence O(τ + h4).

Proof From (18), we have

∥∥Ek+1∥∥
2 ≤ ∥∥Rk+ 1

2
∥∥ ≤ ϕ

(
τ + h4),∥∥Ek+1∥∥

2 ≤ ϕ
(
τ + h4), ∀k = 0, 1, 2, . . . , N – 1.

Hence, we proved that the high-order explicit group scheme (10) is convergent with the
order of convergence O(τ + h4). �

5 Numerical experiments and discussion
In this section, three numerical experiments were simulated using Core i7 Duo 3.40 GHz,
4 GB RAM and Windows 7 using Mathematica software. The acceleration technique “Suc-
cessive over-relaxation (SOR)” is used with relaxation factor ω = 1.8 and convergence tol-
erance ζ = 10–5 for the maximum error (L∞); C1- and C2-order of convergence are used
for space and time variables and calculated using [34]

C1-order = log2

(‖L∞(2τ , h)‖
‖L∞(τ , h)‖

)
, (22)

C2-order = log2

(‖L∞(16τ , 2h)‖
‖L∞(τ , h)‖

)
, (23)

where h, τ and L∞ represent the space-step, the time-step, and the infinity norm, respec-
tively.

The following three numerical experiments are considered:

Example 1 ([27])

∂w(x, y, t)
∂t

= 0D1–γ
1

(
∂2w(x, y, t)

∂x2 +
∂2w(x, y, t)

∂y2

)
+

∂2w(x, y, t)
∂x2

+
∂2w(x, y, t)

∂y2 + ex+y
(

(1 + γ )tγ – 2
�(2 + γ )
�(1 + 2γ )

t2γ – 2t1+γ

)
,

where 0 < x, y < 1, with initial and boundary conditions

w(x, y, 0) = 0,

w(0, y, t) = eyt1+γ , w(x, 0, t) = ext1+γ ,

w(n, y, t) = e1+yt1+γ , w(x, n, t) = e1+xt1+γ ,

and with the exact solution

w(x, y, t) = ex+yt1+γ .

Example 2 ([27])

∂w(x, y, t)
∂t

= 0D1–γ
1

(
∂2w(x, y, t)

∂x2 +
∂2w(x, y, t)

∂y2

)
+

∂2w(x, y, t)
∂x2
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Table 1 Comparison between Crank–Nicolson (C–N) high-order finite difference method and HEGM
for Example 1 when γ = 0.75

h/τ Iteration Time Maximum error Average error

HEGM C–N HEGM C–N HEGM C–N HEGM C–N

h = τ = 1
10 46 53 16.59 19.23 3.9320 ×10–3 3.9473 ×10–3 2.2799 ×10–3 2.2815 ×10–3

h = τ = 1
18 49 52 208.44 220.02 2.4058 ×10–3 2.4059 ×10–3 1.2545 ×10–3 1.2567 ×10–3

h = τ = 1
22 48 57 514.81 603.56 2.0054 ×10–3 2.0087 ×10–3 1.0222 ×10–3 1.0258 ×10–3

h = τ = 1
30 47 65 1902.32 2571.45 1.5041 ×10–3 1.5053 ×10–3 7.4966 ×10–4 7.5067 ×10–4

Table 2 Comparison between Crank–Nicolson (C–N) high-order finite difference method and HEGM
for Example 2 when γ = 0.5

h/τ Iteration Time Maximum error Average error

HEGM C–N HEGM C–N HEGM C–N HEGM C–N

h = τ = 1
10 46 50 16.22 18.37 7.5870 ×10–3 7.5733 ×10–3 4.3269 ×10–3 4.3301 ×10–3

h = τ = 1
18 48 52 207.69 224.26 4.3170 ×10–3 4.3041 ×10–3 2.2571 ×10–3 2.2547 ×10–3

h = τ = 1
22 47 57 483.15 594.33 3.5419 ×10–3 3.5520 ×10–3 1.8133 ×10–3 1.8190 ×10–3

h = τ = 1
30 47 65 2018.26 2727.72 2.6249 ×10–3 2.6329 ×10–3 1.3123 ×10–3 1.3130 ×10–3

+
∂2w(x, y, t)

∂y2 + exp

(
–

(x – 0.5)2

ν
–

(t – 0.5)2

ν

)
(1 + γ )tγ

+
(

(�(2 + γ ))
�(1 + 2γ )

t2γ + t1+γ

)(
4
ν

–
4(x – 0.5)2

ν2 –
4(y – 0.5)2

ν2

)
,

where 0 < x, y < 1, with initial and boundary conditions

w(x, y, 0) = 0,

w(0, y, t) = exp

(
–
(

0.25
ν

+
(y – 0.5)2

ν

))
t1+γ ,

w(x, 0, t) = exp

(
–
(

(x – 0.5)2

ν
+

0.25
ν

))
t1+γ ,

w(n, y, t) = exp

(
–
(

0.25
ν

+
(y – 0.5)2

ν

))
t1+γ ,

w(x, n, t) = exp

(
–
(

(x – 0.5)2

ν
+

0.25
ν

))
t1+γ ,

and with the exact solution

w(x, y, t) = exp

(
–
(

(x – 0.5)2

ν
+

(y – 0.5)2

ν

))
t1+γ .

Example 3

∂w(x, y, t)
∂t

= 0D1–γ
1

(
∂2w(x, y, t)

∂x2 +
∂2w(x, y, t)

∂y2

)
+

∂2w(x, y, t)
∂x2

+
∂2w(x, y, t)

∂y2 + et sin(x + y) +
3tγ –1 sin(x + y)

�(γ )

+
3et�(γ ) – �(γ ) sin(x + y)

�(γ )
,
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Table 3 Comparison between Crank–Nicolson (C–N) method and HEGM for Example 2 when
γ = 0.5

h/τ Iteration Time Maximum error Average error

HEGM C–N HEGM C–N HEGM C–N HEGM C–N

h = τ = 1
10 42 38 16.72 15.72 1.7912 ×10–2 1.7921 ×10–2 5.3164 ×10–3 5.3176 ×10–3

h = τ = 1
18 34 44 160.91 201.84 9.6466 ×10–3 9.6753 ×10–3 2.7624 ×10–3 2.7719 ×10–3

h = τ = 1
22 34 38 377.19 416.85 7.9298 ×10–3 7.9215 ×10–3 2.2387 ×10–3 2.2376 ×10–3

h = τ = 1
30 33 37 1446.76 1766.20 5.8326 ×10–3 5.8344 ×10–3 1.6201 ×10–3 1.6210 ×10–3

Table 4 Comparison between C–N high-order finite difference method and HEGM for Example 2
when γ = 0.75

h/τ Iteration Time Maximum error Average error

HEGM C–N HEGM C–N HEGM C–N HEGM C–N

h = τ = 1
10 41 39 17.39 15.67 1.0025 ×10–2 1.0025 ×10–2 2.7431 ×10–3 2.7423 ×10–3

h = τ = 1
18 36 45 164.84 196.07 5.4258 ×10–3 5.4142 ×10–3 1.5410 ×10–3 1.5363 ×10–3

h = τ = 1
22 36 41 387.83 421.71 4.4612 ×10–3 4.4652 ×10–3 1.2528 ×10–3 1.2530 ×10–3

h = τ = 1
30 37 37 1602.14 1810.40 3.3128 ×10–3 3.3150 ×10–3 9.1139 ×10–4 9.1040 ×10–4

Table 5 Comparison between C–N high-order finite difference method and HEGM for Example 3
when γ = 0.75

h/τ Iteration Time Maximum error Average error

HEGM C–N HEGM C–N HEGM C–N HEGM C–N

h = τ = 1
10 44 48 46.75 53.44 1.1762 ×10–2 1.1780 ×10–2 2.0762 ×10–3 2.0850 ×10–3

h = τ = 1
14 44 52 152.45 188.46 8.5326 ×10–3 8.7058 ×10–4 9.1589 ×10–4 9.1579 ×10–4

h = τ = 1
18 45 58 462.44 552.32 4.9486 ×10–3 4.9496 ×10–3 5.9148 ×10–4 5.9035 ×10–4

h = τ = 1
22 48 56 828.46 1158.37 1.8846 ×10–3 1.8875 ×10–4 2.6648 ×10–4 2.6678 ×10–4

Table 6 Comparison between C–N high-order finite difference method and HEGM for Example 3
when γ = 0.1

h/τ Iteration Time Maximum error Average error

HEGM C–N HEGM C–N HEGM C–N HEGM C–N

h = τ = 1
10 43 50 14.71 25.47 1.0779 ×10–1 1.3229 ×10–1 6.5071 ×10–2 6.7078 ×10–2

h = τ = 1
14 45 53 56.87 97.87 9.72047 ×10–2 9.6072 ×10–2 5.5989 ×10–2 5.8080 ×10–2

h = τ = 1
18 46 56 151.07 221.53 9.1148 ×10–2 9.4512 ×10–2 5.0646 ×10–2 5.1572 ×10–2

h = τ = 1
22 44 57 342.85 435.62 8.74869 ×10–2 8.9345 ×10–2 4.74195 ×10–2 4.6185 ×10–2

Table 7 Errors and CPU time with τ = 1
20 for Example 1

h γ = 0.1 γ = 0.5

Max error CPU time Max error CPU time

h = 1
2 5.20503 ×10–1 0.56 3.97534 ×10–1 0.56

h = 1
4 4.26844 ×10–2 5.34 3.75884 ×10–2 5.68

h = 1
8 8.27965 ×10–3 28.28 7.84629 ×10–2 28.15

h = 1
16 4.32245 ×10–3 133.54 3.89731 ×10–3 137.01

Table 8 Errors and CPU time with τ = 1
20 for Example 2

h γ = 0.1 γ = 0.5

Max error CPU time Max error CPU time

h = 1
2 1.0305 0.60 1.0241 0.60

h = 1
4 4.9756 ×10–2 5.23 5.1451 ×10–2 5.29

h = 1
8 9.1542 ×10–3 25.81 1.07962 ×10–2 23.81

h = 1
16 7.1005 ×10–3 111.87 8.7834 ×10–3 113.76
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Table 9 Errors and relaxation factor (ω) with τ = 1
20 and γ = 0.1 for Example 2

h ω = 0.5 ω = 0.9 ω = 1.5 ω = 1.8

h = 1
2 1.0305 1.0305 1.0241 1.0305

h = 1
4 4.9842 ×10–2 4.9812 ×10–2 4.9844 ×10–2 4.9756 ×10–2

h = 1
8 9.4342 ×10–3 9.92685 ×10–3 9.44614 ×10–2 9.1542 ×10–3

h = 1
16 7.4882 ×10–3 8.36823 ×10–3 8.5763 ×10–3 7.1005 ×10–3

Table 10 C2-order of convergence for Example 1 and different γ ’s

γ = 0.4 γ = 0.5

h/τ Max error C2-order h/τ Max error C2-order
h = τ = 1

2 3.7570× 10–2 – h = τ = 1
2 4.2072× 10–2 –

h = 1
4 ,τ = 1

32 2.6621× 10–3 3.81 h = 1
4 ,τ = 1

32 2.3925× 10–3 4.13
h = τ = 1

4 1.9645× 10–2 – h = τ = 1
4 1.9308× 10–2 –

h = 1
8 ,τ = 1

64 1.3235× 10–3 3.89 h = 1
8 ,τ = 1

64 1.2333× 10–3 3.96

γ = 0.6 γ = 0.7

h/τ Max error C2-order h/τ Max error C2-order
h = τ = 1

2 4.0658× 10–2 – h = τ = 1
2 3.3869× 10–2 –

h = 1
4 ,τ = 1

32 2.0573× 10–3 4.30 h = 1
4 ,τ = 1

32 1.6180× 10–3 4.38
h = τ = 1

4 1.6658× 10–2 – h = τ = 1
4 1.2312× 10–2 –

h = 1
8 ,τ = 1

64 1.0452× 10–3 3.99 h = 1
8 ,τ = 1

64 8.3252× 10–3 3.88

Table 11 C2-order of convergence of HEGM for Example 2 and different γ ’s

γ = 0.4 γ = 0.5

h/τ Max error C2-order h/τ Max error C2-order
h = τ = 1

2 1.1717 – h = τ = 1
2 1.1891 –

h = 1
4 ,τ = 1

32 6.8679× 10–2 4.09 h = 1
4 ,τ = 1

32 6.8093× 10–2 4.12
h = τ = 1

4 8.5608× 10–2 – h = τ = 1
4 8.7109× 10–2 –

h = 1
8 ,τ = 1

64 5.1955× 10–3 4.04 h = 1
8 ,τ = 1

64 4.8825× 10–3 4.15

γ = 0.6 γ = 0.7

h/τ Max error C2-order h/τ Max error C2-order
h = τ = 1

2 1.1802 – h = τ = 1
2 1.1474 –

h = 1
4 ,τ = 1

32 6.7241× 10–2 4.13 h = 1
4 ,τ = 1

32 6.6197× 10–2 4.11
h = τ = 1

4 8.2701× 10–2 – h = τ = 1
4 7.3781× 10–2 –

h = 1
8 ,τ = 1

64 4.4968× 10–3 4.20 h = 1
8 ,τ = 1

64 4.0021× 10–3 4.20

Table 12 C1-order of convergence for Example 1, when h = 1
8

τ γ = 0.5 γ = 0.75

L∞ C1-order L∞ C1-order

τ = 1
10 7.5050× 10–3 – 3.9019× 10–3 –

τ = 1
20 3.8462 ×10–3 0.96 2.1660 ×10–3 0.86

τ = 1
40 1.9623 ×10–3 0.97 1.1278 ×10–3 0.94

τ = 1
80 9.9769× 10–4 0.98 5.8404× 10–4 0.95

Table 13 C1-order of convergence for Example 2, when h = 1
8

τ γ = 0.5 γ = 0.1

L∞ C1-order L∞ C1-order

τ = 1
10 1.9223× 10–2 – 9.4036× 10–3 –

τ = 1
20 9.7960 ×10–3 0.97 5.1542 ×10–3 0.86

τ = 1
40 5.1042 ×10–3 0.94 2.5442 ×10–3 1.01

τ = 1
80 2.5146× 10–3 1.02 1.2420× 10–3 1.03
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Table 14 C1-order of convergence for Example 3, when h = 1
8

τ γ = 0.5 γ = 0.1

L∞ C1-order L∞ C1-order

τ = 1
10 1.56836× 10–1 – 1.06481× 10–1 –

τ = 1
20 7.9683 ×10–2 0.97 5.3363 ×10–2 0.99

τ = 1
40 3.7875 ×10–2 1.07 2.6884 ×10–2 0.98

τ = 1
80 2.00105× 10–2 0.92 1.2946× 10–2 1.05

Table 15 Computational complexity for the HEGM and C–N high-order finite difference method
method

Methods Per iteration

Addition/subtraction Multiplication/division

C–N (35 + 8(k – 1))m2 (13 + 4(k – 1))m2

HEGM (34 + 8(k – 1))(m – 1)2+ (35 + 8(k – 1))(2m – 1) (10 + 4(k – 1))(m – 1)2+ (13 + 4(k – 1))(2m – 1)

Figure 2 Exact solution for Example 1

Figure 3 Approximate solution for Example 1 when
h = τ = 1

30

where 0 < x, y < 1, with initial and boundary conditions

w(x, y, 0) = sin(x + y),

w(0, y, t) = et sin(y), w(x, 0, t) = et sin(x),

w(n, y, t) = et sin(1 + y), w(x, n, t) = et sin(1 + x),
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Figure 4 Exact solution for Example 2

Figure 5 Approximate solution for Example 2 when
h = τ = 1

30

Figure 6 Execution time (in s) for different mesh sizes
when γ = 0.75 for Example 1

and with the exact solution

w(x, y, t) = et sin(x + y).

The execution time, error, and number of iteration are shown for the comparison be-
tween standard point and HEGM from Table 1 to Table 6. The execution time in HEGM
is reduced by (5–35)%, (7–35)%, (10–25)%, (8–18)%, (12.5–28.48)%, and (21.29–42.24)%
as compared to C–N point method in Tables 1 to 6, respectively, and it can also be seen
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Figure 7 Execution time (in s) for different mesh
sizes when γ = 0.75 for Example 2

Figure 8 Graphs of maximum errors using HEGM with γ = 0.5, τ = 1/20 and h = 1
10 (a), h = 1

20 (b), for Test
problem 1

in Figs. 4 and 5. Table 7 and Table 8 show the maximum errors and CPU timing at differ-
ent values of γ ’s for Example 1 and Example 2 respectively. Table 9 shows the maximum
error at different values of the relaxation factor (ω’s). Tables 10 to 14 represent the space
and time variables’ order of convergence for the HEGM, which show that the theoretical
order of convergence is in agreement with the experimental order of convergence. Fig-
ures 2 to 5 represent 3D graphs for the exact and approximate solutions of Examples 1
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Figure 9 Graphs of maximum errors using HEGM with γ = 0.5, τ = 1/20 and h = 1
10 (a), h = 1

20 (b), for Test
problem 2

Table 16 The total computation effort for different mesh size for Example 1 when α = 0.75

k/m High-order finite difference method HEGM

No. of iter. Total operations No. of iter. Total operations

k =m = 10 46 702,696 53 826,800
k =m = 18 49 1,926,092 52 2,079,168
k =m = 22 48 3,863,616 57 4,653,936
k =m = 30 47 16,592,692 65 23,166,000

Table 17 The total computation effort for different mesh size for Example 2 when α = 0.5

k/m High-order finite difference method HEGM

No. of iter. Total operations No. of iter. Total operations

k =m = 10 39 1,559,376 38 1,493,704
k =m = 18 44 3,592,512 34 2,736,728
k =m = 22 38 5,517,600 34 4,876,824
k =m = 30 37 13,186,800 33 11,650,188

and 2, which show that the proposed method is effective and reliable. The comparison
of execution timing between FEG (HEGM) and SP (C-N) for Example 1 and Example 2
are shown in Figure 6 and Figure 7 respectively, which depicted that HEGM method re-
quired less execution time as compared to the C-N. Figures 8 and 9 show the graphs of the
maximum error using HEGM when γ = 0.5 and τ = 1

20 for Examples 1 and 2, respectively.
The computational effort is shown in Tables 16 and 17; it can be seen that the HEGM re-
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quires fewer operations as compared to the high-order Crank–Nicolson finite difference
method.

6 Conclusion
In this paper, we have solved two-dimensional fractional Rayleigh–Stokes problem for a
heated generalized second-grade fluid using the HEGM. The C2-order of convergence
shows that the theoretical order of convergence agrees with the experimental order of
convergence. The proposed method reduces execution time and computational complex-
ity as compared to the high-order compact Crank–Nicolson finite difference scheme. We
proved the unconditional stability using the matrix analysis method; moreover, the pro-
posed method is convergent.
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