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Abstract
In this manuscript, we examine the existence and the Ulam stability of solutions for a
class of boundary value problems for nonlinear implicit fractional differential
equations with instantaneous impulses in Banach spaces. The results are based on
fixed point theorems of Darbo and Mönch associated with the technique of measure
of noncompactness. We provide some examples to indicate the applicability of our
results.
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1 Introduction
As it is known very well, the roots of fixed point theory go to the method of successive ap-
proximations (or Picard’s iterative method) that is used to solve certain differential equa-
tions. Roughly speaking, Banach derived the fixed point theorem from the method of suc-
cessive approximations. In the last decades fixed point theory has been enormously and
independently from the differential equations. But, recently, fixed point results turn to be
the tools for the solutions of the differential equation. In this paper, we shall involve two in-
teresting fixed point theorems (Darbo’s fixed point theorem and Mönch’s fixed point the-
orem) in the setting of “measure of noncompactness” to solve the boundary value problem
for nonlinear implicit fractional differential equations with instantaneous impulses.

Differential equations of fractional order have been recently proved to be a powerful
tool to study many phenomena in various fields of science and engineering such as elec-
trochemistry, electromagnetics, viscoelasticity, finance, and so on. In the literature, it is
very common to propose a solution for fractional differential equations by involving dif-
ferent kinds of fractional derivatives, see e.g. [1–10, 12, 13, 21, 22, 36]. On the other hand,
there a few results that deal with the boundary value problems for fractional differential
equations. The aim of the present paper is to underline the importance of the theory of
impulsive differential equations. Further, by the help of these observations, we aim to un-
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derstand several phenomena that are not clarified by the non-impulsive equations (see e.g.
[15, 16, 18, 32]).

In 1940, Ulam [34, 35] raised the following problem of the stability of the functional
equation (of group homomorphisms): “Under what conditions does it exist an additive
mapping near an approximately additive mapping?”

Let G1 be a group, and let G2 be a metric group with a metric d(·, ·). Given any
ε > 0, does there exist δ > 0 such that if a function h : G1 → G2 satisfies the inequality
d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2

with d(h(x), H(x)) < ε for all x ∈ G1?
A partial answer was given by Hyers [20] in 1941, and between 1982 and 1998 Rassias

[28, 29] established the Hyers–Ulam stability of linear and nonlinear mappings. Subse-
quently, many works have been published in order to generalize Hyers results in various
directions, see for example [24, 25, 30, 31, 33].

Inspired by the papers mentioned above, we examine the existence results to the bound-
ary value problem with nonlinear implicit generalized Hilfer-type fractional differential
equation with instantaneous impulses:
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+ c2

(
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where
- ρDα,β

t+
k

is the generalized Hilfer fractional derivative of order α ∈ (0, 1) and type
β ∈ [0, 1] and ρ > 0;

- ρJ 1–γ

t+
k

is the generalized Hilfer fractional integral of order 1 – γ , (γ = α + β – αβ);
- c1, c2 are reals with c1 + c2 �= 0, Jk := (tk , tk+1]; k = 0, . . . , m,

a = t0 < t1 < · · · < tm < tm+1 = b < ∞;
- u(t+

k ) = limε→0+ u(tk + ε) and u(t–
k ) = limε→0– u(tk + ε) represent the right-hand and

left-hand limits of u(t) at t = tk , c3 ∈ E;
- f : (a, b] × E × E → E is a given function over a Banach space (E,‖ · ‖);
- �k : E → E; k = 1, . . . , m, are given continuous functions.

2 Preliminaries
In this section, we recall and recollect the basic notion, notations together with some fun-
damental results that will be necessary in the main results. Throughout the paper, (E,‖ · ‖)
represents a Banach space. Set J = [a, b] where 0 < a < b. The letter C is reserved to rep-
resent the Banach space which consists of all continuous functions u : J → E where the
norm is

‖u‖∞ = sup
{∥∥u(τ )

∥
∥ : τ ∈ J

}
.

In what follows, we pay attention to the weighted spaces of continuous functions

Cγ ,ρ(J) =
{

u : (a, b] → E :
(

tρ – aρ

ρ

)1–γ

u(t) ∈ C(J ,R)
}

,
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where 0 ≤ γ < 1,

Cn
γ ,ρ(J) =

{
u ∈ Cn–1 : u(n) ∈ Cγ ,ρ(J)

}
, n ∈N,

C0
γ ,ρ(J) = Cγ ,ρ(J),

with the norms

‖u‖Cγ ,ρ = sup
t∈J

∥
∥∥
∥

(
tρ – aρ

ρ

)1–γ

u(t)
∥
∥∥
∥

and

‖u‖Cn
γ ,ρ =

n–1∑

k=0

∥
∥u(k)∥∥∞ +

∥
∥u(n)∥∥

Cγ ,ρ
.

Consider the Banach space

PC(J) =
{

u : (a, b] → E : u(t) ∈ C(Jk); k = 0, . . . , m, and there exist u
(
t–
k
)

and
(
ρJ 1–γ

t+
k

u
)(

t+
k
)
; k = 0, . . . , m, with u

(
t–
k
)

= u(tk)
}

, 0 ≤ γ < 1.

Also, we consider the weighted space

PCγ ,ρ(J) =
{

u(t) :
(

tρ – tρ

k
ρ

)1–γ

u(t) ∈ PC(J)
}

, 0 ≤ γ < 1,

and

PCn
γ ,ρ(J) =

{
u ∈ PCn–1 : u(n) ∈ PCγ ,ρ(J)

}
, n ∈N,

PC0
γ ,ρ(J) = PCγ ,ρ(J),

equipped with the norm

‖u‖PCγ ,ρ = sup
t∈J

∥∥
∥∥

(
tρ – tρ

k
ρ

)1–γ

u(t)
∥∥
∥∥.

The letter L1(J) indicates the space of Bochner-integrable functions f : J −→ E with the
norm

‖f ‖1 =
∫ b

a

∥
∥f (t)

∥
∥dt.

Definition 2.1 ([23]) Let α ∈ R+ and g ∈ L1(J). The generalized Hilfer fractional integral
of order α is

(
ρJ α

a+ g
)
(t) =

∫ t

a
sρ–1

(
tρ – sρ

ρ

)α–1 g(s)

(α)

ds, ρ > 0, t > a,

with 
(α) =
∫ ∞

0 tα–1e–t dt, α > 0 (the Euler gamma function)
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Definition 2.2 ([23] Generalized Hilfer fractional derivative) Set ρ > 0 and α ∈ R+ \ N.
The generalized Hilfer fractional derivative ρDα

a+ of order α is defined by

(
ρDα

a+ g
)
(t) = δn

ρ

(ρJ n–α
a+ g

)
(t)

=
(

t1–ρ d
dt

)n ∫ t

a
sρ–1

(
tρ – sρ

ρ

)n–α–1 g(s)

(n – α)

ds, t > a,ρ > 0,

where n = [α] + 1 and δn
ρ = (t1–ρ d

dt )n.

Theorem 2.3 ([23]) Let α > 0, β > 0, 1 ≤ ρ ≤ ∞, 0 < a < b < ∞. Then, for g ∈ L1(J), we
have

(
ρJ α

a+
ρJ β

a+ g
)
(t) =

(
ρJ α+β

a+ g
)
(t).

Lemma 2.4 ([23, 27]) Let α > 0 and 0 ≤ γ < 1. Then ρJ α
a+ lies between PCγ ,ρ(J) and

PCγ ,ρ(J).

Lemma 2.5 ([27]) Suppose that 0 ≤ γ < 1, 0 < a < b < ∞, α > 0, and u ∈ PCγ ,ρ(J). If α >
1 – γ , then ρJ α

a+ u is continuous on J and

(
ρJ α

a+ u
)
(a) = lim

t→a+

(
ρJ α

a+ u
)
(t) = 0.

Lemma 2.6 ([11]) Let t > a. Then, for α ≥ 0 and β > 0, we have

[
ρJ α

a+

(
sρ – aρ

ρ

)β–1]
(t) =


(β)

(α + β)

(
tρ – aρ

ρ

)α+β–1

,

[
ρDα

a+

(
sρ – aρ

ρ

)α–1]
(t) = 0 (for) 0 < α < 1.

Lemma 2.7 ([27]) Suppose that g ∈ PCγ [a, b] with 0 ≤ γ < 1 and α > 0. Then we have

(
ρDα

a+
ρJ α

a+ g
)
(t) = g(t) for all t ∈ (a, b].

Lemma 2.8 ([27]) Let 0 < α < 1, 0 ≤ γ < 1. If g ∈ PCγ ,ρ[a, b] and ρJ 1–α
a+ g ∈ PC1

γ ,ρ[a, b],
then

(
ρJ α

a+
ρDα

a+ g
)
(t) = g(t) –

(ρJ 1–α
a+ g)(a)

(α)

(
tρ – aρ

ρ

)α–1

for all t ∈ (a, b].

Definition 2.9 ([27]) For a function g ∈ PCγ ,ρ[a, b] with ρ > 0, the generalized Hilfer-type
fractional derivative is defined by

(
ρDα,β

a+ g
)
(t) =

(
ρJ β(n–α)

a+

(
tρ–1 d

dt

)n
ρJ (1–β)(n–α)

a+ g
)

(t)

=
(
ρJ β(n–α)

a+ δn
ρ

ρJ (1–β)(n–α)
a+ g

)
(t),

where type β with 0 ≤ β ≤ 1, and order α with n – 1 < α < n for n ∈N.
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Since 0 < α < 1, we shall focus only on the case n = 1.

Property 2.10 ([27]) The operator ρDα,β
a+ can be written as

ρDα,β
a+ = ρJ β(1–α)

a+ δρ
ρJ 1–γ

a+ = ρJ β(1–α)
a+

ρDγ

a+ , γ = α + β – αβ .

Property 2.11 ([27]) The fractional derivative ρDα,β
α+ is an interpolator of the following

fractional derivatives: Hilfer (ρ → 1), Hilfer–Hadamard (ρ → 0+), generalized (β = 0),
Caputo-type (β = 1), Riemann–Liouville (β = 0,ρ → 1), Hadamard (β = 0,ρ → 0+), Ca-
puto (β = 1,ρ → 1), Caputo–Hadamard (β = 1,ρ → 0+), Liouville (β = 0,ρ → 1, a = 0),
and Weyl (β = 0,ρ → 1, a = –∞).

Let γ = α + β – αβ , where 0 < α, β ,γ < 1. Construct the space

PCα,β
γ ,ρ (J) =

{
u ∈ PCγ ,ρ(J), ρDα,β

t+
k

u ∈ PCγ ,ρ(J)
}

and

PCγ
γ ,ρ(J) =

{
u ∈ PCγ ,ρ(J),ρ Dγ

t+
k

u ∈ PCγ ,ρ(J)
}

,

where k = 0, . . . , m.
Since ρDα,β

t+
k

u = ρJ γ (1–α)
t+
k

ρDγ

t+
k

u, it follows from Lemma 2.4 that

PCγ
γ ,ρ(J) ⊂ PCα,β

γ ,ρ (J) ⊂ PCγ ,ρ(J).

Lemma 2.12 ([27]) Let γ = α + β – αβ with 0 < α < 1, 0 ≤ β ≤ 1. If u ∈ PCγ
γ ,ρ(J), then

ρJ γ

a+
ρDγ

a+ u =ρ J α
a+

ρDα,β
a+ u

and

ρDγ

a+
ρJ α

a+ u = ρDβ(1–α)
a+ u.

Definition 2.13 ([14]) Let X be a Banach space, and let �X be the family of bounded
subsets of X. The Kuratowski measure of noncompactness is the map μ : �X −→ [0,∞)
defined by

μ(M) = inf

{

ε > 0 : M ⊂
m⋃

j=1

Mj, diam(Mj) ≤ ε

}

,

where M ∈ �X .
For all M, M1, M2 ∈ �X , the map μ satisfies the following properties:
• M is relatively compact (μ(M) = 0 ⇔ M is compact).
• μ(M) = μ(M).
• M1 ⊂ M2 ⇒ μ(M1) ≤ μ(M2).
• μ(M1 + M2) ≤ μ(M1) + μ(M2).
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• μ(cM) = |c|μ(M), c ∈R.
• μ(convM) = μ(M).

Lemma 2.14 ([19]) Let D ⊂ PCγ ,ρ(J) be a bounded and equicontinuous set, then
(i) the function t → μ(D(t)) is continuous on (a, b], and

μPCγ ,ρ (D) = sup
t∈J

μ

((
tρ – tρ

k
ρ

)1–γ

D(t)
)

;

(ii) μ(
∫ b

a u(s) ds : u ∈ D) ≤ ∫ b
a μ(D(s)) ds, where

D(t) =
{

u(t) : u ∈ D
}

, t ∈ (a, b].

Lemma 2.15 (Theorem 4.1, [27]) Let f : (a, b] × E → E be a function such that f (·, u(·),
ρDα,β

t+
k

u(·)) ∈ Cγ ,ρ(J) for any u ∈ PCγ ,ρ(J). Then u ∈ PCγ
γ ,ρ(J) is a solution of the differential

equation

(
ρDα,β

t+
k

u
)
(t) = f

(
t, u(t), ρDα,β

t+
k

u(t)
)
, for each t ∈ Jk , k = 0, . . . , m, 0 < α,β < 1,

if and only if u satisfies the following Volterra integral equation:

u(t) =
(ρJ 1–γ

t+
k

u)(t+
k )


(γ )

(
tρ – tρ

k
ρ

)γ –1

+
1


(α)

∫ t

tk

(
tρ – sρ

ρ

)α–1

sρ–1f
(
s, u(s), ρDα,β

t+
k

u(s)
)

ds,

where γ = α + β – αβ .

Theorem 2.16 (Mönch’s theorem [26]) Suppose that D is a closed, bounded, and convex
subset of a Banach space X such that 0 ∈ D. Let T be a continuous mapping of D into itself.
If the implication

V = convT(V ), or V = T(V ) ∪ {0} ⇒ μ(V ) = 0 (4)

holds for every subset V of D, then T has a fixed point.

Theorem 2.17 (Darbo’s theorem [17]) Suppose that D is a nonempty, closed, bounded,
and convex subset of a Banach space X. Let T be a continuous mapping of D into itself such
that, for any nonempty subset C of D,

μ
(
T(C)

) ≤ kμ(C), (5)

where 0 ≤ k < 1, and μ is the Kuratowski measure of noncompactness. Then T has a fixed
point in D.

3 The existence of solutions
We start this section by stating the following linear fractional differential equation:

(
ρDα,β

t+
k

u
)
(t) = ψ(t), t ∈ Jk , k = 0, . . . , m, (6)
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where 0 < α < 1, 0 ≤ β ≤ 1, ρ > 0, with the conditions

(
ρJ 1–γ

t+
k

u
)(

t+
k
)

=
(
ρJ 1–γ

t+
k–1

u
)(

t–
k
)

+ �k
(
u
(
t–
k
))

; k = 1, . . . , m, (7)

and

c1
(
ρJ 1–γ

a+ u
)(

a+)
+ c2

(
ρJ 1–γ

t+
m

u
)
(b) = c3, (8)

where γ = α + β – αβ , c3 ∈ E, c1, c2 ∈ R with c1 + c2 �= 0 and ξ1 = c2
c1+c2

, ξ2 = c3
c1+c2

. The
following theorem shows that problem (6)–(8) has a unique solution given by

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(γ ) ( tρ–aρ

ρ
)γ –1[ξ2 – ξ1

∑m
i=1 �i(u(t–

i )) – ξ1
∑m

i=1(ρJ 1–γ +α

(ti–1)+ ψ)(ti)

– ξ1(ρJ 1–γ +α

t+
m

ψ)(b)] + 1

(α)

∫ t
a ( tρ–sρ

ρ
)α–1sρ–1ψ(s) ds if t ∈ J0,

1

(γ ) ( tρ–tρk

ρ
)γ –1[ξ2 – ξ1

∑m
i=1 �i(u(t–

i )) – ξ1
∑m

i=1(ρJ 1–γ +α

(ti–1)+ ψ)(ti)

– ξ1(ρJ 1–γ +α

t+
m

ψ)(b) +
∑k

i=1 �i(u(t–
i )) +

∑k
i=1(ρJ 1–γ +α

(ti–1)+ ψ)(ti)]

+ (ρJ α
t+
k
ψ)(t) if t ∈ Jk , k = 1, . . . , m.

(9)

Theorem 3.1 Let γ = α + β – αβ , where 0 < α < 1 and 0 ≤ β ≤ 1. If ψ : (a, b] → E is a
function such that ψ(·) ∈ Cγ ,ρ(J), then u ∈ PCγ

γ ,ρ(J) satisfies problem (6)–(8) if and only if
it satisfies (9).

Proof Assume that u satisfies (6)–(8). If t ∈ J0, then

(
ρDα,β

a+ u
)
(t) = ψ(t).

Lemma 2.15 implies we have the solution that can be written as

u(t) =
(ρJ 1–γ

a+ u)(a+)

(γ )

(
tρ – aρ

ρ

)γ –1

+
1


(α)

∫ t

a

(
tρ – sρ

ρ

)α–1

sρ–1ψ(s) ds. (10)

If t ∈ J1, then Lemma 2.15 implies

u(t) =
(ρJ 1–γ

t+
1

u)(t+
1 )


(γ )

(
tρ – tρ

1
ρ

)γ –1

+
1


(α)

∫ t

t1

(
tρ – sρ

ρ

)α–1

sρ–1ψ(s) ds

=
(ρJ 1–γ

a+ u)(t–
1 ) + �1(u(t–

1 ))

(γ )

(
tρ – tρ

1
ρ

)γ –1

+
(
ρJ α

t+
1
ψ

)
(t)

=
(tρ – tρ

1 )γ –1


(γ )ργ –1

[(
ρJ 1–γ

a+ u
)(

a+)
+ �1

(
u
(
t–
1
))

+
(
ρJ 1–γ +α

a+ ψ
)
(t1)

]
+

(
ρJ α

t+
1
ψ

)
(t).

If t ∈ J2, then Lemma 2.15 implies

u(t) =
(ρJ 1–γ

t+
2

u)(t+
2 )


(γ )

(
tρ – tρ

2
ρ

)γ –1

+
1


(α)

∫ t

t2

(
tρ – sρ

ρ

)α–1

sρ–1ψ(s) ds

=
(ρJ 1–γ

t+
1

u)(t–
2 ) + �2(u(t–

2 ))


(γ )

(
tρ – tρ

2
ρ

)γ –1

+
(
ρJ α

t+
2
ψ

)
(t)
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=
1


(γ )

(
tρ – tρ

2
ρ

)γ –1[(ρJ 1–γ

a+ u
)(

a+)
+ �1

(
u
(
t–
1
))

+ �2
(
u
(
t–
2
))

+
(
ρJ 1–γ +α

a+ ψ
)
(t1) +

(
ρJ 1–γ +α

t+
1

ψ
)
(t2)

]
+

(
ρJ α

t+
2
ψ

)
(t).

Repeating the process in this way, the solution u(t) for t ∈ Jk , k = 1, . . . , m, can be written
as

u(t) =
1


(γ )

(
tρ – tρ

k
ρ

)γ –1
[
(ρJ 1–γ

a+ u
)(

a+)
+

k∑

i=1

�i
(
u
(
t–
i
))

+
k∑

i=1

(
ρJ 1–γ +α

(ti–1)+ ψ
)
(ti)

]

+
(
ρJ α

t+
k
ψ

)
(t).

(11)

Applying ρJ 1–γ

t+
m

on both sides of (11), using Lemma 2.6, and taking t = b, we obtain

(
ρJ 1–γ

t+
m

u
)
(b) =

(
ρJ 1–γ

a+ u
)(

a+)
+

m∑

i=1

�i
(
u
(
t–
i
))

+
m∑

i=1

(
ρJ 1–γ +α

(ti–1)+ ψ
)
(ti)

+
(
ρJ 1–γ +α

(tm)+ ψ
)
(b).

(12)

Multiplying both sides of (12) by c2 and using condition (8), we obtain

c3 – c1
(
ρJ 1–γ

a+ u
)(

a+)
= c2

(
ρJ 1–γ

a+ u
)(

a+)
+ c2

m∑

i=1

�i
(
u
(
t–
i
))

+ c2

m∑

i=1

(
ρJ 1–γ +α

(ti–1)+ ψ
)
(ti) + c2

(
ρJ 1–γ +α

(tm)+ ψ
)
(b),

which implies that

(
ρJ 1–γ

a+ u
)(

a+)
= ξ2 – ξ1

m∑

i=1

�i
(
u
(
t–
i
))

– ξ1

m∑

i=1

(
ρJ 1–γ +α

(ti–1)+ ψ
)
(ti)

– ξ1
(
ρJ 1–γ +α

(tm)+ ψ
)
(b).

(13)

Substituting (13) into (11) and (10), we obtain (9).
Reciprocally, applying ρJ 1–γ

t+
k

on both sides of (9) and using Lemma 2.6 and Theorem 2.3,
we get

(
ρJ 1–γ

t+
k

u
)
(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ2 – ξ1
∑m

i=1 �i(u(t–
i )) – ξ1

∑m
i=1(ρJ 1–γ +α

(ti–1)+ ψ)(ti)

– ξ1(ρJ 1–γ +α

(tm)+ ψ)(b) + (ρJ 1–γ +α

a+ ψ)(t) if t ∈ J0,

ξ2 – ξ1
∑m

i=1 �i(u(t–
i )) – ξ1

∑m
i=1(ρJ 1–γ +α

(ti–1)+ ψ)(ti)

– ξ1(ρJ 1–γ +α

t+
m

ψ)(b) +
∑k

i=1 �i(u(t–
i )) +

∑k
i=1(ρJ 1–γ +α

(ti–1)+ ψ)(ti)

+ (ρJ 1–γ +α

t+
k

ψ)(t) if t ∈ Jk , k = 1, . . . , m.

(14)
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Next, taking the limit t → a+ of (14) and using Lemma 2.5, with 1–γ < 1–γ +α, we obtain

(
ρJ 1–γ

a+ u
)(

a+)
= ξ2 – ξ1

m∑

i=1

�i
(
u
(
t–
i
))

– ξ1

m∑

i=1

(
ρJ 1–γ +α

(ti–1)+ ψ
)
(ti)

– ξ1
(
ρJ 1–γ +α

t+
m

ψ
)
(b).

(15)

Now, taking t = b in (14), we get

(
ρJ 1–γ

t+
m

u
)
(b) = ξ2 + (1 – ξ1)

( m∑

i=1

�i
(
u
(
t–
i
))

+
m∑

i=1

(
ρJ 1–γ +α

(ti–1)+ ψ
)
(ti)

+
(
ρJ 1–γ +α

t+
m

ψ
)
(b)

)

.

(16)

From (15) and (16), we find that

c1
(
ρJ 1–γ

a+ u
)(

a+)
+ c2

(
ρJ 1–γ

t+
m

u
)
(b) = c3,

which shows that the boundary condition c1(ρJ 1–γ

a+ u)(a+) + c2(ρJ 1–γ

t+
m

u)(b) = c3 is satis-
fied. Next, we apply operator ρDγ

t+
k

on both sides of (9), where k = 0, . . . , m. Then, from
Lemma 2.6 and Lemma 2.12, we obtain

(
ρDγ

t+
k

u
)
(t) =

(
ρDβ(1–α)

t+
k

ψ
)
(t). (17)

Since u ∈ PCγ
γ ,ρ(J) and by definition of PCγ

γ ,ρ(J), we have ρDγ

t+
k

u ∈ PCγ ,ρ(J), then (17) im-
plies that

(
ρDγ

t+
k

u
)
(t) =

(
δρ

ρJ 1–β(1–α)
t+
k

ψ
)
(t) =

(ρDβ(1–α)
t+
k

ψ
)
(t) ∈ PCγ ,ρ(J). (18)

As ψ(·) ∈ Cγ ,ρ(J) and from Lemma 2.4, it follows

(
ρJ 1–β(1–α)

t+
k

ψ
) ∈ PCγ ,ρ(J). (19)

Regarding the definition of the space PCn
γ ,ρ(J), together with (18), (19), we derive that

(
ρJ 1–β(1–α)

t+
k

ψ
) ∈ PC1

γ ,ρ(J).

Applying operator ρJ β(1–α)
t+
k

on both sides of (17) and using Lemma 2.8, Lemma 2.5, and
Property 2.10, we have

(
ρDα,β

t+
k

u
)
(t) = ρJ β(1–α)

t+
k

(
ρDγ

t+
k

u
)
(t) = ψ(t) –

(ρJ 1–β(1–α)
t+
k

ψ)(tk)


(β(1 – α))

(
tρ – tρ

k
ρ

)β(1–α)–1

= ψ(t),

that is, (6) holds.
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Also, we can easily show that

(
ρJ 1–γ

t+
k

u
)(

t+
k
)

=
(
ρJ 1–γ

t+
k–1

u
)(

t–
k
)

+ �k
(
u
(
t–
k
))

; k = 1, . . . , m.

This completes the proof. �

As a consequence of Theorem 3.1, we have the following result.

Lemma 3.2 Let γ = α + β – αβ , where 0 ≤ β ≤ 1 and 0 < α < 1. Suppose that f : (a, b] ×
E × E → E is a function so that f (·, u(·), w(·)) ∈ Cγ ,ρ(J) for each w, u ∈ PCγ ,ρ(J).

If u ∈ PCγ
γ ,ρ(J), then u satisfies problem (1)–(3) iff u is the fixed point of � : PCγ ,ρ(J) →

PCγ ,ρ(J) defined by

�u(t) =
1


(γ )

(
tρ – tρ

k
ρ

)γ –1
[

ξ2 – ξ1

m∑

i=1

�i
(
u
(
t–
i
))

– ξ1

m∑

i=1

(
ρJ 1–γ +α

(ti–1)+ h
)
(ti)

– ξ1
(
ρJ 1–γ +α

t+
m

h
)
(b) +

∑

a<tk<t
�k

(
u
(
t–
k
))

+
∑

a<tk<t

(
ρJ 1–γ +α

(tk–1)+ h
)
(tk)

]

+
(
ρJ α

t+
k

h
)
(t), t ∈ Jk , k = 0, . . . , m,

(20)

where h : (a, b] →R is defined as

h(t) = f
(
t, u(t), h(t)

)
.

Evidently, h ∈ Cγ ,ρ(J). Also, by Lemma 2.4, �u ∈ PCγ ,ρ(J).

In the sequel, we shall use the following hypotheses efficiently:
(Ax1) The mapping t 
→ f (t, u, w) is measurable on (a, b] for each u, w ∈ E, and the func-

tions u 
→ f (t, u, w) and w 
→ f (t, u, w) are continuous on E for a.e. t ∈ (a, b], and

f
(·, u(·), w(·)) ∈ PCβ(1–α)

γ ,ρ for any u, w ∈ PCγ ,ρ(J).

(Ax2) There exists a continuous function p : J −→ [0,∞) such that

∥
∥f (t, u, w)

∥
∥ ≤ p(t) for a.e. t ∈ (a, b] and for each u, w ∈ E.

(Ax3) For each bounded set B ⊂ E and for each t ∈ (a, b], we have

μ
(
f
(
t, B,

(
ρDα,β

a+ B
))) ≤

(
tρ – tρ

k
ρ

)1–γ

p(t)μ(B),

with ρDα,β
a+ B = {ρDα,β

a+ w : w ∈ B} and k = 1, . . . , m.
(Ax4) The functions �k : E −→ E are continuous and there exists η∗ > 0 such that

∥
∥�k(u)

∥
∥ ≤ η∗‖u‖ for each u ∈ E, k = 1, . . . , m.
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(Ax5) For any bounded set B ⊂ E and for any t ∈ (a, b], we find

μ
(
�k(B)

) ≤ η∗
(

tρ – tρ

k
ρ

)1–γ

μ(B), k = 1, . . . , m.

Set p∗ = supt∈J p(t).
We are now in a position to investigate the existence result for problem (1)–(3) based

on the fixed point theorem of Mönch.

Theorem 3.3 Assume that (Ax1)–(Ax5) hold. If

L :=
mη∗


(γ )
+ p∗

(
1


(α + 1)
+

m

(γ )
(2 – γ + α)

)(
bρ – aρ

ρ

)1–γ +α

< 1, (21)

then problem (1)–(3) has at least one solution in PCγ
γ ,ρ(J) ⊂ PCα,β

γ ,ρ (J).

Proof Consider the operator � : PCγ ,ρ(J) → PCγ ,ρ(J) defined in (20) and the ball BR :=
B(0, R) = {w ∈ PCγ ,ρ(J) : ‖w‖PCγ ,ρ ≤ R}.

For any u ∈ BR and any t ∈ (a, b], we find

∥∥
∥∥

(
tρ – tρ

k
ρ

)1–γ

(�u)(t)
∥∥
∥∥

≤ 1

(γ )

[

‖ξ2‖ + |ξ1|
m∑

i=1

∥
∥�i

(
u
(
t–
i
))∥∥ + |ξ1|

m∑

i=1

(
ρJ 1–γ +α

(ti–1)+
∥
∥h(s)

∥
∥)

(ti)

+ |ξ1|
(
ρJ 1–γ +α

t+
m

‖h‖)(b) +
∑

a<tk<t

∥∥�k
(
u
(
t–
k
))∥∥ +

∑

a<tk <t

(
ρJ 1–γ +α

(tk–1)+
∥∥h(s)

∥∥)
(tk)

]

+
(

tρ – tρ

k
ρ

)1–γ (
ρJ α

t+
k

∥
∥h(s)

∥
∥)

(t)

≤ ‖ξ2‖

(γ )

+
|ξ1| + 1

(γ )

(
mη∗R + mp∗(ρJ 1–γ +α

(ti–1)+ (1)
)
(ti)

)
+

|ξ1|p∗


(γ )
(
ρJ 1–γ +α

t+
m

(1)
)
(b)

+ p∗
(

tρ – tρ

k
ρ

)1–γ (
ρJ α

t+
k

(1)
)
(t).

By Lemma 2.6, we have

∥∥
∥∥

(
tρ – tρ

k
ρ

)1–γ

(�u)(t)
∥∥
∥∥

≤ ‖ξ2‖

(γ )

+
|ξ1| + 1

(γ )

(
ml∗R +

mp∗


(2 – γ + α)

(
tρ
i – tρ

i–1
ρ

)1–γ +α)

+
|ξ1|p∗


(γ )
(2 – γ + α)

(
bρ – tρ

m

ρ

)1–γ +α

+
p∗


(α + 1)

(
tρ – tρ

k
ρ

)1–γ +α

.
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Hence, for all u ∈ PCγ ,ρ(J) and each t ∈ (a, b], we get

∥∥(�u)
∥∥

PCγ ,ρ
≤ ‖ξ2‖


(γ )
+

|ξ1| + 1

(γ )

(
mη∗R +

mp∗


(2 – γ + α)

(
bρ – aρ

ρ

)1–γ +α)

+
( |ξ1|p∗


(γ )
(2 – γ + α)
+

p∗


(α + 1)

)(
bρ – aρ

ρ

)1–γ +α

≤ R.

Hence, we conclude that � transforms the ball BR into itself. Now, we prove that the op-
erator � : BR → BR fulfills all conditions of Theorem 2.16. For the sake of transparency,
we shall divide the proof in four steps.

Step 1: We shall prove that the operator � : BR → BR is continuous.
Suppose that the sequence {un} converges to u in PCγ ,ρ(J).
Then we get

∥∥
∥∥
(
(�un)(t) – (�u)(t)

)( tρ – tρ

k
ρ

)1–γ ∥∥
∥∥

≤ 1

(γ )

[

|ξ1|
m∑

i=1

∥
∥�i

(
un

(
t–
i
))

– �i
(
u
(
t–
i
))∥∥ + |ξ1|

(
ρJ 1–γ +α

t+
m

∥
∥hn(s) – h(s)

∥
∥)

(b)

+ |ξ1|
m∑

i=1

(
ρJ 1–γ +α

(ti–1)+
∥
∥hn(s) – h(s)

∥
∥)

(ti) +
∑

a<tk <t

∥
∥�k

(
un

(
t–
k
))

– �k
(
u
(
t–
k
))∥∥

+
∑

a<tk <t

(
ρJ 1–γ +α

(tk–1)+
∥∥hn(s) – h(s)

∥∥)
(tk)

]

+
(

tρ – tρ

k
ρ

)1–γ (
ρJ α

t+
k

∥∥hn(s) – h(s)
∥∥)

(t)

for each t ∈ (a, b], where hn, h ∈ Cγ ,ρ(J) in a way that

h(t) = f
(
t, u(t), h(t)

)
,

hn(t) = f
(
t, un(t), hn(t)

)
.

Since un → u, then we get hn(t) → h(t) as n → ∞ for each t ∈ (a, b]. So we find that

‖�un – �u‖PCγ ,ρ → 0 as n → ∞

by the Lebesgue dominated convergence theorem.
Step 2: We shall indicate that �(BR) is equicontinuous and bounded.
Indeed, �(BR) is bounded since �(BR) ⊂ BR and BR is bounded. Next, let ε1, ε2 ∈ J , ε1 <

ε2, and let u ∈ BR. Then

∥∥
∥∥

(
ε

ρ
1 – tρ

k
ρ

)1–γ

(�u)(ε1) –
(

ε
ρ
2 – tρ

k
ρ

)1–γ

(�u)(ε2)
∥∥
∥∥

≤ 1

(γ )

[ ∑

ε1<tk <ε2

∥
∥�k

(
u
(
t–
k
))∥∥ +

∑

ε1<tk <ε2

(ρJ 1–γ +α

(tk–1)+
∥
∥h(s)

∥
∥)

(tk)
]



Salim et al. Advances in Difference Equations        (2020) 2020:601 Page 13 of 21

+
p∗


(α + 1)

∣
∣∣
∣

(
ε

ρ
1 – tρ

k
ρ

)1–γ +α

–
(

ε
ρ
2 – tρ

k
ρ

)1–γ +α∣
∣∣
∣

→ 0 as ε1 → ε2.

Consequently, we conclude that �(BR) is bounded and equicontinuous.
Step 3: The implication (4) of Theorem 2.16 holds.
Now let D be an equicontinuous subset of BR such that D ⊂ �(D) ∪ {0}, therefore the

function t −→ d(t) = μ(D(t)) is continuous on J . Regarding the properties of the measure
μ, together with (Ax3) and (Ax5), for each t ∈ (a, b], we find

(
tρ – tρ

k
ρ

)1–γ

d(t)

≤ μ

((
tρ – tρ

k
ρ

)1–γ

(�D)(t) ∪ {0}
)

≤ μ

((
tρ – tρ

k
ρ

)1–γ

(�D)(t)
)

≤ 1

(γ )

[ ∑

a<tk <t
η∗

(
tρ – tρ

k
ρ

)1–γ

μ
(
D(t)

)

+
∑

a<tk <t

(
ρJ 1–γ +α

(tk–1)+

(
sρ – tρ

k
ρ

)1–γ

p(s)μ
(
D(s)

))
(tk)

]

+
(

tρ – tρ

k
ρ

)1–γ (
ρJ α

t+
k

(
sρ – tρ

k
ρ

)1–γ

p(s)μ
(
D(s)

)
)

(t)

≤ mη∗


(γ )
‖d‖PCγ ,ρ + p∗

(
bρ – aρ

ρ

)1–γ (
ρJ α

a+

(
sρ – tρ

k
ρ

)1–γ

d(s)
)

(t)

+
mp∗


(γ )

(
ρJ 1–γ +α

a+

(
sρ – tρ

k
ρ

)1–γ

d(s)
)

(t)

≤
[

mη∗


(γ )
+

p∗


(α + 1)

(
bρ – aρ

ρ

)1–γ +α

+
mp∗


(γ )
(2 – γ + α)

(
bρ – aρ

ρ

)1–γ +α]
‖d‖PCγ ,ρ .

Thus

‖d‖PCγ ,ρ ≤ L‖d‖PCγ ,ρ .

From (21), we get ‖d‖PCγ ,ρ = 0, that is, d(t) = μ(D(t)) = 0, for each t ∈ Jk , k = 0, . . . , m, and
then D(t) is relatively compact in E. In view of the Ascoli–Arzela theorem, D is relatively
compact in BR. Applying now Theorem 2.16, we conclude that � has a fixed point u∗ ∈
PCγ ,ρ(J), which is a solution of problem (1)–(3).

Step 4: We show that such a fixed point u∗ ∈ PCγ ,ρ(J) lies in PCγ
γ ,ρ(J).



Salim et al. Advances in Difference Equations        (2020) 2020:601 Page 14 of 21

Regarding the fact that u∗ is the only fixed point of the mapping � at PCγ ,ρ(J), for any
t ∈ Jk , with k = 0, . . . , m, we have

u∗(t) =
1


(γ )

(
tρ – tρ

k
ρ

)γ –1
[

ξ2 – ξ1

m∑

i=1

�i
(
u
(
t–
i
))

– ξ1

m∑

i=1

(
ρJ 1–γ +α

(ti–1)+ h
)
(ti)

– ξ1
(
ρJ 1–γ +α

t+
m

h
)
(b) +

∑

a<tk <t
�k

(
u
(
t–
k
))

+
∑

a<tk <t

(
ρJ 1–γ +α

(tk–1)+ h
)
(tk)

]

+
(
ρJ α

t+
k

h
)
(t),

where h ∈ Cγ ,ρ(J) in a way that

h(t) = f
(
t, u∗(t), h(t)

)
.

Applying ρDγ

t+
k

to both sides and by Lemma 2.6 and Lemma 2.12, we have

ρDγ

t+
k

u∗(t) =
(
ρDγ

t+
k

ρJ α
t+
k

f
(
s, u∗(s), h(s)

))
(t)

=
(
ρDβ(1–α)

t+
k

f
(
s, u∗(s), h(s)

))
(t).

On account of γ ≥ α, and (Ax1), it lies in PCγ ,ρ(J). Consequently, ρDγ

t+
k

u∗ ∈ PCγ ,ρ(J),
which implies that u∗ ∈ PCγ

γ ,ρ(J). Regarding Theorem 3.3, as an outcome of Step 1 to Step
4, we deduce that problem (1)–(3) has at least one solution in PCγ

γ ,ρ(J). �

Our second existence result for problem (1)–(3) is based on Darbo’s fixed point theorem.

Theorem 3.4 Assume that (Ax1)–(Ax5) and (21) hold. Then problem (1)–(3) has at least
one solution in PCγ

γ ,ρ(J) ⊂ PCα,β
γ ,ρ (J).

Proof Consider the operator � defined in (20). We know that � : BR −→ BR is bounded
and continuous and that �(BR) is equicontinuous, we need to prove that the operator �

is a L-contraction.
Let D ⊂ BR and t ∈ J . Then we have

μ

((
tρ – tρ

k
ρ

)1–γ

(�D)(t)
)

= μ

((
tρ – tρ

k
ρ

)1–γ

(�u)(t) : u ∈ D
)

≤ 1

(γ )

[ ∑

a<tk <t
η∗μ

({(
tρ – tρ

k
ρ

)1–γ

u(t), u ∈ D
})

+
∑

a<tk <t

{(
ρJ 1–γ +α

(tk–1)+ p∗μ
((

sρ – tρ

k
ρ

)1–γ

u(s)
))

(tk), u ∈ D
}]

+
(

bρ – aρ

ρ

)1–γ {(
ρJ α

t+
k

p∗μ
((

sρ – tρ

k
ρ

)1–γ

u(s)
))

(t), u ∈ D
}

.
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By Lemma, we have

μPCγ ,ρ (�D) ≤
[

mη∗


(γ )
+

(
p∗


(α + 1)
+

mp∗


(γ )
(2 – γ + α)

)(
bρ – aρ

ρ

)1–γ +α]
μPCγ ,ρ (D).

Therefore

μPCγ ,ρ (�D) ≤ LμPCγ ,ρ (D).

So, by (21), the operator � is a L-contraction. �

As a consequence of Theorem 2.17 and using Step 4 of the last result, we deduce that �

possesses a fixed point. In particular, this fixed point forms a solution for problem (1)–(3).

Example 3.5 Consider the Banach space

E = l1 =

{

u = (u1, u2, . . . , un, . . .),
∞∑

n=1

|un| < ∞
}

with the norm

‖u‖ =
∞∑

n=1

|un|.

We examine the following impulsive boundary value problem of the generalized Hilfer
FDE:

(1D
1
2 ,0
t+
k

un
)
(t) =

3t2 – 20

213e–t+3(1 + |un(t)| + |1D
1
2 ,0
t+
k

un(t)|)
, t ∈ Jk , k = 0, . . . , 9, (22)

(1J
1
2

t+
k

un
)(

t+
k
)

–
(1J

1
2

t(k–1)+ un
)(

t–
k
)

=
|un(t–

k )|
10(k + 3) + |un(t–

k )| , k = 1, . . . , 9, (23)

(1J
1
2

1+ un
)(

1+)
+ 2

(1J
1
2

9
5

+ un
)
(3) = 0, (24)

where Jk = (tk , tk+1], tk = 1 + k
5 for k = 0, . . . , 9, m = 9, a = t0 = 1, and b = t10 = 3.

Set

f (t, u, w) =
3t2 – 20

213e–t+3(1 + ‖u‖ + ‖w‖)
, t ∈ (1, 3], u, w ∈ E.

We have

PCβ(1–α)
γ ,ρ

(
[1, 3]

)
= PC0

1
2 ,1

(
[1, 3]

)
=

{
g : (1, 3] →R : (

√
t – tk)g ∈ PC

(
[1, 3]

)}
,

where α = γ = 1
2 , β = 0, ρ = 1, and k = 0, . . . , 9. Clearly, the continuous function f ∈

PC0
1
2 ,1

([1, 2]).
As a result, condition (Ax1) is fulfilled.
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For each u, w ∈ E and t ∈ (1, 3],

∥∥f (t, u, w)
∥∥ ≤ 3t2 – 20

213e–t+3 .

Hence condition (Ax2) is satisfied with p∗ = 7
213 .

And let

�k(u) =
‖u‖

10(k + 3) + ‖u‖ , k = 1, . . . , 9, u ∈ E.

Let u ∈ E. Then we have

∥
∥�k(u)

∥
∥ ≤ 1

40
‖u‖, k = 1, . . . , 9,

and so condition (Ax4) is satisfied with η∗ = 1
40 .

The condition (21) of Theorem 3.3 is satisfied for

L :=
mη∗


(γ )
+

(
p∗


(α + 1)
+

mp∗


(γ )
(2 – γ + α)

)(
bρ – aρ

ρ

)1–γ +α

=
9

40
√

π
+ 2

(
17

213
√

π
+

63
213
(2)

√
π

)

≈ 0.55074703829 < 1.

Then problem (22)–(24) has at least one solution in PC
1
2
1
2 ,1

([1, 3]) ⊂ PC
1
2 ,0
1
2 ,1

([1, 3]).

4 Ulam-type stability
Now, we consider the Ulam stability for problem (1)–(3). Let u ∈ PCγ ,ρ(J), ε > 0, τ > 0, and
ϑ : (a, b] −→ [0,∞) be a continuous function. We consider the following inequality:

⎧
⎨

⎩

‖(ρDα,β
t+
k

u)(t) – f (t, u(t), (ρDα,β
t+
k

u)(t))‖ ≤ εϑ(t), t ∈ Jk , k = 0, . . . , m,

‖(ρJ 1–γ

t+
k

u)(t+
k ) – (ρJ 1–γ

t+
k–1

u)(t–
k ) – �k(u(t–

k ))‖ ≤ ετ , k = 1, . . . , m.
(25)

Definition 4.1 Problem (1)–(3) is Ulam–Hyers–Rassias (U-H-R) stable with respect to
(ϑ , τ ) if there exists a real number af ,m,ϑ > 0 such that, for each ε > 0 and for each solution
u ∈ PCγ ,ρ(J) of inequality (25), there exists a solution w ∈ PCγ ,ρ(J) of (1)–(3) with

∥∥u(t) – w(t)
∥∥ ≤ εaf ,m,ϑ

(
ϑ(t) + τ

)
, t ∈ (a, b].

Remark 4.2 A function u ∈ PCγ ,ρ(J) is a solution of inequality (25) if and only if there exist
σ ∈ PCγ ,ρ(J) and a sequence σk , k = 0, . . . , m, such that

1 ‖σ (t)‖ ≤ εϑ(t) and ‖σk‖ ≤ ετ , t ∈ Jk , k = 1, . . . , m;
2 (ρDα,β

t+
k

u)(t) = f (t, u(t), (ρDα,β
t+
k

u)(t)) + σ (t), t ∈ Jk , k = 0, . . . , m;

3 (ρJ 1–γ

t+
k

u)(t+
k ) = (ρJ 1–γ

t+
k–1

u)(t–
k ) + �k(u(t–

k )) + σk , k = 1, . . . , m.
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Now we are concerned with the Ulam–Hyers–Rassias stability of our problem (1)–(3).

Theorem 4.3 Assume that in addition to (Ax1)–(Ax5) and (21), the following hypotheses
hold:

(Ax6) There exist a nondecreasing function ϑ ∈ PCγ ,ρ(J) and λϑ > 0 such that, for each
t ∈ (a, b], we have

(
ρJ α

a+ϑ
)
(t) ≤ λϑϑ(t).

(Ax7) There exists a continuous function χ : [a, b] −→ [0,∞) such that, for each t ∈ Jk ;
k = 0, . . . , m, we have

p(t) ≤ χ (t)ϑ(t).

Then equation (1) is U-H-R stable with respect to (ϑ , τ ).

Set χ∗ = supt∈[a,b] χ (t).

Proof Consider the operator � defined in (20). Let u ∈ PCγ ,ρ(J) be a solution of inequality
(25), and let us assume that w is the unique solution of the problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(ρDα,β
t+
k

w)(t) = f (t, w(t), (ρDα,β
t+
k

w)(t)); t ∈ Jk , k = 0, . . . , m,

(ρJ 1–γ

t+
k

w)(t+
k ) = (ρJ 1–γ

t+
k–1

w)(t–
k ) + �k(w(t–

k )); k = 1, . . . , m,

c1(ρJ 1–γ

a+ w)(a+) + c2(ρJ 1–γ

t+
m

w)(b) = c3,

(ρJ 1–γ

t+
k

w)(t+
k ) = (ρJ 1–γ

t+
k

u)(t+
k ); k = 0, . . . , m.

By Theorem 3.1 and Lemma 3.2, we obtain for each t ∈ (a, b]

w(t) =
(ρJ 1–γ

t+
k

w)(t+
k )


(γ )

(
tρ – tρ

k
ρ

)γ –1

+
(
ρJ α

t+
k

h
)
(t), t ∈ Jk , k = 0, . . . , m,

where h : (a, b] → E is a function satisfying the functional equation

h(t) = f
(
t, w(t), h(t)

)
.

Since u is a solution of inequality (25), by Remark 4.2, we have

⎧
⎨

⎩

(ρDα,β
t+
k

u)(t) = f (t, u(t), (ρDα,β
t+
k

u)(t)) + σ (t), t ∈ Jk , k = 0, . . . , m;

(ρJ 1–γ

t+
k

u)(t+
k ) = (ρJ 1–γ

t+
k–1

u)(t–
k ) + �k(u(t–

k )) + σk , k = 1, . . . , m.
(26)

Clearly, the solution of (26) is given by

u(t) =
1


(γ )

(
tρ – tρ

k
ρ

)γ –1[(
ρJ 1–γ

a+ u
)(

a+)
+

∑

a<tk <t
�k

(
u
(
t–
k
))

+
∑

a<tk <t
σk

+
∑

a<tk <t

(
ρJ 1–γ +α

(tk–1)+ g
)
(tk) +

∑

a<tk<t

(ρJ 1–γ +α

(tk–1)+ σ
)
(tk)

]
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+
(
ρJ α

t+
k

g
)
(t) +

(
ρJ α

t+
k
σ
)
(t), t ∈ Jk , k = 0, . . . , m,

where g : (a, b] → E is a function satisfying the functional equation

g(t) = f
(
t, u(t), g(t)

)
.

We have, for each t ∈ Jk , k = 0, . . . , m,

(
ρJ 1–γ

t+
k

u
)(

t+
k
)

=
(
ρJ 1–γ

a+ u
)(

a+)
+

∑

a<tk<t
�k

(
u
(
t–
k
))

+
∑

a<tk<t
σk

+
∑

a<tk <t

(
ρJ 1–γ +α

(tk–1)+ g
)
(tk) +

∑

a<tk <t

(ρJ 1–γ +α

(tk–1)+ σ
)
(tk).

Hence, for each t ∈ (a, b], we have

∥∥u(t) – w(t)
∥∥ ≤ (

ρJ α
t+
k

∣∣g(s) – h(s)
∣∣)(t) +

(
ρJ α

t+
k

∣∣σ (s)
∣∣)(t).

Thus,

∥
∥u(t) – w(t)

∥
∥ ≤ (

ρJ α
a+

∥
∥g(s) – h(s)

∥
∥)

(t) +
(
ρJ α

a+
∥
∥σ (s)

∥
∥)

≤ ελϑϑ(t) +
∫ t

a
sρ–1

(
tρ – sρ

ρ

)α–1 2χ (t)ϑ(t)

(γ )

ds

≤ ελϑϑ(t) + 2χ∗(ρJ α
a+ϑ

)
(t)

≤ (
ε + 2χ∗)λϑϑ(t)

≤
(

1 +
2χ∗

ε

)
λϑε

(
τ + ϑ(t)

)

≤ aϑε
(
τ + ϑ(t)

)
,

where aϑ = (1 + 2χ∗
ε

)λϑ . Hence, equation (1) is U-H-R stable with respect to (ϑ , τ ). �

Example 4.4 Consider the Banach space

E = l1 =

{

u = (u1, u2, . . . , un, . . .),
∞∑

n=1

|un| < ∞
}

with the norm

‖u‖ =
∞∑

n=1

|un|,

and let the following impulsive anti-periodic boundary value problem hold:

( 1
2 D

1
2 ,0
t+
k

un
)
(t) =

(3t3 + 5e–3)|un(t)|
144e–t+e(1 + ‖u(t)‖ + ‖ 1

2 D
1
2 ,0
t+
k

u(t)‖)
for each t ∈ J0 ∪ J1, (27)

( 1
2 J

1
2

2+ un
)(

2+)
–

( 1
2 J

1
2

1+ un
)(

2–)
=

|un(2–)|
77e–t+4 + 2

, (28)
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( 1
2 J

1
2

1+ u
)(

1+)
= –

( 1
2 J

1
2

2+ u
)
(e), (29)

where J0 = (1, 2], J1 = (2, e], t1 = 2, m = 1, a = t0 = 1, and b = t2 = e.
Set

f (t, u, w) =
(3t3 + 5e–3)‖u‖

144e–t+e(1 + ‖u‖ + ‖w‖)
, t ∈ (1, e], u, w ∈ E.

We have

PCβ(1–α)
γ ,ρ

(
[1, 2]

)
= PC0

1
2 , 1

2

(
[1, e]

)
=

{
g : (1, e] → E :

√
2(

√
t –

√
tk)

1
2 g ∈ C

(
[1, e]

)}
,

with γ = α = 1
2 , ρ = 1

2 , β = 0, and k ∈ {0, 1}. Clearly, the continuous function f ∈
PC0

1
2 , 1

2
([1, e]).

Hence condition (Ax1) is satisfied.
For each u, w ∈ E and t ∈ (1, e],

∥∥f (t, u, w)
∥∥ ≤ (3t3 + 5e–3)

144e–t+e .

Hence condition (Ax2) is satisfied with

p(t) =
(3t3 + 5e–3)

144e–t+e

and

p∗ =
(3e3 + 5e–3)

144
.

And let

�1(u) =
‖u‖

77e–t+4 + 2
, u ∈ E.

Let u ∈ E. Then we have

∥
∥�k(u)

∥
∥ ≤ 1

77e–t+4 + 2
‖u‖,

and so condition (Ax4) is satisfied with η∗ = 1
77e4–e+2 .

The condition (21) of Theorem 3.3 is satisfied for

L :=
mη∗


(γ )
+

(
p∗


(α + 1)
+

mp∗


(γ )
(2 – γ + α)

)(
bρ – aρ

ρ

)1–γ +α

=
1

(77e4–e + 2)
√

π
+ (2

√
e – 2)

(
6e3 + 10e–3

144
√

π
+

3e3 + 5e–3

144
√

π
(2)

)

≈ 0.92473323802 < 1.

Then problem (27)–(29) has at least one solution in PC
1
2
1
2 , 1

2
([1, e]) ⊂ PC

1
2 ,0
1
2 , 1

2
([1, e]). Also,

hypothesis (Ax6) is satisfied with τ = 1, ϑ(t) = e3, and λϑ = 3. Indeed, for each t ∈ (1, e], we
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get

( 1
2 J

1
2

1+ϑ
)
(t) ≤ 2e3


( 3
2 )

≤ λϑϑ(t).

Let the function χ : [1, e] −→ [0,∞) be defined by

χ (t) =
(3e–3t3 + 5e–6)

144e–t+e ,

then, for each t ∈ (1, e], we have

p(t) = χ (t)ϑ(t)

with χ∗ = p∗e–3. Hence, condition (Ax7) is satisfied. Consequently, Theorem 4.3 implies
that equation (27) is U-H-R stable.
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