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Abstract
The paper is concerned with the Neumann eigenvalues for second-order
Sturm–Liouville difference equations. By analyzing the new discriminant function, we
show the interlacing properties between the periodic, antiperiodic, and Neumann
eigenvalues. Moreover, when the potential sequence is symmetric and symmetric
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second Neumann eigenvalue, and prove that the minimum of the first Neumann
eigenvalue gap is attained at the constant potential sequence.
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1 Introduction
Consider the second-order Sturm–Liouville difference equation

–∇(�yn) + qnyn = λyn on [0, N – 1], (1)

where the potential sequence qi ≥ 0 for i = 0, 1, 2, . . . , N – 1, � is the forward difference
operator (�yn = yn+1 – yn), ∇ is the backward difference operator (∇yn = yn – yn–1), and the
bracket [0, N – 1] means the integers in [0, N – 1]. Note that equation (1) can be rewritten
as the recurrence formula

yn+1 = (2 + qn – λ)yn – yn–1 on [0, N – 1]

or the matrix formula

(D + Q)�y = λ�y,
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where �y is a vector in R
N , Q is a diagonal matrix whose diagonal elements are q0, q1, . . . ,

qN–1, and D is the N × N tridiagonal matrix of the form

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 –1 0 · · · · · · 0
–1 2 –1 0 · · · 0

0 –1 2
. . . · · · ...

... 0
. . . . . . . . .

...
...

...
...

. . . . . . –1
0 0 · · · · · · –1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is clear that if u(x) ∈ C2(x0 – h, x0 + h) for h > 0, then there exists η ∈ [x0 – h, x0 + h] such
that

u(x0 – h) – 2u(x0) + u(x0 + h) = u′′(η)h2.

Equation (1) can be regarded as a discrete analogue of the Sturm–Liouville problem

–u′′(x) + q(x)u(x) = λu(x) on (0, 1). (2)

Sturm–Liouville problem (2) has been widely studied. For the potential function q ∈ L1,
the eigenvalues of Sturm–Liouville problem (2) with separated boundary conditions are
real, simple, increasing and tend to infinity [3, 21, 23]. By defining Hill’s discriminant of
(2) by

H(λ) = y1(1,λ) + y′
2(1,λ),

where y1(x,λ) and y2(2,λ) are solutions of (2) and satisfy

y1(0,λ) = y′
2(0,λ) = 1, y′

1(0,λ) = y2(0,λ) = 0,

one can show that [3, 9, 22] the periodic eigenvalues {λn}n≥0, anti-periodic eigenvalues
{λ′

n}n≥1, Dirichlet eigenvalues {μn}n≥1, and Neumann eigenvalues {νn}n≥0 satisfy H(λn) =
2, H(λ′

n) = –2, H(λ′
n) = –2, H(μ2n+1) < –2, H(μ2n) > 2, H(ν2n) > 2, and H(ν2n+1) < –2. In

particular, we also know ν0 ≤ λ0 and

· · · ≤ λ2n–2 < λ′
2n–1 ≤ ν2n–1

μ2n–1
≤ λ′

2n < λ2n–1 ≤ ν2n

μ2n
≤ λ2n < λ′

2n+1 ≤ · · · . (3)

The periodic Sturm–Liouville problem is also called Hill’s equation. The intervals
(λ′

2n–1,λ′
2n) and (λ2n–1,λ2n) are called the (2n – 1)th and 2nth instability intervals. The

interval (–∞,λ0) is called the zero-th instability interval. The name instability interval is
used because, for all λ in these intervals, all nontrivial solutions of (2) are unbounded in
(–∞,∞). In 1946, Borg showed [5] that, for Hill’s equation, the potential q is constant
if and only if all instability intervals, except the zero-th, are absent. He also showed that
all odd instability intervals (λ′

2n–1,λ′
2n) vanish if and only if q has period 1/2. Later on,
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Hochstadt [14] generalized Borg’s results to show that if q is C1, then q has period 1/n if
and only if all those finite instability intervals whose index is not a multiple of n vanish. In
particular, Hochstadt also showed that [11] if all but except one instability interval vanish,
then the potential function has to be an elliptic function. Furthermore, it was proved that
the first instability interval is absent if and only if the potential function is constant when
the potential function q is assumed to be symmetric single-well [16]or single-well [6].

Recently, there have been a number of studies on minimum Dirichlet eigenvalue gaps
of the Sturm–Liouville equations (2) with convex potentials [19, 20], symmetric single-
well potentials [1], or single-well potentials [15], while the symmetric 1-step function is
the potential function in E[h, H , M] ≡ {q ∈ PC(0, 1) : h ≤ q ≤ H a.e. and

∫ 1
0 q = M} giv-

ing the minimal Dirichlet eigenvalue gap [8]. Later on, Cheng et al. [6, 7] showed that
if the potential function q is single-well with transition point a = 1/2, then ν1 ≥ μ1 and
ν1 – ν0 ≥ π2. Equality holds if and only if q is constant.

In this paper, we study the second-order difference equations (1). So far, there have been
results on the second-order difference equations (1) which are analogue to the continuous
Sturm–Liouville equation (2). Using the information on more than one set of eigenvalues,
the potential sequence can be determined uniquely, for example, two sets of eigenvalues
[12, 13], one set of eigenvalues plus a symmetric potential sequence [10], and one set of
eigenvalues plus partial information of the potential sequence [25].

In 1990, Ashbaugh and Benguria [2] studied the comparison of the eigenvalues of two
discrete Sturm–Liouville equations whose potential sequences satisfy certain relation. We
say the sequence {xk}N–1

k=0 is symmetric if xk = xN–1–k for k = 0, 1, 2, . . . , N – 1, and the se-
quence {xk}N–1

k=0 is quasi-symmetric increasing if x0 ≥ xN–1 ≥ x1 ≥ · · · ≥ x[ N
2 ]. In particu-

lar, the sequence {xk}N–1
k=0 is said to be symmetric increasing if it is symmetric and quasi-

symmetric increasing. Ashbaugh and Benguria showed that if {qk}N–1
k=0 is symmetric in-

creasing in (1), then the eigenvalue {μk}N–1
k=1 satisfies

μ2 – μ1 ≥ 2
[

cos

(
π

N

)
– cos

(
2π

N

)]
.

Equality holds if and only if qk = q0 for k = 0, 1, 2, . . . , N – 1. Note that if qk = 0 for k =
0, 1, 2, . . . , N – 1, then

μk = 4 sin2
(

kπ

2N

)
= 2

[
1 – cos

(
kπ

N

)]
, k = 1, 2, . . . , N – 1.

Furthermore, the system of (1) with other self-adjoint boundary conditions has also
been investigated [3, 18]. Jirari in 1995 showed that problem (1) with the boundary con-
ditions

y–1 – αy0 = yN – βyN–1 = 0, (4)

where α,β ∈ R has N real and simple eigenvalues. And recently, Ji and Yang [17] studied
the eigenvalue comparison of (1) and (4). In particular, they also showed that if qi = 0 for
i = 0, 1, 2, . . . , N –1, then the first eigenvalue is simple and associated with the vector whose
entries are of all ones.
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In 2005, Wang and Shi [26] (see also [24]) were concerned with the eigenvalues for (1)
coupled with the periodic boundary conditions

y–1 = yN–1, y0 = yN , (5)

the antiperiodic boundary conditions

y–1 = –yN–1, y0 = –yN , (6)

and the Dirichlet boundary conditions

y0 = yN = 0. (7)

Define the discriminant of (1) by

d(λ) = ϕN–1(λ) + ψN (λ),

where ϕn and ψn are solutions of (1) satisfying the initial conditions

ϕ–1 = ψ0 = 1, ϕ0 = ψ–1 = 0.

By the similar argument as the differential equations (see [3, 22]), Wang and Shi showed
that the periodic problem (1), (5) and the antiperiodic problem (1), (6) have exactly N
real eigenvalues, while the Dirichlet problem (1), (7) has exactly N – 1 real eigenvalues.
Furthermore, they denoted by {λk}N–1

k=0 , {λ̃k}N
k=1, and {μk}N–1

k=1 the periodic, antiperiodic,
and Dirichlet eigenvalues, respectively, and arranged them in the nondecreasing order
λ0 ≤ λ1 ≤ · · · ≤ λN–1, λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃N , and μ1 < μ1 < · · · < μN–1. They showed that a
set of these three eigenvalues satisfy the following interlacing properties: if N is odd,

λ0 < λ̃1 ≤ μ1 ≤ λ̃2 < λ1 ≤ μ2 ≤ λ2 < · · · < λN–2 ≤ μN–1 ≤ λN–1 < λ̃N ,

and if N is even,

λ0 < λ̃1 ≤ μ1 ≤ λ̃2 < λ1 ≤ μ2 ≤ λ2 < · · · < λ̃N–1 ≤ μN–1 ≤ λ̃N < λN–1.

In this paper, we consider the second-order difference equations (1) coupled with the
Neumann boundary conditions

y–1 – y0 = yN – yN–1 = 0. (8)

Denote by {νk}N–1
k=0 the Neumann eigenvalues of the second-order difference equations (1).

It is known that if qk = 0 for k = 0, 1, 2, . . . , N – 1, then

νk = 4 sin2
(

kπ

2N

)
, k = 0, 1, 2, . . . , N – 1.

Combined with the result of [26], we will show the interlacing properties of the eigenval-
ues, which is a discrete analogue result for the continuous Sturm–Liouville problem (see
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[9, 22]). We shall remark that, in the continuous case, we analyze Hill’s discriminant H(λ)
to obtain the interlacing property (3). But in the discrete case, we need to define another
discriminant

f (λ) = ϕN–1(λ) + ψN (λ) – ψN–1(λ),

where ϕn and ψn are solutions of (1) satisfying the initial conditions

ϕ–1 = ψ0 = ϕ0 = 1, ψ–1 = 0,

to show the interlacing property for the Neumann eigenvalues in Theorem 1. By analyzing
this new discriminant f (λ), we can prove Theorem 1.

Theorem 1 Consider the second-order difference equations (1). The eigenvalues satisfy the
following interlacing inequality: if N is odd,

ν0 ≤ λ0 < λ̃1 ≤ μ1

ν1
≤ λ̃2 < λ1 ≤ μ2

ν2
≤ λ2 < · · · < λN–2 ≤ μN–1

νN–1
≤ λN–1 < λ̃N ,

and if N is even,

ν0 ≤ λ0 < λ̃1 ≤ μ1

ν1
≤ λ̃2 < λ1 ≤ μ2

ν2
≤ λ2 < · · · < λ̃N–1 ≤ μN–1

νN–1
≤ λ̃N < λN–1.

After obtaining Theorem 1, we will consider the order relation of the first Dirichlet
eigenvalue μ1 and the second Neumann eigenvalue ν1, and the first Neumann eigenvalue
gap ν1 – ν0. Theorems 2 and 3 can be regarded as discrete analogue results of [6] and [7]
respectively for the continuous Sturm–Liouville problem (2).

Theorem 2 Consider the second-order difference equation (1). If qk is symmetric and sym-
metric decreasing and satisfies maxk∈[0,N–1] qk ≤ ν1, then μ1 ≤ ν1 and the equality holds if
and only if qk = q0 for all k ∈ [0, N – 1].

Theorem 3 Consider the second-order difference equation (1). If qn is symmetric and sym-
metric increasing, then ν1 –ν0 ≥ 2[1 – cos( π

N+1 )] and the equality holds if and only if qk = q0

for all k ∈ [0, N – 1].

The paper is organized as follows. Section 2 gives lemmas about the Wronskian and a
variation of constant formula which is used in Sect. 3. In Sect. 3, we study the interlacing
properties for the periodic, antiperiodic, and Neumann eigenvalues, and use an argument
similar to that in [9, 22] to prove Theorem 1. Finally, the proof of Theorem 2 is given in
Sect. 4, while the proof of Theorem 3 is given in Sect. 5.

2 Preliminaries
In this section, we derive some discrete analogous lemmas of the continuous case. One
can refer to [4]. Lemmas 1 and 2 have been shown in [18] (see also [26]) by using a similar
argument as the continuous case, so we omit the proofs here.
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Lemma 1 ([18, Theorem 2.2.3]) Let y and z be solutions of

–∇(�yn) + qnyn = λyn, n ∈ [0, N – 1]

and

–∇(�zn) + qnzn = μzn, n ∈ [0, N – 1]

respectively. Then, for 0 ≤ n ≤ N – 1,

(λ – μ)
n∑

j=0

yjzj = (ynzn+1 – yn+1zn) – (y–1z0 – y0z–1).

Let λ = μ in Lemma 1, we have the following Wronskian-type identity.

Lemma 2 ([18, Theorem 2.2.8]) Let y and z be solutions of (1). Then the Wronskian

W [y, z](n) ≡
∣∣∣∣∣

yn+1 zn+1

yn+1 – yn zn+1 – zn

∣∣∣∣∣ = ynzn+1 – yn+1zn

is a constant on [–1, N – 1].

Now, let ϕn and ψn be two solutions of (1) satisfying the initial conditions

ϕ–1 = ψ0 = ϕ0 = 1, ψ–1 = 0. (9)

Note that �ϕ–1 = ϕ0 – ϕ–1 = 0 and �ψ–1 = ψ0 – ψ–1 = 1. In particular, we find that, by
Theorem 2,

W [ϕn,ψn](N – 1) = ϕN–1ψN – ϕNψN–1 = ϕ–1ψ0 – ϕ0ψ–1 = 1, (10)

and it is known that ϕn, ψn are two linear independent solutions of (1). The following
theorem is similar to [26, Theorem 2.3], but the initial conditions are different.

Theorem 4 For any {fn}N–1
n=0 ⊆R and for any c0, c1 ∈R, the initial value problem

–∇(�zn) + (qn – λ)zn = fn, n ∈ [0, N – 1], (11)

z–1 = c–1, z0 = c0 (12)

has a unique solution z, which can be expressed as

zn = c–1ϕn + (c0 – c–1)ψn +
n–1∑
j=0

(ϕnψj – ϕjψn)fj, n ∈ [–1, N],

where
∑–1

j=0 • ≡ 0.
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Proof The technique of the proof is based on the variation of parameters on the differential
equation. Let

zn = Anϕn + Bnψn, n ∈ [–1, N]

be a solution of (11). Then


zn = An
ϕn + ϕn+1
An + Bn
ψn + ψn+1
Bn, n ∈ [–1, N – 1].

Setting

ϕn+1
An + ψn+1
Bn = 0, n ∈ [–1, N – 1], (13)

we have


zn = An
ϕn + Bn
ψn, n ∈ [–1, N – 1].

Since ϕn and ψn are two solutions of (1), we find

ϕn+1 = (2 + qn – λ)ϕn – ϕn–1, n ∈ [0, N – 1],

ψn+1 = (2 + qn – λ)ψn – ψn–1, n ∈ [0, N – 1],

and hence

–∇(�zn+1) = –An+1ϕn+2 + Anϕn+1 + An+1ϕn+1 – Anϕn

– Bn+1ψn+2 + Bnψn+1 + Bn+1ψn+1 – Bnψn

= –An+1
(
(2 + qn+1 – λ)ϕn+1 – ϕn

)
+ Anϕn+1 + An+1ϕn+1 – Anϕn

– Bn+1
(
(2 + qn+1 – λ)ψn+1 – ψn

)
+ Bnψn+1 + Bn+1ψn+1 – Bnψn

= –(qn+1 – λ)(An+1ϕn+1 + Bn+1ψn+1)

– (An+1 – An)(ϕn+1 – ϕn) – (Bn+1 – Bn)(ψn+1 – ψn)

= –(qn+1 – λ)zn+1 – 
An
ϕn – 
Bn
ψn

for n ∈ [–1, N – 2]. Combined with (11), we find


ϕn
An + 
ψn
Bn = –fn+1, n ∈ [–1, N – 2]. (14)

Now, solving system (13) and (14) for (
An,
Bn), we find


An =
ψn+1fn+1

ϕn+1
ψn – ψn+1
ϕn
, 
Bn =

ϕn+1fn+1

ψn+1
ϕn – ϕn+1
ψn
, n ∈ [–1, N – 2].

By (10), we find ϕn+1
ψn – ψn+1
ϕn = 1. Hence


An = An+1 – An = ψn+1fn+1, 
Bn = Bn+1 – Bn = –ϕn+1fn+1, n ∈ [–1, N – 2]
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and then, by defining
∑–1

j=0 • = 0, we have

An = A–1 +
n∑

j=0

ψjfj, Bn = B–1 –
n∑

j=0

ϕjfj, n ∈ [–1, N – 1].

This implies that

zn = Anϕn + Bnψn = A–1ϕn + B–1ψn +
n–1∑
j=0

(ϕnψj – ϕjψn)fj, n ∈ [–1, N – 1].

By (9) and (12), we find

A–1 = c–1, B–1 = c0 – c–1.

Finally, for n = N , we evaluate

zN = –fN–1 + (2 + qN–1 – λ)zN–1 – zN–2

= –fN–1 + (2 + qN–1 – λ)

[
c–1ϕN–1 + (c0 – c–1)ψN–1 +

N–2∑
j=0

(ϕN–1ψj – ϕjψN–1)fj

]

–

[
c–1ϕN–2 + (c0 – c–1)ψN–2 +

N–3∑
j=0

(ϕN–2ψj – ϕjψN–2)fj

]

= –fN–1 + c–1
[
(2 + qN–1 – λ)ϕN–1 – ϕN–2

]

+ (c0 – c–1)
[
(2 + qN–1 – λ)ψN–1 – ψN–2

]

+
N–2∑
j=0

[
(2 + qN–1 – λ)(ϕN–1ψj – ϕjψN–1) – (ϕN–2ψj – ϕjψN–2)

]
fj

= –fN–1 + c–1ϕN + (c0 – c–1)ψN +
N–2∑
j=0

[ϕNψj – ϕjψN ]fj

= c–1ϕN + (c0 – c–1)ψN +
N–1∑
j=0

[ϕNψj – ϕjψN ]fj.

This proof is complete. �

3 Interlacing properties of eigenvalues
Recall ϕn and ψn defined in Sect. 2. It is clear that λ is an eigenvalue of (1) and (5) if and
only if c1ϕn(λ) + c2ψn(λ) satisfies the periodic boundary conditions, i.e.,

c1ϕ–1(λ) + c2ψ–1(λ) = c1ϕN–1(λ) + c2ψN–1(λ),

c1ϕ0(λ) + c2ψ0(λ) = c1ϕN (λ) + c2ψN (λ).
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By (9), we find

c1
[
ϕN–1(λ) – 1

]
+ c2ψN–1(λ) = 0,

c1
[
ϕN (λ) – 1

]
+ c2

[
ψN (λ) – 1

]
= 0.

The above system has a nontrivial solution (c1, c2) if and only if

∣∣∣∣∣
ϕN–1(λ) – 1 ψN–1(λ)
ϕN (λ) – 1 ψN (λ) – 1

∣∣∣∣∣ = 0,

which implies that, combined with (10),

f (λ) ≡ ϕN–1(λ) + ψN (λ) – ψN–1(λ) = 2. (15)

Hence, we find that f (λ) = 2 if and only if λ is a periodic eigenvalue. Similarly, it can be
showed that f (λ) = –2 if and only if λ is an antiperiodic eigenvalue. In particular, we have
the following lemma.

Lemma 3 f ′(λ) = 0 whenever f (λ) = 2 if and only if λ is a multiple eigenvalue of (1) and (5),
while f ′(λ) = 0 whenever f (λ) = –2 if and only if λ is a multiple eigenvalue of (1) and (6).

Proof
First, we differentiate

–∇(�ϕn) + qnϕn = λϕn, –∇(�ψn) + qnψn = λψn

with respect to λ to obtain

–∇(�ϕ′
n
)

+ (qn – λ)ϕ′
n(λ) = ϕn(λ),

–∇(�ψ ′
n
)

+ (qn – λ)ψ ′
n(λ) = ψn(λ).

In particular, by (9), we also have

ϕ′
–1 = ψ ′

–1 = ϕ′
0 = ψ ′

0 = 0.

By Theorem 4, we obtain

ϕ′
n =

n–1∑
j=0

(
ϕn(λ)ψj(λ) – ϕj(λ)ψn(λ)

)
ϕj(λ), n ∈ [–1, N],

ψ ′
n =

n–1∑
j=0

(
ϕn(λ)ψj(λ) – ϕj(λ)ψn(λ)

)
ψj(λ), n ∈ [–1, N].
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Hence, we have

f ′(λ) = ϕ′
N–1(λ) + ψ ′

N (λ) – ψ ′
N–1(λ)

=
N–2∑
j=0

(
ϕN–1(λ)ψj(λ) – ϕj(λ)ψN–1(λ)

)
ϕj(λ)

+
N–1∑
j=0

(
ϕN (λ)ψj(λ) – ϕj(λ)ψN (λ)

)
ψj(λ)

–
N–2∑
j=0

(
ϕN–1(λ)ψj(λ) – ϕj(λ)ψN–1(λ)

)
ψj(λ)

=
N–1∑
j=0

(
ϕN–1(λ)ψj(λ) – ϕj(λ)ψN–1(λ)

)
ϕj(λ)

+
N–1∑
j=0

(
ϕN (λ)ψj(λ) – ϕj(λ)ψN (λ)

)
ψj(λ)

–
N–1∑
j=0

(
ϕN–1(λ)ψj(λ) – ϕj(λ)ψN–1(λ)

)
ψj(λ)

= –
N–1∑
j=0

{[
ϕN–1(λ) – ϕN (λ)

]
ψ2

j (λ)

+
[
ψN (λ) – ψN–1(λ) – ϕN–1(λ)

]
ϕj(λ)ψj(λ) + ψN–1(λ)ϕ2

j (λ)
}

.

Denote

I(λ) ≡
[

ϕN–1(λ) – ϕN (λ) ψN (λ)–ψN–1(λ)–ϕN–1(λ)
2

ψN (λ)–ψN–1(λ)–ϕN–1(λ)
2 ψN–1(λ)

]
, �ω =

[
ψj(λ)
ϕj(λ)

]

and

δj(λ) ≡ �ωT I �ω
=

[
ϕN–1(λ) – ϕN (λ)

]
ψ2

j (λ) +
[
ψN (λ) – ψN–1(λ) – ϕN–1(λ)

]
ϕj(λ)ψj(λ)

+ ψN–1(λ)ϕ2
j (λ).

By (10) and (15), we find

det I = ψN–1(λ)
[
ϕN–1(λ) – ϕN (λ)

]
–

(
ψN (λ) – ψN–1(λ) – ϕN–1(λ)

2

)2

= ψN–1(λ)
[
ϕN–1(λ) – ϕN (λ)

]
–

(
ψN (λ) – ψN–1(λ) + ϕN–1(λ)

2

)2

+
[
ψN (λ) – ψN–1(λ)

]
ϕN–1(λ)

= ϕN–1(λ)ψN (λ) – ϕN (λ)ψN–1(λ) – 1

= 0.
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Hence, the matrix I(λ) is always positive semi-definite or negative semi-definite in this
case. Since ϕj(λ) and ψj(λ) are linearly independent, we find that, if f (λ) = 2, then f ′(λ) = 0
if and only if δj(λ) ≡ 0 for all 0 ≤ j ≤ N –1. In this case, we find I is a zero matrix. Hence, we
have ψN–1(λ) = 0, ϕN–1(λ) – ϕN (λ) = 0, and ψN (λ) – ψN–1(λ) – ϕN–1(λ) = 0. Combined with
(10) and (15), we can obtain ψN (λ) = ϕN–1(λ) = ϕN (λ) = 1 and ψN–1(λ) = 0. This implies
that ϕj(λ) and ψj(λ) are two solutions of (1) and (5), i.e., f ′(λ) = 0 whenever f (λ) = 2 if and
only if λ is not simple. Similarly, it can be showed that f ′(λ) = 0 whenever f (λ) = –2 if and
only if λ is not simple. �

Next, we investigate the Neumann eigenvalues of (1) and (8), and give a proof of Theo-
rem 3. Denote by {νk}N–1

k=0 the set of Neumann eigenvalues. We have the following lemmas.

Lemma 4 For 0 ≤ k ≤ N – 1, f (νk) ≥ 2 if kis even, and f (νk) ≤ –2 if k is odd.

Proof Let φn(λ) ≡ c1ϕn(λ) + c2ψn(λ). Then φn(νk) is an eigenfunction of (1) and (8) if

φ–1(νk) – φ0(νk) = 0, φN (νk) – φN–1(νk) = 0,

i.e.,

c1ϕ–1(νk) + c2ψ–1(νk) = c1ϕ0(νk) + c2ψ0(νk),

c1ϕN (νk) + c2ψN (νk) = c1ϕN–1(νk) + c2ψN–1(νk).

By (9), we have

c2 = 0, c1
[
ϕN (νi) – ϕN–1(νi)

]
= 0.

Since c1 and c2 are not both zero, we find ϕN (νk) – ϕN–1(νk) = 0. This implies that ϕn(νk) is
an eigenfunction of (1) and (8) with respect to νk .

On the other hand, by (10), we find

1 = ϕN–1(νk)ψN (νk) – ϕN (νk)ψN–1(νk)

= ϕN–1(νk)
[
ψN (νk) – ψN–1(νk)

]
+

[
ϕN–1(νk) – ϕN (νk)

]
ψN–1(νk)

= ϕN–1(νk)
[
ψN (νk) – ψN–1(νk)

]
.

Hence,

ψN (νk) – ψN–1(νk) =
1

ϕN–1(νk)
.

This implies that

f (νk) ≡ ϕN–1(νk) + ψN (νk) – ψN–1(νk) = ϕN–1(νk) +
1

ϕN–1(νk)
.
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Finally, since ϕn(νk), n = 0, 1, 2, . . . , N – 1, changes sign k times and ϕ0(νk) = 1, we find
sgn(ϕN–1(νk)) = (–1)k . This implies that

f (νk) = ϕN–1(νk) +
1

ϕN–1(νk)

⎧⎨
⎩

≥ 2 if k is even,

≤ –2 if k is odd. �

Lemma 5 f ′(λ) < 0 for all λ < ν0.

Proof Suppose f (λ) = ±2 for some λ �= νi, and δj(λ) �= 0. By (10) and (15), we calculate that

δj(λ) =
[
ϕN–1(λ) – ϕN (λ)

]
ψ2

j (λ) +
[
ψN (λ) – ψN–1(λ) – ϕN–1(λ)

]
ϕj(λ)ψj(λ)

+ ψN–1(λ)ϕ2
j (λ)

=
[
ϕN–1(λ) – ϕN (λ)

]{
ψj(λ) +

[ψN (λ) – ψN–1(λ) – ϕN–1(λ)]
2[ϕN–1(λ) – ϕN (λ)]

ϕj(λ)
}2

+ ψN–1(λ)ϕ2
j (λ) –

[ψN (λ) – ψN–1(λ) – ϕN–1(λ)]2

4[ϕN–1(λ) – ϕN (λ)]
ϕ2

j (λ)

=
[
ϕN–1(λ) – ϕN (λ)

]{
ψj(λ) +

[ψN (λ) – ψN–1(λ) – ϕN–1(λ)]
2[ϕN–1(λ) – ϕN (λ)]

ϕj(λ)
}2

.

We find

f ′(λ) = [ϕN (λ) – ϕN–1(λ)]
N–1∑
j=0

{
ψj(λ) +

ψN+1(λ) – ψN (λ) – ϕN (λ)
2[ϕN (λ) – ϕN+1(λ)]

ϕj(λ)
}2

,

and hence f ′(λ) and ϕN (λ) –ϕN–1(λ) have the same sign. Since f (λ) is continuous on λ, and
ν0 is the first Neumann eigenvalue and is simple, we find f ′(λ) < 0 if λ < ν0. �

By the above discussion and combining the result of [26, Theorem 3.1], we find that if
N is odd,

ν0 ≤ λ0 < λ̃1 ≤ μ1

ν1
≤ λ̃2 < λ1 ≤ μ2

ν2
≤ λ2 < · · · < λN–2 ≤ μN–1

νN–1
≤ λN–1 < λ̃N ,

and if N is even,

ν0 ≤ λ0 < λ̃1 ≤ μ1

ν1
≤ λ̃2 < λ1 ≤ μ2

ν2
≤ λ2 < · · · < λ̃N–1 ≤ μN–1

νN–1
≤ λ̃N < λN–1.

4 The order relation of the first Dirichlet eigenvalue and the second Neumann
eigenvalue

In this section, we investigate the order relation between the first Dirichlet eigenvalue and
the second Neumann eigenvalue. Denote by (νk , �wk)N–1

k=0 the Neumann eigenpairs of (1)
and (8) with ‖�wk‖2 = 1. In particular, �wk can be chosen to have exactly k sign changes. We
have the following lemma.

Lemma 6 If maxk∈[0,N–1] qk ≤ ν1, then �w1 is decreasing.
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Proof Denote �w1 = (w1,0, w1,1, w1,2, . . . , w1,N–1). Since �w1 satisfies the Neumann boundary
conditions, we also assume w1,–1 = w1,0 and w1,N = w1,N–1. Then we have

w1,j+1 = (2 + qj – ν1)w1,j – w1,j–1 for j = 0, 1, 2, . . . , N – 1,

w1,–1 = w1,0, w1,N = w1,N–1.

First, we evaluate that

w1,1 = (2 + q0 – ν1)w1,0 – w1,–1 = w1,0 + (q0 – ν1)w1,0 ≤ w1,0.

Now, assume w1,j ≤ w1,j–1. Then

w1,j+1 = (2 + qj – ν1)w1,j – w1,j–1 = w1,j + (qj – ν1)w1,j + w1,j – w1,j–1 ≤ w1,j.

By induction, we find �w1 is decreasing. �

Proof of Theorem 2 Define �z = (zj)N
j=0 where zj = w1,j – w1,j–1 for j = 0, 1, 2, . . . , N . Then z0 =

zN = 0. In particular, by Lemma 6, zj > 0. Hence, �z is the first Dirichlet eigenfunction. By
the variational principle, we have

μ1 ≤ 〈�z, H�z〉
〈�z,�z〉 ,

where (Hz)j = –zj+1 + (2 + qj)zj – zj–1. Since �w1 changes sign only once and qk is symmetric,
we find that if N – 1 is even, then w1,j > 0 for j ∈ [0, N–1

2 ), w1,j < 0 for j ∈ ( N–1
2 , N – 1],

and w1, N–1
2

= 0; while if N – 1 is odd, then w1,j > 0 for j ∈ [0, N–2
2 ] and w1,j < 0 for j ∈

[ N
2 , N – 1]. Furthermore, since qk is symmetric and symmetric decreasing, we have, for

j = 0, 1, . . . , N – 1,

–zj+1 + (2 + qj)zj – zj–1

= –(w1,j+1 – w1,j) + (2 + qj)(w1,j – w1,j–1) – (w1,j–1 – w1,j)

=
(
–w1,j+1 + (2 + qj)w1,j – w1,j–1

)
–

(
–w1,j + (2 + qj)w1,j–1 – w1,j–1

)

≤ (
–w1,j+1 + (2 + qj)w1,j – w1,j–1

)
–

(
–w1,j + (2 + qj–1)w1,j–1 – w1,j–1

)

= ν1w1,j – ν1w1,j–1

= ν1zj.

This implies that

μ1 ≤ 〈�z, H�z〉
〈�z,�z〉 =

ν1
∑N–1

i=0 z2
i∑N–1

i=0 z2
i

= ν1.

The equality holds if and only if qj = q0 for j = 1, 2, . . . , N – 1. �
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5 The lower bound of the first Neumann eigenvalue gap
In this section, we give an optimal lower bound of the first Neumann eigenvalue gap.

Lemma 7 Consider (1) and (8), and let qn(t) be a one-parameter family of potential se-
quences such that q′

n(t) exists. Then

ν ′
k(t) =

N–1∑
j=0

q′
j(t)w2

k,j(t).

Proof Consider (1) and (8) with the potential sequence qj(t):

wk,j+1(t) =
(
2 + qj(t) – νk(t)

)
wk,j(t) – wk,j–1(t).

Differentiating the above equation with respect to t, we have

w′
k,j+1(t) =

(
q′

j(t) – ν ′
k(t)

)
wk,j(t) +

(
2 + qj(t) – νk(t)

)
w′

k,j(t) – w′
k,j–1(t).

Furthermore, we can obtain

w′
k,j+1(t)wk,j(t) – wk,j+1(t)w′

k,j(t)

=
(
q′

j(t) – ν ′
k(t)

)
w2

k,j(t) + wk,j–1(t)w′
k,j(t) – wk,j(t)w′

k,j–1(t).

Summing up the above equation from j = 0 to j = N – 1, we have

ν ′
k(t)

N–1∑
j=0

w2
k,j(t) =

N–1∑
j=0

q′
j(t)w2

k,j(t).

Since ‖�wk‖2 = 1, we find

ν ′
k(t) =

N–1∑
j=0

q′
j(t)w2

k,j(t).
�

Lemma 8 There exist j1, j2 ∈ (0, N – 1) with j1 < j2 such that

w2
1,j(t) – w2

0,j(t)

⎧⎨
⎩

≥ 0 if j ∈ [0, j1] ∪ [j2, N – 1],

≤ 0 if j ∈ [j1, j2].

Proof First, since �w1 changes sign only once, we may assume w1,j ≥ 0 for j ∈ [0, k̄] and
w1,j ≤ 0 for j ∈ [k̄, N – 1]. Since

w0,1 = (2 + q0 – ν0)w0,0 – w0,–1 = (1 + q0 – ν0)w0,0,

w1,1 = (2 + q0 – ν1)w1,0 – w1,–1 = (1 + q0 – ν1)w1,0,

we have

w0,1w1,0 – w0,0w1,1 = (ν1 – ν0)w0,0w1,0 > 0,
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and hence

w1,0

w0,0
>

w1,1

w0,1
.

Now, for j ∈ [0, k̄ – 1], assume w1,j
w0,j

> w1,j+1
w0,j+1

holds. Then

w0,j+2w1,j+1 – w0,j+1w1,j+2 = (ν1 – ν0)w0,j+1w1,j+1 + w0,j+1w1,j – w0,jw1,j+1 > 0,

and hence

w1,j+1

w0,j+1
>

w1,j+2

w0,j+2
.

By induction, we find

w1,0

w0,0
>

w1,1

w0,1
> · · · >

w1,k̄–1

w0,k̄–1
>

w1,k̄

w0,k̄
.

This implies that there exists j1 ∈ (0, k̄) such that

w1,j1
w0,j1

≥ 1 >
w1,j1+1

w0,j1+1
.

Hence,

w2
1,j(t) – w2

0,j(t)

⎧⎨
⎩

≥ 0 if j ∈ [0, j1],

≤ 0 if j ∈ [j1, k̄].

Similarly, it can be showed that there exists j2 ∈ (k̄, N – 1) such that

w2
1,j(t) – w2

0,j(t)

⎧⎨
⎩

≥ 0 if j ∈ [j2, N – 1],

≤ 0 if j ∈ [k̄, j2].

The proof is complete. �

Now, we are prepared to prove Theorem 3.

Proof of Theorem 3
First, according to Lemma 8 and since qj is symmetric, we find that there exists j̄ ∈ (0, N –

1) such that

w2
1,j(t) – w2

0,j(t)

⎧⎨
⎩

≥ 0 if j ∈ [0, j̄] ∪ [N – 1 – j̄, N – 1],

≤ 0 if j ∈ [j̄, j2].

Now, consider

S = {qn : qn is symmetric and symmetric increasing}.
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Then ν1 – ν0 attains its minimum at some q̂n ∈ S. Let qj(t) = (1 – t)q̂j + tq̂j̄. By Lemma 7,
we find

ν ′
1(t) – ν ′

0(t) =
N–1∑
j=0

q′
j(t)

(
w2

1,j(t) – w2
0,j(t)

)
=

N–1∑
j=0

(q̂j̄ – q̂j)
(
w2

1,j(t) – w2
0,j(t)

)
< 0.

This implies that

ν1(t) – ν0(t) > ν1(1) – ν0(1) = (ν1 – ν0)[q̂j̄] = 2
[

1 – cos

(
π

N + 1

)]
. �
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