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Abstract
This paper studies two classes of boundary value problems within the generalized
Caputo fractional operators. By applying the fixed point result of α-φ-Geraghty
contractive type mappings, we derive new results on the existence and uniqueness
of the proposed problems. Illustrative examples are constructed to demonstrate the
advantage of our results. The theorems reported not only provide a new approach
but also generalize existing results in the literature.
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1 Introduction
Recently, it has been realized that fractional calculus (FC) has played a very important
role in different areas of research; see [26, 32] and the references cited therein. Conse-
quently, fractional differential equations (FDEs) have grasped the interest of many re-
searchers working in diverse applications [22, 39]. Most relevant results have been ob-
tained in terms of the classical fractional derivatives (FDs) of Riemann–Liouville (RL),
Caputo (Ca), Katugampola (Ka), Hadamard (Ha), Hilfer (Hi) FDs etc.

Generalized fractional derivatives (GFDs) with respect to another function κ have been
considered in [32, 41] as a generalization of RL fractional operator (FO). The GFD is differ-
ent from the other classical FD because the kernel appears in terms of another function κ .
Recently, Almeida in [13] presented a generalized version of Ca with some advantageous
properties. Many properties of the generalized FO can be found in [11, 32, 33, 41, 45]. The
advantage of studying the generalized FD lay in providing a general platform that includes
all particular derivatives. For some special cases of a function κ , one can realize that κ-
Ca FD can be reduced to the (Ca, when κ(t) → t see [32], Ca-Ha, when κ(t) → log t [28],
Ca-Ka, when κ(t) → tρ(ρ > 0) [30, 31]) FD.

On the other hand, the investigation of existence and uniqueness of solutions to several
types of fractional (impulsive, functional, evolution, etc.) differential equations is the main
topic of applied mathematics research. Many interesting results with regard the existence,
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uniqueness, and stability of solutions or positive solutions by using some fixed point (FP)
theorem have been discussed in Refs. [1, 12, 18, 19, 21, 23, 24, 27, 35, 37, 38, 44].

For the purpose of completeness, we refer thereafter to some relevant papers that deal
with the existence of positive solutions involving classical Ca and RL derivatives. More
precisely, the authors in [17] studied the existence and multiplicity of positive solutions
for the following problem:

⎧
⎨

⎩

RLDı
0+� (κ) + g(κ,� (κ)) = 0, κ ∈ (0, 1),

� (0) = � (1) = 0,

where 1 < ı ≤ 2, and RLDı
0+ is RL FO. Also, the problem

⎧
⎨

⎩

CDı
0+� (κ) + g(κ,� (κ)) = 0, κ ∈ (0, 1),

� (0) + � ′(0) = 0, � (1) + � ′(1) = 0,

was discussed in [48], where 1 < ı ≤ 2, and CDı
0+ is the CF operator.

For some recent findings on GFDs with respect to another function κ , see [2, 3, 14, 15,
25, 34, 36, 42, 43, 46, 47].

In other direction, Karapinar and Samet introduced the notion of generalized α-ψ-
Geraghty contractive (α-ψ-GC) type mappings (see [29]). The generalized α-ψ-GC in
complete b-metric spaces (b-MS) and their applications in b-metric spaces b-MS was in-
troduced in [4–10, 16, 40].

To the best of our observation, the investigation of positive solutions to fractional BVP
has not been studied within κ-Ca and κ-RL FOs yet. Moreover, the FP technique based
on α-ψ-GC has never been applied to such problems.

Inspired by the above results and motivated by the recent evolutions in κ-fractional
calculus, in this paper, we apply the FP technique of α-ψ-GC type mappings to investigate
the existence of positive solutions for the following fractional BVPs:

⎧
⎨

⎩

CDı,κ
0+� (κ) + g(κ,� (κ)) = 0, κ ∈ (0, 1),

� (0) = � (1) = 0,
(1)

and
⎧
⎨

⎩

CDı,κ
0+� (κ) + g(κ,� (κ)) = 0, κ ∈ (0, 1),

� (0) + � ′(0) = 0, � (1) + � ′(1) = 0.
(2)

where 1 < ı ≤ 2, and CDı,κ
0+ is κ-FD of order ı in the sense the κ-Ca operator, and g : � ×

R →R
+ is a continuous function. Throughout the article � = [0, 1] and R

+ = [0,∞).
We claim that our approach is new and the reported results are different form existing

ones in the literature.
The remaining parts of the paper are outlined as follows: Some preliminary facts needed

for the proofs of the main results are recalled in Sect. 2. In Sect. 3, we prove the existence
of positive solutions for problems (1) and (2) by the aid of the FP result of α-ψ-GC type
mappings. Examples are given in Sect. 4 to check the applicability of the theoretical find-
ings. We end the paper by a conclusion.
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2 Preliminaries
Definition 2.1 ([32]) Let ι > 0 and κ be an increasing function, having a continuous
derivative κ ′ on (a, b). The left-sided κ-RL fractional integral of a function h with respect
to κ on [a, b] is defined by

Iι,κ
a+ h(	) =

1

(ι)

∫ 	

a
κ ′(ς )

[
κ(	) – κ(ς )

]ι–1h(ς ) dς , 	 > a, ι > 0,

provided that Iι,κ
a+ exists. Note that when κ(	) = 	, we obtain the known classical RL frac-

tional integral.

Definition 2.2 ([32, 41]) Let ι > 0, n be the smallest integer greater than or equal to ι

and h ∈ Lp[a, b], p ≥ 1 let κ ∈ Cn[a, b] an increasing function such that κ ′(	) �= 0, for all
	 ∈ [a, b]. The left-sided κ-RL FD of h of order ι is given by

Dι;κ
a+ h(	) =

(
1

κ ′(	)
d

d	

)n

In–ι,κ
a+ h(	), n – 1 < ι < n, n ∈N.

Definition 2.3 ([13, 14]) Let n – 1 < ι < n, h ∈ Cn[a, b], and let κ ∈ Cn[a, b] an increasing
function such that κ ′(	) �= 0, for all 	 ∈ [a, b]. The left-sided κ-Ca FD of h of order ι is given
by

CDι;κ
a+ h(	) = In–ι,κ

a+ Dn,κh(	),

where Dn,κ := ( 1
κ ′(	)

d
d	

)n, and n = [ι] + 1.

Definition 2.4 ([20]) Let M be a nonempty set and r ≥ 1. A mapping d : M × M →R
+ is

said to be a b-metric if for 	,ς ,� ∈ M;
(bM1) d(	,ς ) = 0 if and only if ς = 	;
(bM2) d(	,ς ) = d(ς ,	);
(bM3) d(	,� ) ≤ r[d(	,ς ) + d(ς ,� )].
The pair (M, d) is called a b-MS with constant r.

Let � be set of all increasing and continuous functions φ : R+ →R
+ satisfying the prop-

erty: φ(c	) ≤ cφ(	) ≤ c	 for c > 1 and φ(0) = 0. We denote by F the family of all nonde-
creasing functions λ : R+ → [0, 1

r2 ) for some r ≥ 1.

Definition 2.5 ([8]) Let (M, d) be a b-MS and T : M → M, we say that T is a generalized
α-φ-GC type mapping whenever there exists α : M × M →R

+ such that

α(	,ς )φ
(
r3d(T	, Tς )

) ≤ λ
(
φ
(
d(	,ς )

))
φ
(
d(	,ς )

)
,

for 	,ς ∈ M, where λ ∈F and φ ∈ �.

Definition 2.6 ([40]) For M(�= ∅), let T : M → M and α : M×M →R
+ be given mappings.

We say that T is α-admissible if, for 	,ς ∈ M, we have

α(	,ς ) ≥ 1 
⇒ α(T	, Tς ) ≥ 1. (3)
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Theorem 2.7 ([8]) Let (M, d) be a complete b-MS and T : M → M be a generalized α-φ-
GC type mapping such that

(i) T is α-admissible;
(ii) there exists 	0 ∈ M such that α(	0, T	0) ≥ 1;

(iii) if {	n} ⊆ M with 	n → 	 and α(	n,	n+1) ≥ 1, then α(	n,	) ≥ 1.
Then T has a FP.

Lemma 2.8 ([46]) Let g ∈ C(�) and 1 < ι ≤ 2. Then the FBVP
⎧
⎨

⎩

CDι,κ
a+� (κ) + g(κ,� (κ)) = 0, κ ∈ (0, 1),

� (0) = 0, � (1) = 0,
(4)

is equivalent to

� (κ) =
∫ 1

0
G(κ,ϑ)κ ′(ϑ)g

(
ϑ ,� (ϑ)

)
dϑ ,

where

G(κ,ϑ) =
(κ(κ) – κ(0))ι–1

(κ(1) – κ(0))ι–1
(ι)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(κ(1) – κ(ϑ))ι–1 – (κ(1)–κ(0))ι–1

(κ(κ)–κ(0))ι–1 (κ(κ) – κ(ϑ))ι–1,

0 ≤ ϑ ≤ κ ≤ 1,

(κ(1) – κ(ϑ))ι–1,

0 ≤ κ ≤ ϑ ≤ 1.

(5)

Lemma 2.9 ([46]) For the function G defined by (5) we have;
(i) G(κ,ϑ) > 0, for all κ,ϑ ∈ (0, 1).

(ii) For ϑ ∈ (0, 1), there exists a positive function γ such that

min
κ∈[1/4,3/4]

G(κ,ϑ) ≥ γ (ϑ) max
κ∈� G(κ,ϑ).

Lemma 2.10 ([46]) Let g ∈ C[a, b], and 1 < ι ≤ 2, then the FBVP
⎧
⎨

⎩

CDι,κ
0+� (κ) – g(κ) = 0, κ ∈ (0, 1),

� (0) + � ′(0) = 0, � (1) + � ′(1) = 0,
(6)

has a solution

� (κ) =
∫ 1

0
�(κ,ϑ)κ ′(ϑ)g(ϑ) dϑ ,

where

�(κ,ϑ) =
(

(ι – 1)

[(
κ(1) – κ(0)

)
+

(
κ ′(1) – κ ′(0)

)])–1

×

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

((κ ′(0) + κ(0) – κ(κ))[((κ(1) – κ(ϑ))ι–2 + 1
ι–1 (κ(1) – κ(ϑ))ι–1]

+ (κ(1)–κ(0))+(κ ′(1)–κ ′(0))
ι–1 (κ(κ) – κ(ϑ))ι–1, 0 ≤ ϑ ≤ κ ≤ 1,

((κ ′(0) + κ(0) – κ(κ))[((κ(1) – κ(ϑ))ι–2 + 1
ι–1 (κ(1) – κ(ϑ))ι–1],

0 ≤ κ ≤ ϑ ≤ 1.

(7)
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Lemma 2.11 ([46]) Let κ(κ) ≤ κ(0) + κ ′(0), then (7) satisfies �(κ,ϑ) > 0, for all ϑ ,κ ∈
(0, 1). Besides, there exists a positive function υ ∈ (0, 1), such that

min
κ∈[1/4,3/4]

�(κ,ϑ) ≥ υ(ϑ)M(ϑ), ϑ ∈ (0, 1),

and

max
κ∈� �(κ,ϑ) ≤ M(ϑ),

where

m(ϑ) =
(
κ ′(0) + κ(0) – κ(3/4)

)
[
(
κ(1) – κ(ϑ)

)ι–2 +
1

ι – 1
(
κ(1) – κ(ϑ)

)ι–1
]

,

M(ϑ) =
(
κ(1) + κ ′(1)

)
[
(
κ(1) – κ(ϑ)

)ι–2 +
2

ι – 1
(
(
κ(1) – κ(ϑ)

)ι–1
]

,

and

υ(ϑ) =
m(ϑ)
M(ϑ)

=
κ ′(0) + κ(0) – κ(3/4)

κ ′(1) + κ(1)
(ι – 1)(κ(1) – κ(ϑ))ι–2 + (κ(1) – κ(ϑ))ι–1

(ι – 1)(κ(1) – κ(ϑ))ι–2 + 2(κ(1) – κ(ϑ))ι–1 ,

ϑ ∈ (0, 1).

3 Main results
Let M = C(�,R+) and d : M × M →R

+ be given by

d(� , w) =
∥
∥(� – w)2∥∥∞ = sup

ϑ∈[0,1]

(
� (ϑ) – w(ϑ)

)2.

Then, (M, d) is a complete b-MS with r = 2.

Theorem 3.1 Suppose that
(i) ∃ g : �×R

+ →R
+ such that

∣
∣g

(
ϑ ,� (ϑ)

)
– g

(
ϑ , w(ϑ)

)∣
∣

≤ 1
2
√

2

(ι + 1)

(κ(1) – κ(0))ι
√

φ
(∥
∥(� – w)2

∥
∥∞

)
λ
(
φ
(∥
∥(� – w)2

∥
∥∞

))
,

where φ ∈ � and λ ∈F ;
(ii) ∃ �0 ∈ C(�) and μ : R2 →R with μ(�0(ϑ),

∫ 1
0 G(κ,ϑ)κ ′(ϑ)g(ϑ ,�0(ϑ)) dϑ) ≥ 0,

ϑ ∈�;
(iii) for ϑ ∈� and � , w ∈ C(�), μ(� (ϑ), w(ϑ)) ≥ 0 implies

μ

(∫ 1

0
G(κ,ϑ)κ ′(ϑ)g

(
ϑ ,� (ϑ)

)
dϑ ,

∫ 1

0
G(κ,ϑ)κ ′(ϑ)g

(
ϑ , w(ϑ)

)
dϑ

)

≥ 0;

(iv) If {�n} ⊆ C(�) with �n → � and μ(�n,�n+1) ≥ 0, then μ(�n,� ) ≥ 0.
Then the problem (4) has at least one solution.
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Proof By Lemma 2.8, � ∈ C(�) is a solution of (6) if and only if � is a solution of the
integral equation � (κ) =

∫ 1
0 G(κ,ϑ)κ ′(ϑ)g(ϑ ,� (ϑ)) dϑ , κ ∈�. Define, O : C(�) → C(�)

by O� (κ) =
∫ 1

0 G(κ,ϑ)κ ′(ϑ)g(ϑ ,� (ϑ)) dϑ . We find a FP of O. Now, let � , w ∈ C(�) be
such that μ(� (κ), w(κ)) ≥ 0. On one hand we have

∣
∣O� (κ) – Ow(κ))

∣
∣2

=
∣
∣
∣
∣

∫ 1

0
G(κ,ϑ)κ ′(ϑ)g

(
ϑ ,� (ϑ)

)
dϑ –

∫ 1

0
G(κ,ϑ)κ ′(ϑ)g

(
ϑ , w(ϑ)

)
dϑ

∣
∣
∣
∣

2

≤
[∫ 1

0
G(κ,ϑ)κ ′(ϑ)

∣
∣g

(
ϑ ,� (ϑ)

)
– g

(
ϑ , w(ϑ)

)∣
∣dϑ

]2

.

By Lemma 2.8, for 0 < κ < ϑ < 1 we have

∫ 1

0
G(κ,ϑ)κ ′(ϑ) dϑ =

(κ(κ) – κ(0))ι–1

(κ(1) – κ(0))ι–1
(ι)

∫ 1

0

(
κ(1) – κ(ϑ)

)ι–1
κ ′(ϑ) dϑ

=
(κ(κ) – κ(0))ι–1

(κ(1) – κ(0))ι–1
(ι)

[
–(κ(1) – κ(ϑ))ι

ι

]1

0

≤ (κ(1) – κ(0))ι–1

(κ(1) – κ(0))ι–1
(ι + 1)
(
κ(1) – κ(0)

)ι

=
(κ(1) – κ(0))ι


(ι + 1)
.

For 0 < ϑ < κ < 1, the same estimates can be proved in analogous way to the previous one.
So we will omit it.

Using (i), we get

∫ 1

0
G(κ,ϑ)κ ′(ϑ)

∣
∣g

(
ϑ ,� (ϑ)

)
– g

(
ϑ , w(ϑ)

)∣
∣dϑ

≤ (κ(1) – κ(0))ι


(ι + 1)
∣
∣g

(
ϑ ,� (ϑ)

)
– g

(
ϑ , w(ϑ)

)∣
∣

≤ 1
2
√

2

√

φ
(∥
∥(� – w)2

∥
∥∞

)
λ
(
φ
(∥
∥(� – w)2

∥
∥∞

))
.

Thus,

∣
∣O� (κ) – Ow(κ))

∣
∣2 ≤ 1

8
φ
(∥
∥(� – w)2∥∥∞

)
λ
(
φ
(∥
∥(� – w)2∥∥∞

))
.

Put α : C(�) × C(�) →R
+ by

α(� , w) =

⎧
⎨

⎩

1 μ(� (ϑ), w(ϑ)) ≥ 0,ϑ ∈�,

0 else.

So for � , w ∈ C(�) with μ(� (ϑ), w(ϑ)) ≥ 0, we have

α(� , w)8d(O� , Ow) ≤ 8d(O� , Ow) ≤ λ
(
φ
(
d(� , w)

))
φ
(
d(� , w)

)
, λ ∈ �.
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So, we conclude that O is a α-φ-GC type mapping.
From (iii), we get

α(� , w) ≥ 1 ⇒ μ
(
� (ϑ), w(ϑ)

) ≥ 0 ⇒ μ
(
O(� ), O(w)

) ≥ 0

⇒ α
(
O(� ), O(w)

) ≥ 1,

for � , w ∈ C(�). Thus, O is α-admissible. From (ii), there exists �0 ∈ C(�) with
α(�0, O�0) ≥ 1. By (iv) and Theorem 2.7, we find � ∗ with � ∗ = O� ∗, that is, a posi-
tive solution of (4). �

Theorem 3.2 Suppose that
(i) ∃ g : �×R

+ →R
+ such that

∣
∣g

(
ϑ ,� (ϑ)

)
– g

(
ϑ , w(ϑ)

)∣
∣

≤ 1
2
√

2

(
(

(ι – 1)

[
κ(1) – κ(0) + κ ′(1) – κ ′(0)

])–1 κ ′(0)
ι – 1

× (
κ(1) – κ(0)

)ι–1
(

1 +
1
ι

(
κ(1) – κ(0)

)
)

+
1


(ι + 1)
(
κ(1) – κ(0)

)ι

)–1

×
√

φ
(∥
∥(� – w)2

∥
∥∞

)
λ
(
φ
(∥
∥(� – w)2

∥
∥∞

))
,

where φ ∈ � and λ ∈F ;
(ii) ∃ �0 ∈ C(�) and μ : R2 →R with μ(�0(ϑ),

∫ 1
0 �(κ,ϑ)κ ′(ϑ)g(ϑ ,�0(ϑ)) dϑ) ≥ 0,

ϑ ∈�;
(iii) for ϑ ∈� and � , w ∈ C(�), μ(� (ϑ), w(ϑ)) ≥ 0 implies

μ

(∫ 1

0
�(κ,ϑ)κ ′(ϑ)g

(
ϑ ,� (ϑ)

)
dϑ ,

∫ 1

0
�(κ,ϑ)κ ′(ϑ)g

(
ϑ , w(ϑ)

)
dϑ

)

≥ 0;

(iv) if {�n} ⊆ C(�) with �n → � and μ(�n,�n+1) ≥ 0, then μ(�n,� ) ≥ 0.
Then (6) has at least one solution.

Proof By Lemma 2.10, � ∈ C(�) is a solution of (6) if and only if � is a solution of the in-
tegral equation � (κ) =

∫ 1
0 �(κ,ϑ)κ ′(ϑ)g(ϑ ,� (ϑ)) dϑ , κ ∈�. Define O : C(�) → C(�) by

O� (κ) =
∫ 1

0 �(κ,ϑ)κ ′(ϑ)g(ϑ ,� (ϑ)) dϑ . Let � , w ∈ C(�) be such that μ(� (κ), w(κ)) ≥ 0.
On the one hand we have

∣
∣O� (κ) – Ow(κ))

∣
∣2

=
∣
∣
∣
∣

∫ 1

0
�(κ,ϑ)κ ′(ϑ)g

(
ϑ ,� (ϑ)

)
dϑ –

∫ 1

0
�(κ,ϑ)κ ′(ϑ)g

(
ϑ , w(ϑ)

)
dϑ

∣
∣
∣
∣

2

≤
[∫ 1

0
�(κ,ϑ)κ ′(ϑ)

∣
∣g

(
ϑ ,� (ϑ)

)
– g

(
ϑ , w(ϑ)

)∣
∣dϑ

]2

.

By Lemma 2.10, for 0 < ϑ < κ < 1 we have

∫ 1

0
�(κ,ϑ)κ ′(ϑ) dϑ
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≤ (

(ι – 1)

[
κ(1) – κ(0) + κ ′(1) – κ ′(0)

])–1(
κ ′(0) + κ(0) – κ(κ)

)

×
∫ 1

0

[
(
κ(1) – κ(ϑ)

)ι–2 +
1

ι – 1
(
κ(1) – κ(ϑ)

)ι–1
]

κ ′(ϑ) dϑ

+
1


(ι)

∫ 1

0

(
κ(1) – κ(ϑ)

)ι–1
κ ′(ϑ) dϑ

≤ (

(ι – 1)

[
κ(1) – κ(0) + κ ′(1) – κ ′(0)

])–1 κ ′(0)
ι – 1

×
{

–
[
κ(1) – κ(ϑ))ι–1]1

0 +
1
ι

[
–
(
κ(1) – κ(ϑ)

)ι]1
0

}

+
1


(ι + 1)
[
–
(
κ(1) – κ(ϑ)

)ι]1
0

≤ (

(ι – 1)

[
κ(1) – κ(0) + κ ′(1) – κ ′(0)

])–1 κ ′(0)
ι – 1

× (
κ(1) – κ(0)

)ι–1
(

1 +
1
ι

(
κ(1) – κ(0)

)
)

+
1


(ι + 1)
(
κ(1) – κ(0)

)ι.

For 0 < κ < ϑ < 1, we obtain the same estimates as analogous way to the previous one.
From (i), we get

∫ 1

0
�(κ,ϑ)κ ′(ϑ)

∣
∣g

(
ϑ ,� (ϑ)

)
– g

(
ϑ , w(ϑ)

)∣
∣dϑ

≤
[
(

(ι – 1)

[
κ(1) – κ(0) + κ ′(1) – κ ′(0)

])–1 κ ′(0)
ι – 1

× (
κ(1) – κ(0)

)ι–1
(

1 +
1
ι

(
κ(1) – κ(0)

)
)

+
1


(ι + 1)
(
κ(1) – κ(0)

)ι

]

× ∣
∣g

(
ϑ ,� (ϑ)

)
– g

(
ϑ , w(ϑ)

)∣
∣

≤ 1
2
√

2

√

φ
(∥
∥(� – w)2

∥
∥∞

)
λ
(
φ
(∥
∥(� – w)2

∥
∥∞

))
.

Thus,

∣
∣O� (κ) – Ow(κ))

∣
∣2 ≤ 1

8
φ
(∥
∥(� – w)2∥∥∞

)
λ
(
φ
(∥
∥(� – w)2∥∥∞

))
.

Put, α : C(�) × C(�) →R
+ by

α(� , w) =

⎧
⎨

⎩

1 μ(� (ϑ), w(ϑ)) ≥ 0,ϑ ∈�,

0 else.

Hence, for � , w ∈ C(�) with μ(� (ϑ), w(ϑ)) ≥ 0, we have

α(� , w)8d(O� , Ow) ≤ 8d(O� , Ow) ≤ λ
(
φ
(
d(� , w)

))
φ
(
d(� , w)

)
, λ ∈F .

From (iii),

α(� , w) ≥ 1 ⇒ μ
(
� (ϑ), w(ϑ)

) ≥ 0 ⇒ μ
(
O(� ), O(w)

) ≥ 0
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⇒ α
(
O(� ), O(w)

) ≥ 1,

for � , w ∈ C(�). Thus, O is α-admissible. From (ii), there exists �0 ∈ C(�) with
α(�0, O�0) ≥ 1. By (iv) and Theorem 2.7, we find � ∗ with � ∗ = O� ∗, that is, a posi-
tive solution of the problem (6). �

Setting φ(t) = t and λ(t) = cos2 t
4 in Theorems 3.1 and 3.2 we deduce the following corol-

laries.

Corollary 3.3 Suppose that
(i) ∃ g : �×R

+ →R
+ such that

∣
∣g

(
ϑ ,� (ϑ)

)
– g

(
ϑ , w(ϑ)

)∣
∣

≤ 1
2
√

2

(ι + 1)

(κ(1) – κ(0))ι

√

‖(� – w)2‖∞ cos2‖(� – w)2‖∞
2

;

(ii) ∃ �0 ∈ C(�) and μ : R2 →R with μ(�0(ϑ),
∫ 1

0 G(κ,ϑ)κ ′(ϑ)g(ϑ ,�0(ϑ)) dϑ) ≥ 0,
ϑ ∈�;

(iii) for ϑ ∈� and � , w ∈ C(�), μ(� (ϑ), w(ϑ)) ≥ 0 implies

μ

(∫ 1

0
G(κ,ϑ)κ ′(ϑ)g

(
ϑ ,� (ϑ)

)
dϑ ,

∫ 1

0
G(κ,ϑ)κ ′(ϑ)g

(
ϑ , w(ϑ)

)
dϑ

)

≥ 0;

(iv) if {�n} ⊆ C(�) with �n → � and μ(�n,�n+1) ≥ 0, then μ(�n,� ) ≥ 0.
Then (4) has at least one solution.

Corollary 3.4 Suppose that
(i) ∃ g : �×R

+ →R
+ such that

∣
∣g

(
ϑ ,� (ϑ)

)
– g

(
ϑ , w(ϑ)

)∣
∣

≤ 1
2
√

2

(
(

(ι – 1)

[
κ(1) – κ(0) + κ ′(1) – κ ′(0)

])–1 κ ′(0)
ι – 1

× (
κ(1) – κ(0)

)ι–1
(

1 +
1
ι

(
κ(1) – κ(0)

)
)

+
1


(ι + 1)
(
κ(1) – κ(0)

)ι

)–1

×
√

‖(� – w)2‖∞ cos2‖(� – w)2‖∞
2

,

where φ ∈ � and λ ∈F ;
(ii) ∃ �0 ∈ C(�) and μ : R2 →R with μ(�0(ϑ),

∫ 1
0 �(κ,ϑ)κ ′(ϑ)g(ϑ ,�0(ϑ)) dϑ) ≥ 0,

ϑ ∈�;
(iii) for ϑ ∈� and � , w ∈ C(�), μ(� (ϑ), w(ϑ)) ≥ 0 implies

μ

(∫ 1

0
�(κ,ϑ)κ ′(ϑ)g

(
ϑ ,� (ϑ)

)
dϑ ,

∫ 1

0
�(κ,ϑ)κ ′(ϑ)g

(
ϑ , w(ϑ)

)
dϑ

)

≥ 0;

(iv) if {�n} ⊆ C(�) with �n → � and μ(�n,�n+1) ≥ 0, then μ(�n,� ) ≥ 0.
Then (6) has at least one solution.
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4 Examples
Example 4.1 Consider the κ-Ca fractional integral BVP

⎧
⎨

⎩

CD
3
2 , eκ

3
0+ � (κ) = g(κ,� (κ)), κ ∈ (0, 1),‖�‖∞ < π

4 ,

� (0) = � (1) = 0,
(8)

where ι = 3
2 , κ(κ) = eκ

3 and g(κ,� (κ)) = 3
√

π

128
√

2
(κ+3)

√

(e
1
3 –1)3

sin(2‖�‖∞). Let ϑ ∈�, and � , w ∈
R, we have

∣
∣g

(
ϑ ,� (ϑ)

)
– g

(
ϑ , w(ϑ)

)∣
∣

=
3
√

π

128
√

2
(ϑ + 3)

√

(e 1
3 – 1)3

∣
∣sin 2‖�‖∞ – sin 2‖w‖∞

∣
∣

=
3
√

π

128
√

2
(ϑ + 3)

√

(e 1
3 – 1)3

∣
∣2 sin

(‖�‖∞ – ‖w‖∞
)

cos
(‖�‖∞ + ‖w‖∞

)∣
∣

≤ 3
√

π

128
√

2
(ϑ + 3)

√

(e 1
3 – 1)3

∣
∣2‖� – w‖∞ cos

(‖�‖∞ + ‖w‖∞
)∣
∣

≤ 3
√

π

128
√

2
(ϑ + 3)

√

(e 1
3 – 1)3

∣
∣2‖� – w‖∞ cos

(‖� – w‖∞
)∣
∣

≤ 3
√

π

8
√

2
1

√

(e 1
3 – 1)3

√

‖(� – w)2‖∞ cos2‖(� – w)2‖∞
2

≤ 1
2
√

2

( 5

2 )

(e 1
3 – 1) 3

2

√

‖(� – w)2‖∞ cos2‖(� – w)2‖∞
2

≤ 1
2
√

2

( 5

2 )

(e 1
3 – 1) 3

2

√

‖(� – w)2‖∞ cos2‖(� – w)2‖∞
2

=
1

2
√

2

(ι + 1)

(κ(1) – κ(0))ι
√

φ
(∥
∥(� – w)2

∥
∥∞

)
λ
(
φ
(∥
∥(� – w)2

∥
∥∞

))
,

where φ(t) = t and λ(t) = cos2t
4 for t ∈�.

Hence, all assumptions of Corollary 3.3 hold. Therefore, (8) has a solution on �.

Example 4.2 Consider the κ-Ca fractional integral BVP

⎧
⎨

⎩

cD
3
2 ,eκ

0+ � (κ) = g(κ,� (κ)), κ ∈ (0, 1),‖�‖∞ < π
4 ,

� (0) + � ′(0) = 0, � (1) + � ′(1) = 0,
(9)

where ι = 3
2 , κ(κ) = eκ such that for

g
(
κ,� (κ)

)
=

1
8
√

2

∣
∣
∣
∣

(
(√

π
[
eκ + e – 1

])–12
(
eκ

) 1
2
(
1 + eκ

)
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+ 2
[
eκ + e – 1

]2
3
(
eκ

) 3
2

)–1∣∣
∣
∣ sin

(
2‖�‖∞

)
.

Let ϑ ∈�, and � , w ∈R, we have

∣
∣g

(
ϑ ,� (ϑ)

)
– g

(
ϑ , w(ϑ)

)∣
∣

≤ 1
8
√

2

∣
∣
∣
∣

(
(√

π
[
eϑ + e – 1

])–12
(
eϑ

) 1
2
(
1 + eϑ

)

+ 2
(
eϑ + e – 1

)2
3
(
eϑ

) 3
2

)–1∣∣
∣
∣

∣
∣sin 2‖�‖∞ – sin 2‖w‖∞

∣
∣

=
1

8
√

2

∣
∣
∣
∣

(
(√

π
[
eϑ + e – 1

])–12
(
eϑ

) 1
2
(
1 + eϑ

)

+ 2
(
eϑ + e – 1

)2
3
(
eϑ

) 3
2

)–1∣∣
∣
∣

∣
∣2 sin

(‖�‖∞ – ‖w‖∞
)

cos
(‖�‖∞ + ‖w‖∞

)∣
∣

≤ 1
8
√

2

∣
∣
∣
∣

(
(√

π
[
eϑ + e – 1

])–12
(
eϑ

) 1
2
(
1 + eϑ

)

+ 2
(
eϑ + e – 1

)2
3
(
eϑ

) 3
2

)–1∣∣
∣
∣

∣
∣2‖� – w‖∞ cos

(‖�‖∞ + ‖w‖∞
)∣
∣

≤ 1
8
√

2

∣
∣
∣
∣

(
(√

πeϑ + e – 1]
)–12

(
eϑ

) 1
2
(
1 + eϑ

)

+ 2
(
eϑ + e – 1

)2
3
(
eϑ

) 3
2

)–1∣∣
∣
∣

√

‖(� – w)2‖∞ cos2‖(� – w)2‖∞
2

=
1

2
√

2

(
(

(ι – 1)

[
κ(1) – κ(0) + κ ′(1) – κ ′(0)

])–1 κ ′(0)
ι – 1

× (
κ(1) – κ(0)

)ι–1
(

1 +
1
ι

(
κ(1) – κ(0)

)
)

+
1


(ι + 1)
(
κ(1) – κ(0)

)ι

)–1

×
√

φ
(∥
∥(� – w)2

∥
∥∞

)
λ
(
φ
(∥
∥(� – w)2

∥
∥∞

))
.

Hence, assumptions of Corollary 3.4 hold. So (9) has a solution on �.

Remark 4.3 One can easily see that Eqs. (8) and (9) considered in the above examples
cannot be addressed via methods in the current literature. This in a certain sense confirms
the superiority of the results of this paper over previous approaches.

5 Conclusion
In recent years and with the explosive growth of studies of derivatives of fractional or-
der, there have appeared tremendous numbers of papers that reported their results by
using the classical FDs and FP theorems. Meanwhile, interested researchers have raised
the question of the possibility of introducing a different approach that covers all classical
cases.

In this paper, we provided an affirmative answer to this inquiry by investigating the no-
tion of existence of solutions for BVPs defined within κ-generalized FD and with the help
of the FP technique based on α-φ-GC type mappings. The results reported in this paper
generalize existing results in the literature. Two examples are presented as particular cases
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for our proposed theorems. It is proved that the results obtained are consistent with our
theoretical findings.

We believe that the investigation of this problem in terms of a general approach will
provide an effective platform for the study of BVPs via generalized FOs.
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