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1 Introduction
In 1997, Wheeler and Schieve [1] introduced inductance into neural networks and gained
a second-order system which is called an inertial neural network (INN). Noticing that lots
of previous works mainly pay close attention to neural networks with only the first deriva-
tive of the states, so it is significantly important to introduce an inertial term. In INNs, in-
ertial terms are described by the first-order derivative terms which have important mean-
ing in engineering technology, biology, physics and information systems, for more details,
see, e.g., [1–3]. Since the inertial terms exist in a neural network, it is very difficult to in-
vestigate the dynamic properties of the network system. In the past few decades, many
researchers have used different methods and techniques to study INNs in depth and ob-
tained many results. In [4], the authors investigated the global dissipativity for INNs with
time-varying delays and parameter uncertainties by using generalized Halanay inequality,
matrix measure, and matrix-norm inequality. Wang and Jiang [5] considered a class of im-
pulsive INNs with time-varying delays. The global exponential stability in Lagrange sense
for INNs with delays has been discussed in [6, 7]. Draye, Winters, and Cheron [8] stud-
ied a class of self-selected modular recurrent neural networks with postural and inertial
subnetworks.

In general, periodic solutions of network systems have many important applications in
the real world. Thus, in the past few decades, periodic solutions of network systems have
been widely studied and gained many important results. For example, in [9], existence and
global exponential stability of periodic solutions for discrete-time BAM neural networks
have been considered. Furthermore, using suitable Lyapunov function and coincidence
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degree theory, Zhou et al. [10] studied a class of BAM neural networks with periodic co-
efficients and continuously distributed delays. For more results on periodic solutions of
network systems, see, e.g., [11–15]. Lu and Chen [16] studied the global stability of non-
negative equilibria for a Cohen–Grossberg neural network system. Ding, Liu, and Nieto
[17] obtained existence of positive almost periodic solutions to a class of hematopoiesis
models. In very recent years, Hien and Hai-An [18] considered the problems of positive
solutions and exponential stability of positive equilibrium of INNs with multiple time-
varying delays as follows:

d2xi(t)
dt2 = –ai

dxi(t)
dt

– bixi(t) +
n∑

j=1

cijfj
(
xj(t)

)
+

n∑

j=1

dijfj
(
xj

(
t – τj(t)

))
+ Ii(t), (1.1)

where t ≥ 0, i = 1, . . . , n. For the meaning of parameters in (1.1), see [18]. Using the com-
parison principle and homeomorphisms, the authors obtained some dynamic properties
of a positive solution of system (1.1).

A neutral-type NN is a nonlinear system which shows neutral properties by involving
derivatives with delays. Neutral-type INNs is not only an extension of nonneutral-type
INNs, but also provides more useful models in many fields, including biology, mechanics,
economics, electronics, and so on. Only a few investigations on dynamical properties of
neutral-type INNs have been reported so far. In a very recent article, Yogambigai et al. [19]
considered a neutral-type INN with discrete and distributed time delays as follows:

d2xi(t)
dt2 = – ai

dxi(t)
dt

– bixi(t) +
n∑

j=1

cijfj
(
xj(t)

)
+

n∑

j=1

dijfj
(
xj(t – h)

)

+
n∑

j=1

eij

∫ t

t–τ

fj
(
xj(s)

)
ds +

n∑

j=1

hij
d2xi(t – h)

dt2 + Ii(t). (1.2)

Global Lagrange stability for system (1.2) was obtained by using LMI method. System (1.2)
shows the neutral character by the term

∑n
j=1 hij

d2xi(t–h)
dt2 . In fact, according to the Hale’s

theory [20] for neutral functional differential equations, neutral terms are D-operator
forms, which are different from the neutral terms in (1.2). In the present paper, we will
study a class neutral-type INNs with D-operator forms.

In this paper, by using Mawhin’s continuation theorem, we obtain existence of periodic
solutions for neutral-type inertial neural networks. Mawhin’s continuation theorem is a
powerful tool for studying periodic solution problems, which is different from other meth-
ods, such as fixed-point theorem, variational method, Yoshizawa-type theorem, Massera-
type theorem, etc. Furthermore, by using Lyapunov functional method, we obtain stabil-
ity of periodic solutions for neutral-type inertial neural networks; this method is different
from other methods, such as linear matrix inequality (LMI) method, Halanay inequality,
matrix measure, and matrix-norm inequality, etc. It is noteworthy that we propose a gen-
eral approach by the properties of neutral-type operator, Mawhin’s continuation theorem
and Lyapunov functional method which can be used for studying neutral-type inertial
neural networks. The major challenges in this paper are as follows: (1) How to deal with
neutral operator in neutral-type INNs and how to use the properties of neutral opera-
tor? (2) Since neutral-type INNs contain neutral operator and delays, constructing proper
Lypunov function becomes very difficult.
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In this paper, we study the periodic solutions problem for a neutral-type INNs with vari-
able delays. Note that the considered system contains both the neutral terms and variable
delays that are all dependent on the properties of D-operator (neutral operator). The pur-
pose of this paper is to obtain existence and global asymptotic stability results of periodic
solutions via topological degree theory and constructing suitable Lyapunov–Krasovskii
functional. Two simulation examples are used to demonstrate the usefulness of our theo-
retical results. The highlights of this paper are threefold:

(1) In this paper, we study a new class of neutral-type INNs with neutral feature de-
scribed by D-operator which is different from the existing models, see, e.g., [19, 21–25].

(2) For constructing suitable Lyapunov–Krasovskii functional, the neutral operator is
first taken into consideration in the neutral-type INNs with variable delays and a nonneu-
tral system can be regarded as a special case.

(3) Different from the previous results, we introduce a new unified framework to deal
with the construction of Lyapunov–Krasovskii functional for the neutral-type INNs by
using properties of the neutral operator and mathematical analysis tools, which may be of
special interest. It is noted that our main results are also valid for the case of a nonneutral
system.

The following sections are organized as follows: In Sect. 2, we give preliminaries and
problem formulation. In Sect. 3, sufficient conditions are established for existence results
of system (2.1). The globally asymptotic stability results of the present paper are given in
Sect. 4. In Sect. 5, two numerical examples are given to show the feasibility of our results.
Finally, some conclusions and discussions are given about this paper.

2 Preliminaries and problem formulation
Denote

S = {1, 2, . . . , n}, CT =
{

x : x ∈ C(R,R), x(t + T) ≡ x(t)
}

, C1
T =

{
x : x′ ∈ CT

}
.

Motivated by the above work, we consider a class of neutral-type INNs with time-varying
delays as follows:

d2[Aixi(t)]
dt2 = –ai(t)

d[Aixi(t)]
dt

– bi(t)xi(t) +
n∑

j=1

cij(t)fj
(
xj(t)

)

+
n∑

j=1

dij(t)fj
(
xj

(
t – τj(t)

))
+ Ii(t), (2.1)

where t ≥ 0, i ∈ S, Ai is a difference operator defined by

(Aixi)(t) = xi(t) – cixi(t – γ ),

γ > 0 and |ci| �= 1 are constants, xi(t) denotes the state of the ith neuron at time t, ai(t) > 0
is the damping coefficient, bi(t) > 0 denotes the strength of different neuron at time t, cij(t)
and dij(t) are the neuron connection weights at time t, fj(·) is the activation function which
is a continuous, τj(t) is a delay function with 0 ≤ τj ≤ τ̂ , τ̂ is a constant, Ii(t) is an external
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input of the ith neuron at time t. Initial conditions of system (2.1) are given by

⎧
⎨

⎩
xi(s) = φi(s), s ∈ (–μ, 0], i ∈ S,

x′
i(s)) = ψi(s), s ∈ (–μ, 0], i ∈ S,

where μ = max{γ , τ̂ }.

Remark 2.1 According to Hale’s theory [20], a solution xi(t) (i ∈ S) of system (2.1) is a
function xi ∈ C(R,R) such that Aixi ∈ C(R,R). From Lemma 2.3, we have (Aixi)′′ = Aix′′

i .
So the solution xi(t) (i ∈ S) of system (2.1) must be in C2(R,R).

Let

yi(t) =
d[Aixi(t)]

dt
+ ξi(Aixi)(t), i ∈ S, (2.2)

where ξi > 0 is a constant. Then system (2.1) is changed into the following form:

⎧
⎪⎪⎨

⎪⎪⎩

(Aixi)′(t) = –ξi(Aixi)(t) + yi(t),

y′
i(t) = –(ai(t) – ξi)yi(t) + [(ai(t) – ξi)ξi](Aixi)(t) – bi(t)Ai[A–1

i xi(t)]

+
∑n

j=1 cij(t)fj(Aj[A–1
j xj(t)]) +

∑n
j=1 dij(t)fj(Aj[A–1

j xj(t – τj(t))]) + Ii(t).

(2.3)

Remark 2.2 The existence of A–1
i is based on Lemma 2.3.

Remark 2.3 There are many periodic phenomena in nature and society. One of the im-
portant trends in the investigations of inertial neural networks is related to the periodic
solutions of these systems. Hence, studying periodic solution problems of system (2.1) has
important theoretical and practical value.

Remark 2.4 System (2.1) is a neutral-type INN which shows neutral features due to
(Aixi)(t) = xi(t) – cixi(t – γ ). When ci = 0, system (2.1) is a nonneutral-type INN which
has been studied by many authors. Hence, system (2.1) is more general than the existing
INNs.

Lemma 2.1 ([26]) Assume that X and Y are two Banach spaces, and L : D(L) ⊂X → Y is
a Fredholm operator with index zero. Furthermore, suppose that � ⊂X is an open bounded
set and N : �̄ → Y is L-compact on �̄. If all the following conditions hold:

(1) Lx �= λNx, ∀x ∈ ∂� ∩ D(L), ∀λ ∈ (0, 1),
(2) Nx /∈ Im L, ∀x ∈ ∂� ∩ Ker L,
(3) deg{JQN ,� ∩ Ker L, 0} �= 0,

where J : Im Q → Ker L is an isomorphism. Then equation Lx = Nx has a solution on �̄ ∩
D(L).

Lemma 2.2 ([27]) Let g ∈ CT , τ ∈ C1
T with τ ′(t) < 1 ∀t ∈ [0, T]. Then g(μ(t)) ∈ CT , where

μ(t) is the inverse function of t – τ (t).
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Lemma 2.3 ([28]) Let A : CT → CT , (Ax)(t) = x(t) – cx(t – τ ), where τ > 0 and c are con-
stants, CT is the space of T-periodic continuous functions. If |c| �= 1, then operator A has
continuous inverse A–1 on CT , satisfying

[
A–1f

]
(t) =

⎧
⎨

⎩

∑
j≥0 cjf (t – jτ ), if |c| < 1,∀f ∈ CT ,

–
∑

j≥1 c–jf (t + jτ ), if |c| > 1,∀f ∈ CT ,

and

∣∣(A–1x
)
(t)

∣∣ ≤ ‖x‖
|1 – |c|| , ∀x ∈ CT .

Lemma 2.4 (Bellman inequality) Assume that f (t) is a nonnegative continuous function
on [0, T]. If there are constants δ, k ≥ 0 such that

f (t) ≤ δ + k
∫ t

0
f (s) ds, t ∈ [0, T],

then

f (t) ≤ δekt .

Throughout the paper, the following assumptions hold:
(H1) ai(t), bi(t), cij(t), and dij(t) are continuous T-periodic functions.
(H2) There exists a constant lj ≥ 0 such that

∣∣fj(x)
∣∣ ≤ lj, j ∈ S, ∀x ∈ R.

(H3) There exists a constant l̂j ≥ 0 such that

∣∣fj(x)
∣∣ ≤ l̂j|x| j ∈ S, ∀x ∈R.

(H4) There exists a constant l̃j ≥ 0 such that

∣∣fj(x) – fj(y)
∣∣ ≤ l̃j|x – y|, j ∈ S, ∀x, y ∈R.

Remark 2.5 For obtaining existence of periodic solutions for neutral-type inertial neu-
ral networks, assumption (H1) is a important sufficient condition. Assumption (H2) is an
important condition for estimating the prior bounds of the solution by using Mawhin’s
continuation theorem. Assumption (H4) is the famous Lipschitz condition for fj(x), j =
1, 2, . . . , n. Assumption (H3) is a linear growth condition for fj(x), j = 1, 2, . . . , n. If fj(0) = 0,
then (H4) implies (H3).

3 Existence and uniqueness of a periodic solution
Let x(t) = (x1(t), . . . , xn(t)), y(t) = (y1(t), . . . , yn(t)). Set

X = Y =
{

w(t) =
(
x(t), y(t)

) ∈ C
(
R,R2n), w(t + T) = w(t)

}
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with the norm ‖w‖ = max{|x|∞, |y|∞}, where

|f |∞ = max
i∈S,

|fi|0, |fi|0 = max
t∈R

∣∣fi(t)
∣∣ ∀f ∈R

n.

It is easy to see that X and Y are two Banach spaces. Let

L : D(L) ⊂X →X , (Lw)(t) = w′(t) =
(
x′(t), y′(t)

), t ∈R,

(Lw)i(t) = (Aixi)′(t), i ∈ S, t ∈ R, (3.1)

and

(Lw)n+i(t) = y′
i(t), i ∈ S, t ∈R. (3.2)

Let N : X →X with

(Nw)i(t) = –ξi(Aixi)(t) + yi(t), i ∈ S, t ∈ R, (3.3)

and

(Nw)n+i(t) = –
(
ai(t) – ξi

)
yi(t) +

[(
ai(t) – ξi

)
ξi

]
(Aixi)(t) – bi(t)Ai

[
A–1

i xi(t)
]

+
n∑

j=1

cij(t)fj
(
Aj

[
A–1

j xj(t)
])

+
n∑

j=1

dij(t)fj
(
Aj

[
A–1

j xj
(
t – τj(t)

)])

+ Ii(t), i ∈ S, t ∈R. (3.4)

Obviously, Ker L = R
2n, Im L = {w : w ∈ X ,

∫ T
0 w(s) ds = 0} is closed in Y , dim Ker L =

condim Im L = 2n. So L is a Fredholm operator with index zero. Let

P : X → Ker L, Q : Y → Y/ Im L

be defined by

Px =
1
T

∫ T

0
w(s) ds, Qy =

1
T

∫ T

0
y(s) ds,

and let

Lp = L|X∩Ker P : X ∩ Ker P → Im L.

Then Lp has its right inverse L–1
P .

Theorem 3.1 Suppose that Assumptions (H1) and (H2) hold. Then system (2.1) has at least
one T-periodic solution, provided that the following conditions hold:

1 – T
(|ai|0 + ξi

)
> 0, i ∈ S, (3.5)

1 –
|1 – |c|i|(|ai|0 + ξi)ξi + |bi|0
|1 – |c|i|(1 – T(|ai|0 + ξi))

T
1 – Tξi

> 0, i ∈ S, (3.6)
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∣∣ξi(1 – ci)m
∣∣ �= |M| or

∣∣ξi(1 – ci)M
∣∣ �= |m|, i ∈ S, (3.7)

where ξi > 0 is defined by (2.3), and m and M are defined by (3.14) and (3.15), respectively.

Proof Consider the following operator equation:

Lw = λNw, w ∈ D(L),λ ∈ (0, 1),

where L and N are defined by (3.1)–(3.4). Let �1 = {w : w ∈ D(L), Lw = λNw, λ ∈ (0, 1)}.
Then ∀x ∈ �1, it follows that

(Aixi)′(t) = λ
[
–ξi(Aixi)(t) + yi(t)

]
, i ∈ S, t ∈R, (3.8)

y′
i(t) = λ

[
–
(
ai(t) – ξi

)
yi(t) +

[(
ai(t) – ξi

)
ξi

]
(Aixi)(t) – bi(t)Ai

[
A–1

i xi(t)
]

+
n∑

j=1

cij(t)fj
(
Aj

[
A–1

j xj(t)
])

+
n∑

j=1

dij(t)fj
(
Aj

[
A–1

j xj
(
t – τj(t)

)])
+ Ii(t)

]
, i ∈ S, t ∈R. (3.9)

By (3.8), we have

∣∣(Aixi)(t)
∣∣ ≤ (

1 + |ci|
)|φ|∞ +

∫ T

0

∣∣(Aixi)′(t)
∣∣dt

≤ (
1 + |ci|

)|φ|∞ + ξi

∫ T

0

∣∣(Aixi)(t)
∣∣dt +

∫ T

0

∣∣yi(t)
∣∣dt.

By the above inequality, we have

|Aixi|0 = max
t∈[0,T]

∣∣Aixi(t)
∣∣ ≤ (

1 + |ci|
)|φ|∞ + ξiT

∣∣(Aixi)
∣∣
0 + T |yi|0.

Using condition (3.5) and the above inequality, we then get

|Aixi|0 ≤ (1 + |ci|)|φ|∞
1 – Tξi

+
T |yi|0

1 – Tξi
. (3.10)

From Assumption (H2), (3.10), and Lemma 2.3, we get

∣∣yi(t)
∣∣ ≤ |ψ̃ |∞ +

∫ T

0

∣∣y′
i(t)

∣∣dt

≤ |ψ̃ |∞ +
∫ T

0

(|ai|0 + ξi
)∣∣yi(t)

∣∣dt

+
(|ai|0 + ξi

)
ξi

∫ T

0

∣∣(Aixi)(t)
∣∣dt + |bi|0

∫ T

0

∣∣xi(t)
∣∣dt

+
n∑

j=1

(|cij|0 + |dij|0
)
ljT + T |Ii|0
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≤ |ψ̃ |∞ + T
(|ai|0 + ξi

)|yi|0

+
(|ai|0 + ξi

)
ξi

∫ T

0

∣∣(Aixi)(t)
∣∣dt +

|bi|0
|1 – |c|i|

∫ T

0

∣∣(Aixi)(t)
∣∣dt

+
n∑

j=1

(|cij|0 + |dij|0
)
ljT + T |Ii|0

= |ψ̃ |∞ +
n∑

j=1

(|cij|0 + |dij|0
)
ljT + T |Ii|0 + T

(|ai|0 + ξi
)|yi|0

+
|1 – |c|i|(|ai|0 + ξi)ξi + |bi|0

|1 – |c|i|
∫ T

0

∣∣(Aixi)(t)
∣∣dt,

where |ψ̃ |∞ = maxi∈S{|Aiψ(0) + ξiφ(0)|}. Due to condition (3.5),

|yi|0 ≤ |ψ̃ |∞ +
∑n

j=1(|cij|0 + |dij|0)ljT + T |Ii|0
1 – T(|ai|0 + ξi)

+
|1 – |c|i|(|ai|0 + ξi)ξi + |bi|0
|1 – |c|i|(1 – T(|ai|0 + ξi))

∫ T

0

∣∣(Aixi)(t)
∣∣dt.

In view of (3.10), we have

|yi|0 ≤ |ψ̃ |∞ +
∑n

j=1(|cij|0 + |dij|0)ljT + T |Ii|0
1 – T(|ai|0 + ξi)

+
|1 – |c|i|(|ai|0 + ξi)ξi + |bi|0
|1 – |c|i|(1 – T(|ai|0 + ξi))

(1 + |ci|)|φ|∞
1 – Tξi

+
|1 – |c|i|(|ai|0 + ξi)ξi + |bi|0
|1 – |c|i|(1 – T(|ai|0 + ξi))

T |yi|0
1 – Tξi

.

From condition (3.6), there exists a positive constant Ki such that

|yi|0 ≤ Ki, i ∈ S,∀t ∈ [0, T]. (3.11)

Using (3.10) and (3.11), we obtain

|Aixi|0 ≤ (1 + |ci|)|φ|∞
1 – Tξi

+
TKi

1 – Tξi
.

In view of Lemma 2.3,

|xi|0 ≤ |Aixi|0
|1 – |ci||

≤ (1 + |ci|)|φ|∞
|1 – |ci||(1 – Tξi)

+
TKi

|1 – |ci||(1 – Tξi)

:= Pi. (3.12)

From (3.11) and (3.12), we have

‖w‖ = max
{

max
i∈S

Ki, max
i∈S

Pi

}
:= M.
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Let �2 = {w ∈ X : ‖w‖ < M + 1}. Then ∀w ∈ �2, condition (1) of Lemma 2.1 holds. We
prove that

QNw �= 0 ∀w ∈ ∂�2 ∩ Ker L. (3.13)

In fact, ∀w ∈ ∂�2 ∩ Ker L, then w ∈ R
2n is a constant vector, and there exists at least one

i ∈ S such that

|yi| = M + 1 and |xi| = m < M + 1. (3.14)

If yi = M + 1, xi = m, integrate (3.3) over [0, T], then ξi(1 – ci)m = M, which is a contradic-
tion to (3.7). If yi = –(M + 1), xi = ±m, we can obtain a similar contradiction to (3.7). On
the other hand, if there exists at least one i ∈ S such that

|xi| = M + 1 and |yi| = m < M + 1, (3.15)

then we can obtain similar results. Hence, (3.13) and condition (2) of Lemma 2.1 hold. Let

Hi(wi,μ) = μwi + (1 – μ)QNwi, μ ∈ [0, 1], i = 1, 2, . . . , 2n.

Using (3.13), we have

Hi(wi,μ) �= 0 �= 0 for all w ∈ ∂�2 ∩ Ker L, i = 1, 2, . . . , 2n.

Based on the property of topological degree and taking J to be the identity mapping I :
Im Q → Ker L, then

deg{JQN ,�2 ∩ Ker L, 0} = deg
{

H(·, 0),�2 ∩ Ker L, 0
}

= deg
{

H(·, 1),�2 ∩ Ker L, 0
}

= 1 �= 0.

So, condition (3) of Lemma 2.1 holds. Therefore, by using Lemma 2.1, we see that the
equation Lx = Nx has at least one T-periodic solution w in �2. Namely, system (2.1) has
at least one positive T-periodic solution. �

Theorem 3.2 Suppose that τ ′
j (t) < 1 (j ∈ S, t ∈ R), and Assumptions (H1) and (H3) hold.

Then system (2.1) has at least one T-periodic solution, provided that the following condi-
tions hold:

1 – T
(|ai|0 + ξi

)
> 0, i ∈ S, (3.16)

1 –
T2|1 – |ci||(|ai|0 + ξi)ξi + T2|bi|0 + |�ij|0

|1 – |ci||(1 – T(|ai|0 + ξi))(1 – Tξi)
> 0, i, j ∈ S, (3.17)

∣∣ξi(1 – ci)m
∣∣ �= |M| or

∣∣ξi(1 – ci)M
∣∣ �= |m|, i ∈ S, (3.18)

where ξi > 0 is defined by (2.3), and M is defined by (3.27), m ≤ M + 1 is a positive constant,
�ij(t) = cij(t) + dij(μj(t))

1–τ ′(μj(t)) , μj(t) is a inverse function of t – τj(t).
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Proof We only show that the solutions to system (3.8) and (3.9) are bounded, other proofs
are similar to that of Theorem 3.1. By (3.10) and Lemma 2.3, we get

∣∣yi(t)
∣∣ ≤ |ψ̃ |∞ +

∫ T

0

∣∣y′
i(t)

∣∣dt

≤ |ψ̃ |∞ +
∫ T

0

(|ai|0 + ξi
)|yi(t)|dt

+
(|ai|0 + ξi

)
ξi

∫ T

0
|(Aixi)(t)|dt + |bi|0

∫ T

0
|xi(t)|dt

+
n∑

j=1

∫ T

0
|cij(s)fj

(
xj(s)

)
∣∣∣∣∣ds +

n∑

j=1

∫ T

0

∣∣∣∣∣dij(s)fj
(
xj

(
s – τj(s)

))|ds + T |Ii|0. (3.19)

Consider the term
∫ T

0
∑n

j=1 dij(s)fj(xj(s – τj(s))) ds in (3.19). Using Lemma 2.2, we have

∫ T

0

n∑

j=1

|dij(s)fj
(
xj

(
s – τj(s)

))|ds =
∫ T

0

n∑

j=1

|dij(μj(s))|
1 – τ ′(μj(s))

|fj
(
xj(s)

)|ds, i ∈ S, (3.20)

where μj(t) is a inverse function of t – τj(t). From Assumption (H3), (3.19), and (3.20), we
have

∣∣yi(t)
∣∣ ≤ |ψ̃ |∞ +

∫ T

0

∣∣y′
i(t)

∣∣dt

≤ |ψ̃ |∞ + T
(|ai|0 + ξi

)|yi|0

+
(|ai|0 + ξi

)
ξi

∫ T

0
|(Aixi)(t)|dt +

|bi|0
|1 – |c|i|

∫ T

0
|(Aixi)(t)|dt

+
∫ T

0

n∑

j=1

|�ij(s)fj
(
xj(s)

)|ds + T |Ii|0

≤ |ψ̃ |∞ + T
(|ai|0 + ξi

)|yi|0

+
(|ai|0 + ξi

)
ξi

∫ T

0
|(Aixi)(t)|dt +

|bi|0
|1 – |c|i|

∫ T

0
|(Aixi)(t)|dt

+ Tl̂j|
n∑

j=1

|�ij|0|x|∞ + T |Ii|0.

Due to condition (3.16), then

|yi|0 ≤ |ψ̃ |∞ + T |Ii|0
1 – T(|ai|0 + ξi)

+
|1 – |c|i|(|ai|0 + ξi)ξi + |bi|0
|1 – |c|i|(1 – T(|ai|0 + ξi))

T |Aixi|0

+
∑n

j=1 |�ij|0
1 – T(|ai|0 + ξi)

|x|∞. (3.21)
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By (3.10) and (3.21), then

|yi|0 ≤ |ψ̃ |∞ + T |Ii|0
1 – T(|ai|0 + ξi)

+
|1 – |ci||(|ai|0 + ξi)ξi + |bi|0
|1 – |ci||(1 – T(|ai|0 + ξi))

T(1 + |ci|)|φ|∞
1 – Tξi

+
|1 – |ci||(|ai|0 + ξi)ξi + |bi|0
|1 – |ci||(1 – T(|ai|0 + ξi))

T2|yi|0
1 – Tξi

+
∑n

j=1 |�ij|0
1 – T(|ai|0 + ξi)

|x|∞. (3.22)

From Lemma 2.3 and (3.10), we get

|x|∞ ≤ (1 + |ci|)|φ|∞
|1 – |ci||(1 – Tξi)

+
T |y|∞

|1 – |ci||(1 – Tξi)
. (3.23)

By (3.22) and (3.23), we have

|y|∞ ≤ |ψ̃ |∞ + T |Ii|0
1 – T(|ai|0 + ξi)

+
|1 – |ci||(|ai|0 + ξi)ξi + |bi|0
|1 – |ci||(1 – T(|ai|0 + ξi))

T(1 + |ci|)|φ|∞
1 – Tξi

+
|1 – |ci||(|ai|0 + ξi)ξi + |bi|0
|1 – |ci||(1 – T(|ai|0 + ξi))

T2|y|∞
1 – Tξi

+
∑n

j=1 |�ij|0
1 – T(|ai|0 + ξi)

(1 + |ci|)|φ|∞
|1 – |ci||(1 – Tξi)

+
∑n

j=1 |�ij|0
1 – T(|ai|0 + ξi)

T |y|∞
|1 – |ci||(1 – Tξi)

. (3.24)

From condition (3.17) and (3.24), there exists a constant M1 > 0 such that

|y|∞ ≤ M1. (3.25)

In view of (3.23) and (3.25), there exists a constant M2 > 0 such that

|x|∞ ≤ M2. (3.26)

It follows from (3.25) and (3.26), there there exists a constant M > 0 such that

‖ω‖ = max
{|x|∞, |y|∞

} ≤ M. (3.27)

The following proof is similar to the corresponding arguments in the proof of Theorem 3.1,
so we omit it.

Due to Assumption (H4), the term fj(xj), j ∈ S in system (2.1) satisfies Lipschitz condition
on R. Thus, by basic results for functional differential equations, we have the following
theorems for the unique existence of a periodic solution to system (2.1). �
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Theorem 3.3 Suppose all the conditions of Theorem 3.1 and Assumption (H4) hold. Then
system (2.1) has a unique T-periodic solution.

Proof Assume that w(t) = (x(t), y(t)) and κ(t) = (u(t), v(t)) are two periodic solutions of
system (2.3) which satisfy the initial conditions

⎧
⎨

⎩
xi(s) = φi(s), s ∈ (–μ, 0], i ∈ S,

x′
i(s)) = ψi(s), s ∈ (–μ, 0], i ∈ S.

Then, we have

∣∣Aixi(t) – Aiui(t)
∣∣ ≤

∫ t

0

(
ξi

∣∣Aixi(s) – Aiui(s)
∣∣ +

∣∣yi(s) – vi(s)
∣∣)ds. (3.28)

By (3.28), we get

n∑

i=1

∣∣Aixi(t) – Aiui(t)
∣∣ ≤

∫ t

0

n∑

i=1

ξi
∣∣Aixi(s) – Aiui(s)

∣∣ds + T
n∑

i=1

∣∣yi(t) – vi(t)
∣∣
0. (3.29)

By assumptions of Theorem 3.3, we have

∣∣yi(t) – vi(t)
∣∣

≤
∫ t

0

∣∣ai(t) – ξi
∣∣
0

∣∣yi(s) – vi(s)
∣∣ds

+
∣∣(ai(t) – ξi

)
ξi

∣∣
0

∫ t

0

∣∣Aixi(s) – Aiui(s)
∣∣ds + |bi|0

∫ t

0

∣∣xi(s) – ui(s)
∣∣ds

+
∫ t

0

n∑

j=1

(|cij|0 + |dij|0
)
l̃j
∣∣xj(s) – uj(s)

∣∣ds

≤
∫ t

0

∣∣ai(t) – ξi
∣∣
0

∣∣yi(s) – vi(s)
∣∣ds +

∣∣(ai(t) – ξi
)
ξi

∣∣
0

∫ t

0

∣∣Aixi(s) – Aiui(s)
∣∣ds

+
|bi|0

|1 – |ci||
∫ t

0

∣∣Aixi(s) – Aiui(s)
∣∣ds

+
∫ t

0

n∑

j=1

ϑ1
∣∣Ajxj(s) – Ajuj(s)

∣∣ds, (3.30)

where ϑ1 = maxi,j∈S
(|cij|0+|dij|0)l̃j

|1–|ci|| . By (3.30), we get

ϑ2

n∑

i=1

∣∣yi(t) – vi(t)
∣∣
0 ≤

n∑

i=1

∣∣(ai(t) – ξi
)
ξi

∣∣
0

∫ t

0

∣∣Aixi(s) – Aiui(s)
∣∣ds

+
n∑

i=1

|bi|0
|1 – |ci||

∫ t

0

∣∣Aixi(s) – Aiui(s)
∣∣ds

+ nϑ1

∫ t

0

n∑

i=1

∣∣Aixi(s) – Aiui(s)
∣∣ds, (3.31)
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where ϑ2 = mini∈S(1 – T |ai(t) – ξi|0) > 0. By (3.29) and (3.31), we have

n∑

i=1

∣∣Aixi(t) – Aiui(t)
∣∣ ≤

∫ t

0

n∑

i=1

ξi
∣∣Aixi(s) – Aiui(s)

∣∣ds

× T
ϑ2

n∑

i=1

∣∣(ai(t) – ξi
)
ξi

∣∣
0

∫ t

0

∣∣Aixi(s) – Aiui(s)
∣∣ds

+
T
ϑ2

n∑

i=1

|bi|0
|1 – |ci||

∫ t

0

∣∣Aixi(s) – Aiui(s)
∣∣ds

+
Tn
ϑ2

ϑ1

∫ t

0

n∑

i=1

∣∣Aixi(s) – Aiui(s)
∣∣ds. (3.32)

By Lemma 2.4 (Bellman inequality) and (3.32), we have

n∑

i=1

∣∣Aixi(t) – Aiui(t)
∣∣ = 0,

i.e.,

xi(t) = ui(t), i ∈ S. (3.33)

By (3.31) and (3.33), we have

yi(t) = vi(t), i ∈ S.

Hence, the periodic solution of system (2.3) is unique, i.e., the periodic solution of system
(2.1) is unique. �

Theorem 3.4 Suppose all the conditions of Theorem 3.2 and Assumption (H4) hold. Then
system (2.1) has a unique T-periodic solution.

Proof The proof of Theorem 3.4 is similar to that of Theorem 3.3, so we omit it. �

4 Asymptotic behavior of a periodic solution
Since system (2.3) is equivalent to system (2.1) under the transformation (2.2), we will
consider the asymptotic stability problems of system (2.3).

Definition 4.1 If w∗(t) = (x∗
1(t), . . . , x∗

n(t), y∗
1(t), . . . , y∗

n(t)) is a periodic solution of system
(2.3) and w(t) = (x1(t), . . . , xn(t), y1(t), . . . , yn(t)) is any solution of system (2.3) satisfying

lim
t→+∞

n∑

i=1

[∣∣xi(t) – x∗
i (t)

∣∣ +
∣∣yi(t) – y∗

i (t)
∣∣] = 0.

Then w∗(t) is globally asymptotically stable.
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Theorem 4.1 Under the conditions of Theorem 3.3, assume further that
there exist ιi > 0, κi > 0 such that

ιi = lim
t→+∞ inf

[
2ξi – 1 –

(
ai(t) – ξi

)2
ξ 2

i –
bi(t)

|1 – |ci||2
]

, i ∈ S (4.1)

and

κi = lim
t→+∞ inf

[
2
(
ai(t) – ξi

)
– 2 – bi(t) – 4

n∑

j=1

(∣∣cij(t)
∣∣ +

∣∣dij(t)
∣∣)lj

]
, i ∈ S, (4.2)

where 2(ai(t) – ξi) – 2 – bi(t) > 0 for t ∈R, i ∈ S. Then system (2.3) has a unique T-periodic
solution w∗(t) = (x∗

1(t), . . . , x∗
n(t), y∗

1(t), . . . , y∗
n(t)) which is globally asymptotically stable.

Proof By Theorem 3.3, system (2.3) has a unique T-periodic solution w∗(t). Suppose w(t)
is any solution of system (2.3). Let

Vi(t) =
(
Aixi(t) – Aix∗

i
)2 +

(
yi(t) – y∗

i
)2, i ∈ S, t ≥ 0. (4.3)

Taking the derivative of (4.3) along the solution of (2.3) gives

V ′
i (t) = 2

(
Aixi(t) – Aix∗

i
)[

Aix′
i(t) – Aix∗′

i (t)
]

+ 2
(
yi(t) – y∗

i
)(

y′
i(t) – y∗′

i (t)
)

= 2
(
Aixi(t) – Aix∗

i
)[

–ξi(Aixi)(t) + yi(t) –
(
–ξi

(
Aix∗

i
)
(t) + y∗

i (t)
)]

+ 2
(
yi(t) – y∗

i
)
[

–
(
ai(t) – ξi

)
yi(t) +

[(
ai(t) – ξi

)
ξi

]
(Aixi)(t) – bi(t)xi(t)

+
n∑

j=1

cij(t)fj
(
xj(t)

)
+

n∑

j=1

dij(t)fj
(
xj

(
t – τj(t)

))
+ Ii(t)

–

(
–
(
ai(t) – ξi

)
y∗

i (t) +
[(

ai(t) – ξi
)
ξ ∗

i
](

Aix∗
i
)
(t) – bi(t)x∗

i (t)

+
n∑

j=1

cij(t)fj
(
x∗

j (t)
)

+
n∑

j=1

dij(t)fj
(
x∗

j
(
t – τj(t)

))
+ Ii(t)

)]

= –2ξi
(
Aixi(t) – Aix∗

i
)2 + 2

(
Aixi(t) – Aix∗

i
)(

yi(t) – y∗
i
)

– 2
(
ai(t) – ξi

)(
yi(t) – y∗

i
)2

+ 2
[(

ai(t) – ξi
)
ξi

](
Aixi(t) – Aix∗

i
)(

yi(t) – y∗
i
)

– 2bi(t)
(
xi(t) – x∗

i
)(

yi(t) – y∗
i
)

+ 2
(
yi(t) – y∗

i
) n∑

j=1

cij(t)
[
fj
(
xj(t)

)
– fj

(
x∗

j (t)
)]

+ 2
(
yi(t) – y∗

i
) n∑

j=1

dij(t)
[
fj
(
xj

(
t – τj(t)

))
– fj

(
x∗

j
(
t – τj(t)

))]

≤ –2ξi
(
Aixi(t) – Aix∗

i
)2 +

(
Aixi(t) – Aix∗

i
)2 +

(
yi(t) – y∗

i
)2
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– 2
(
ai(t) – ξi

)(
yi(t) – y∗

i
)2

+
[(

ai(t) – ξi
)
ξi

]2(Aixi(t) – Aix∗
i
)2 +

(
yi(t) – y∗

i
)2

+ bi(t)
(
xi(t) – x∗

i
)2 + bi(t)

(
yi(t) – y∗

i
)2

+ 4
n∑

j=1

(∣∣cij(t)
∣∣ +

∣∣dij(t)
∣∣)lj

∣∣yi(t) – y∗
i
∣∣

≤ –2ξi
(
Aixi(t) – Aix∗

i
)2 +

(
Aixi(t) – Aix∗

i
)2 +

(
yi(t) – y∗

i
)2

– 2
(
ai(t) – ξi

)(
yi(t) – y∗

i
)2

+
[(

ai(t) – ξi
)
ξi

]2(Aixi(t) – Aix∗
i
)2 +

(
yi(t) – y∗

i
)2

+
bi(t)

|1 – |ci||2
(
Aixi(t) – Aix∗

i
)2 + bi(t)

(
yi(t) – y∗

i
)2

+ 4
n∑

j=1

(∣∣cij(t)
∣∣ +

∣∣dij(t)
∣∣)lj

∣∣yi(t) – y∗
i
∣∣

= –âi
(
Aixi(t) – Aix∗

i
)2 – b̂i

(
yi(t) – y∗

i
)2 + ĉi

∣∣yi(t) – y∗
i
∣∣, (4.4)

where

âi = 2ξi – 1 –
(
ai(t) – ξi

)2
ξ 2

i –
bi(t)

|1 – |ci||2 , b̂i = 2
(
ai(t) – ξi

)
– 2 – bi(t) > 0,

ĉi = 4
n∑

j=1

(∣∣cij(t)
∣∣ +

∣∣dij(t)
∣∣)lj.

If |yi(t) – y∗
i | ≥ 1, from (4.1), (4.2), and (4.4), we have

V ′
i (t) ≤ –âi

(
Aixi(t) – Aix∗

i
)2 – (b̂i – ĉi)

(
yi(t) – y∗

i
)2 < 0, i ∈ S. (4.5)

If |yi(t) – y∗
i | < 1, from (4.1), (4.2), and (4.4), we have

V ′
i (t) ≤ –âi

(
Aixi(t) – Aix∗

i
)2 – (b̂i – ĉi)

∣∣yi(t) – y∗
i
∣∣ < 0, i ∈ S. (4.6)

Using conditions (4.1) and (4.2), for any ε > 0, ιi –ε > 0, and κi –ε > 0, there exists a positive
constant M (large enough) such that

2ξi – 1 –
(
ai(t) – ξi

)
ξi –

bi(t)
|1 – |ci||2 ≥ ιi – ε for t > M, i ∈ S, (4.7)

and

2
(
ai(t) – ξi

)
– 2 – bi(t) ≥ κi – ε for t > M, i ∈ S. (4.8)

If (4.5) holds, it follows by (4.7) and (4.8) that

V ′
i (t) ≤ –(ιi – ε)

(
Aixi(t) – Aix∗

i
)2 – (κi – ε)

(
yi(t) – y∗

i
)2 for t > M, i ∈ S. (4.9)
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Take the Lyapunov functional for system (2.3) in the following form:

V (t) =
n∑

i=1

Vi(t), t ∈R.

Computing the derivative of it along the solution of system (2.3), and using (4.9), it follows
that

V ′(t) ≤ –
n∑

i=1

[
(ιi – ε)

(
xi(t) – x∗

i
)2 + (κi – ε)

(
yi(t) – y∗

i
)2] < 0 for t > T, i ∈ [n]. (4.10)

Integrate both sides of (4.10) from M to +∞, then

V (t) +
∫ +∞

M

n∑

i=1

[
(ιi – ε)

(
Aixi(t) – Aix∗

i
)2 + (κi – ε)

(
yi(t) – y∗

i
)2] ≤ V (0).

By Barbalat’s lemma [29], it follows that

lim
t→+∞

n∑

i=1

[∣∣Aixi(t) – Aix∗
i
∣∣ +

∣∣yi(t) – y∗
i
∣∣] = 0. (4.11)

By Lemma 2.3, we get

∣∣xi(t) – x∗
i
∣∣ =

∣∣A–1
i Ai

(
xi(t) – x∗

i
)∣∣ ≤ 1

|1 – |ci||
∣∣Aixi(t) – Aix∗

i
∣∣

which together with (4.11) yields that

lim
t→+∞

n∑

i=1

[∣∣xi(t) – x∗
i
∣∣ +

∣∣yi(t) – y∗
i
∣∣] = 0.

If (4.6) holds, we have the same results. The proof of Theorem 4.1 is now finished. �

5 Numerical examples
This section presents two examples that demonstrate the validity of our theoretical results.

Example 5.1

d2[A1x1(t)]
dt2 = – a1(t)

d[A1x1(t)]
dt

– b1(t)x1(t) +
3∑

j=1

c1j(t)fj
(
xj(t)

)

+
3∑

j=1

d1j(t)fj
(
xj

(
t – τj(t)

))
+ I1(t),

d2[A2x2(t)]
dt2 = – a2(t)

d[A2x2(t)]
dt

– b2(t)x2(t) +
3∑

j=1

c1j(t)fj
(
xj(t)

)

+
3∑

j=1

d2j(t)fj
(
xj

(
t – τj(t)

))
+ I2(t),

(5.1)
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d2[A3x3(t)]
dt2 = – a3(t)

d[A3x3(t)]
dt

– b3(t)x3(t) +
3∑

j=1

c3j(t)fj
(
xj(t)

)

+
3∑

j=1

d3j(t)fj
(
xj

(
t – τj(t)

))
+ I3(t),

where

T =
π

5
, c1 = c2 = c3 = 0.5, a1(t) = a2(t) = a3(t) = 0.2,

b1(t) = b2(t) = b3(t) = 0.3, cij(t) = dij(t) = 0.1, τj(t) =
1

2π
cos 10t,

fj(u) =
sin2 u
u2 + 1

, I1(t) = I2(t) = I3(t) = sin 10t.

Obviously, lj = 1, |�ij|0 = 0.211 (i, j = 1, 2, 3) and Assumption (H2) holds. For the above
parameters, letting ξi = 0.1 (i = 1, 2, 3), we check that conditions (3.5) and (3.6) hold:

1 – T
(|ai|0 + ξi

)
= 0.8116 > 0, i = 1, 2, 3,

1 –
T2|1 – |ci||(|ai|0 + ξi)ξi + T2|bi|0 + |�ij|0

|1 – |ci||(1 – T(|ai|0 + ξi))(1 – Tξi)
= 0.372 > 0, i = 1, 2, 3.

Thus, all the assumptions of Theorem 3.2 hold and system (5.1) has at least one T-periodic
solution. The corresponding numerical simulations are presented in Figs. 1–4 with ran-
dom initial conditions. Figure 1 shows that system (5.1) possesses at least one T-periodic
solution. Figures 2–4 show that different subsystems of system (5.1) have periodic solu-
tions.

Example 5.2

d2[A1x1(t)]
dt2 = – a1(t)

d[A1x1(t)]
dt

– b1(t)x1(t) +
3∑

j=1

c1j(t)fj
(
xj(t)

)

+
3∑

j=1

d1j(t)fj
(
xj

(
t – τj(t)

))
+ I1(t),

Figure 1 State trajectories of system (5.1) for (x(t), t)
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Figure 2 The space diagram of the subsystem (x1(t),
x2(t), t) for system (5.1)

Figure 3 The space diagram of the subsystem (x1(t),
x3(t), t) for system (5.1)

Figure 4 The space diagram of the subsystem (x2(t),
x3(t), t) for system (5.1)

d2[A2x2(t)]
dt2 = – a2(t)

d[A2x2(t)]
dt

– b2(t)x2(t) +
3∑

j=1

c1j(t)fj
(
xj(t)

)

+
3∑

j=1

d2j(t)fj
(
xj

(
t – τj(t)

))
+ I2(t),

(5.2)

d2[A3x3(t)]
dt2 = – a3(t)

d[A3x3(t)]
dt

– b3(t)x3(t) +
3∑

j=1

c3j(t)fj
(
xj(t)

)

+
3∑

j=1

d3j(t)fj
(
xj

(
t – τj(t)

))
+ I3(t),

where

T =
π

10
, c1 = c2 = c3 = 0.9, a1(t) = a2(t) = a3(t) = 3,
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Figure 5 The periodic solution x(t) of (5.2) is globally
asymptotic stable

b1(t) = b2(t) = b3(t) = 0.002, cij(t) = dij(t) = 0.1, τj(t) =
1

2π
cos 20t,

fj(u) =
cos2 u
u2 + 1

, Ii(t) = sin t.

Obviously lj = 1. Letting ξi = 1.8 (i = 1, 2, 3), we check that conditions (4.1) and (4.2) hold:

ιi = lim
t→+∞ inf

[
2ξi – 1 –

(
ai(t) – ξi

)2
ξ 2

i –
bi(t)

|1 – |ci||2
]

= 1.28 > 0, i = 1, 2, 3,

κi = lim
t→+∞ inf

[
2
(
ai(t) – ξi

)
– 2 – bi(t) – 4

n∑

j=1

(∣∣cij(t)
∣∣ +

∣∣dij(t)
∣∣)lj

]
= 1.18 > 0,

i = 1, 2, 3.

Thus, all the assumptions of Theorem 4.1 hold and the periodic solution of (5.2) is globally
asymptotically stable. The corresponding numerical simulations are presented in Fig. 5
with random initial conditions. We find that all state orbits of system (5.2) converge to a
periodic solution.

Remark 5.1 To the best of our knowledge, the periodic solution problems of neutral-type
INNs with delays are considered in the present paper for the first time. Using coinci-
dence degree theory and constructing a proper Lyapunov functional, we got some brand
new results on the existence, uniqueness, and asymptotic stability of periodic solutions
of neutral-type INNs. We can confirm the novelty of the proposed methods: for example,
the methods in [18, 30–33] cannot be generalized to the problems studied in this article.
It is important to point out that global exponential stability results of an equilibrium in
Lagrange sense for neutral-type INNs were obtained by Theorem 3.1 in [19], and in this
paper we only obtain some sufficient conditions for global asymptotic stability of a peri-
odic solution of neutral-type INNs, we have not solved the problem of global exponential
stability. The main reason is that constructing a proper Lyapunov functional is very diffi-
cult in a periodic function space. We hope to study the global exponential stability of the
periodic solution of system (2.1) in a future research.

Remark 5.2 Using Matlab for ODE, we give Figs. 1–5 which show the properties of sys-
tems (5.1) and (5.2). Figure 1 shows that system (5.1) has a periodic solution. Figures 2–4
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show phase diagrams for system (5.1) in three different states (x1, x2, t), (x1, x3, t), (x2, x3, t).
Figure 5 shows that system (5.2) has a periodic solution which is stable.

6 Conclusions and discussions
In this paper we studied the problems of periodic solutions for neutral-type inertial neural
networks with multiple variable delays. First, by applying Mawhin’s continuous theorem
to the system, we got a set of sufficient conditions for the existence and uniqueness of
periodic solutions. Then, on the basis of existence results, we obtained global asymptotic
stability of periodic solutions. The efficacy of the obtained results has been demonstrated
by two numerical examples. It is important to note that the practical implementation of
INNs is typically encountered with certain type of uncertainties such as interval param-
eters. Extending the results of this paper to neutral-type INNs with interval uncertain-
ties proves to be an interesting problem. In addition, it is also interesting and challenging
to extend the approach presented in this paper to neural network-based problems with
mixed delays such as state estimation and approximation, fault isolation and diagnosis, or
filter/observer design. These issues require further investigations in the future works.

Since exponential stability implies asymptotic stability, the exponential stability prob-
lem of neutral-type inertial neural networks is more important than the asymptotic sta-
bility problem of neutral-type inertial neural networks. In this paper, we only obtained
some asymptotic stability results for neutral-type inertial neural networks, and we hope
that some exponential stability results for neutral-type inertial neural networks will be
obtained in the future.
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