
Bachar and Eltayeb Advances in Difference Equations        (2020) 2020:609 
https://doi.org/10.1186/s13662-020-03071-4

R E S E A R C H Open Access

Existence and uniqueness results for
fractional Navier boundary value problems
Imed Bachar1* and Hassan Eltayeb1

*Correspondence:
abachar@ksu.edu.sa
1Mathematics Department, College
of Science, King Saud University, P.O.
Box 2455, 11451, Riyadh, Saudi
Arabia

Abstract
We establish the existence, uniqueness, and positivity for the fractional Navier
boundary value problem:

{
Dα (Dβω)(t) = h(t,ω(t),Dβω(t)), 0 < t < 1,

ω(0) =ω(1) = Dβω(0) = Dβω(1) = 0,

where α,β ∈ (1, 2], Dα and Dβ are the Riemann–Liouville fractional derivatives. The
nonlinear real function h is supposed to be continuous on [0, 1]×R×R and satisfy
appropriate conditions. Our approach consists in reducing the problem to an
operator equation and then applying known results. We provide an approximation of
the solution. Our results extend those obtained in (Dang et al. in Numer. Algorithms
76(2):427–439, 2017) to the fractional setting.
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1 Introduction
An elastic beam is an important element needed in structures like buildings, bridges, ships,
and aircrafts. The deformations of the beam can be modeled (see, e.g., [2]) by the fourth-
order Navier boundary value problem

⎧⎨
⎩ω(4)(t) = h(t,ω(t),ω′′(t)), 0 < t < 1,

ω(0) = ω(1) = ω′′(0) = ω′′(1) = 0,
(1.1)

where h : [0, 1] ×R×R→ R is continuous.
Aftabizadeh [3] studied problem (1.1) under the restriction that h is bounded on [0, 1]×

R×R. By using a topological degree method he proved the existence and uniqueness of a
solution. In [4] (see also [5]) the authors established the existence of a solution for problem
(1.1) by means of the lower and upper solutions method. Differently from this method,
Dang et al. [1] investigated problem (1.1) by reducing it to an operator equation and using
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some easily verified conditions. In [6] the authors studied the existence of a solution of a
fourth-order differential equation boundary value problem by proving a new fixed point
result based on a new distance structure called the extended Branciari b-distance.

Motivated by the novel approach presented in [1], our purpose is generalization of their
results to the frame of fractional differentiation. More precisely, we address the question
of existence and uniqueness of solutions of the following problem:

⎧⎨
⎩Dα(Dβω)(t) = h(t,ω(t), Dβω(t)), 0 < t < 1,

ω(0) = ω(1) = Dβω(0) = Dβω(1) = 0,
(1.2)

where α,β ∈ (1, 2], Dα and Dβ are the standard Riemann–Liouville differentiation, and
the real function h is supposed to be continuous on [0, 1] × R×R and satisfying some
appropriate conditions.

For α = β = 2, we recover the results obtained in [1].
In the literature, various mathematical procedures have been considered by scientists

through different research-oriented aspects of fractional differential equations. In par-
ticular, the fixed point theory has been used very extensively to find solutions of such
equations. For instance, in [7] the authors studied the existence of solutions to nonlinear
Volterra–Fredholm integral equations of certain types and to nonlinear fractional differ-
ential equations of the Caputo type by using the technique of a fixed point with numerical
experiment in an extended b-metric space. On the other hand, in [8] the authors estab-
lished some new fixed-point theorems, which extend and unify several existing results in
the literature. As application of their results, they have proved the existence and unique-
ness of solutions to some fractional and integer-order differential equations. In [9] the
authors established the existence and uniqueness of solutions of boundary value prob-
lems for a nonlinear fractional differential equation by means of a fixed point problem for
an integral operator. The conditions for the existence and uniqueness of a fixed point for
an integral operator are derived via b-comparison functions on complete b-metric spaces.
Our approach in the present study consists in applying the Banach fixed point theorem.

Our paper is organized as follows. In Sect. 2, we establish key inequalities on the Green
operator functions. In Sect. 3, by reducing problem (1.2) to an operator equation we prove
the existence, uniqueness, and positivity of a solution. We propose an approximation pro-
cess of this solution. We provide some examples at the end of Sect. 3.

2 Preliminaries and lemmas
For the convenience of the reader, we recall some basic definitions and known results
related to fractional calculus [10, 11].

Definition 2.1 Let ω : (0,∞) → R be a measurable function. The Riemann–Liouville
fractional integral of order γ > 0 for ω is defined as

Iγ ω(t) :=
1

�(γ )

∫ t

0
(t – y)γ –1ω(y) dy, t > 0,

where � is the Euler gamma function.
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Definition 2.2 Let ω : (0,∞) → R be a measurable function. The Riemann–Liouville
fractional derivative of order γ > 0 for ω is defined as

Dγ ω(t) :=
1

�(n – γ )

(
d
dt

)n ∫ t

0
(t – y)n–γ –1ω(y) dy =

(
d
dt

)n

In–γ ω(t),

where n = [γ ] + 1, and [γ ] is the integer part of γ .

Lemma 2.3 Let δ > 0 and ω ∈ C(0, 1) ∩ L1(0, 1). Then we have
(i) For 0 < γ < δ, Dγ Iδω = Iδ–γ ω and DδIδω = ω;

(ii) Dγ ω(t) = 0 if and only if ω(t) = c1tγ –1 + c2tγ –2 + · · · + cmtγ –m, ci ∈R, i = 1, . . . , m,
where m is the smallest integer greater than or equal to γ .

(iii) Assume that Dγ ω ∈ C(0, 1) ∩ L1(0, 1). Then

Iγ Dγ ω(t) = ω(t) + c1tγ –1 + c2tγ –2 + · · · + cmtγ –m,

ci ∈R, i = 1, . . . , m, where m is the smallest integer greater than or equal to γ .

Lemma 2.4 ([12]) For γ ∈ (1, 2] and ϕ ∈ C([0, 1],R), the unique solution of

⎧⎨
⎩Dγ ω(t) + ϕ(t) = 0, 0 < t < 1,

ω(0) = ω(1) = 0,
(2.1)

is

ω(t) =
∫ 1

0
Gγ (t, y)ϕ(y) dy, (2.2)

where

Gγ (t, y) :=
1

�(γ )

⎧⎨
⎩[t(1 – y)]γ –1 – (t – y)γ –1 for 0 ≤ y ≤ t ≤ 1,

[t(1 – y)]γ –1 for 0 ≤ t ≤ y ≤ 1.
(2.3)

Proof To make the argument complete and self-contained, we reproduce this short proof.
By means of Lemma 2.3 we can equivalently reduce (2.1) to

ω(t) = c1tγ –1 + c2tγ –2 –
1

�(γ )

∫ t

0
(t – y)γ –1ϕ(y) dy, for some c1, c2 ∈R. (2.4)

From the conditions ω(0) = 0 and ω(1) = 0 we get

c2 = 0 and c1 =
1

�(γ )

∫ 1

0
(1 – y)γ –1ϕ(y) dy.

Substituting c1 and c2 into (2.4), we obtain (2.2). �
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Throughout the paper, for γ ∈ (1, 2] and ϕ ∈ C([0, 1],R), we denote

Mγ :=
1

γ�(γ + 1)

(
γ – 1

γ

)γ –1

and

Gγ ϕ(t) :=
∫ 1

0
Gγ (t, y)ϕ(y) dy for 0 ≤ t ≤ 1.

(2.5)

Remark 2.5 Let γ ∈ (1, 2].
(i) Note that (t, y) → Gγ (t, y) is a nonnegative continuous function on [0, 1] × [0, 1].

(ii) For ϕ ∈ C([0, 1],R), the function t → Gγ ϕ(t) is continuous on [0, 1].

Lemma 2.6 Let α,β ∈ (1, 2] and ϕ ∈ C([0, 1],R). Then

‖Gαϕ‖ ≤ Mα‖ϕ‖ and
∥∥Gβ (Gαϕ)

∥∥ ≤ MαMβ‖ϕ‖, (2.6)

where ‖ϕ‖ := max
t∈[0,1]

|ϕ(t)|.

Proof From (2.5) and Remark 2.5 we have

∣∣Gγ ϕ(t)
∣∣ ≤ ‖ϕ‖ψ(t), (2.7)

where

ψ(t) :=
∫ 1

0
Gα(t, y) dy.

By using (2.3) and a simple computation we get

ψ(t) =
1

�(α + 1)
tα–1(1 – t).

Since ‖ψ‖ = ψ( α–1
α

) = Mα , from (2.7) we deduce that

∣∣Gγ ϕ(t)
∣∣ ≤ Mα‖ϕ‖ for t ∈ [0, 1].

Hence

‖Gαϕ‖ ≤ Mα‖ϕ‖ and
∥∥Gβ (Gαϕ)

∥∥ ≤ MβMα‖ϕ‖.

The proof is completed. �

3 Existence results and iterative method
For α,β ∈ (1, 2] and M > 0, we let

DM =
{

(t, y, z) ∈R
3 : 0 ≤ t ≤ 1, |y| ≤ MMαMβ , |z| ≤ MMα

}
and denote by

BM :=
{
θ ∈ C

(
[0, 1],R

)
: ‖θ‖ ≤ M

}
.
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Theorem 3.1 Let h ∈ C([0, 1] × R × R,R). Assume that there exist M > 0 and Li > 0 (i =
1, 2) such that

(i) |h(t, y, z)| ≤ M for all (t, y, z) ∈DM .
(ii) |h(t, y2, z2) – h(t, y1, z2)| ≤ L1|y2 – y1| + L2|z2 – z1| for all (t, yi, zi) ∈DM , i = 1, 2.

(iii) q := L1MαMβ + L2Mα < 1.
Then problem (1.2) admits a unique continuous solution ω with Dβω ∈ C([0, 1],R) satisfy-
ing

‖ω‖ ≤ MMαMβ and
∥∥Dβω

∥∥ ≤ MMα . (3.1)

Proof Let ϕ ∈ C([0, 1],R) and set

Tϕ(t) := h
(
t,Gβ (Gαϕ)(t), –Gαϕ(t)

)
, t ∈ [0, 1]. (3.2)

Assume that ω is a continuous solution of problem (1.2) with Dβω ∈ C([0, 1]). Then by
Lemma 2.4 the function ϕ(t) := h(t,ω(t), Dβω(t)) is a fixed point of the operator T .

Conversely, if ϕ is a fixed point of the operator T , then again by Lemma 2.4

ω(t) := Gβ (Gαϕ)(t) (3.3)

is a continuous solution of problem (1.2) with Dβω(t) = –Gαϕ(t) ∈ C([0, 1]). So, problem
(1.2) is reduced to a fixed point problem for T .

Since h ∈ C([0, 1]×R×R,R), it is clear from Remark 2.5 that Tϕ is continuous on [0, 1].
Due to Lemma 2.6, for ϕ ∈ BM , we have

‖Gαϕ‖ ≤ MMα and
∥∥Gβ (Gαϕ)

∥∥ ≤ MMαMβ . (3.4)

Hence, for t ∈ [0, 1], (t,Gβ (Gαϕ)(t), –Gαϕ(t)) ∈DM , and by assumption (i) we have T(BM) ⊂
BM .

We claim aim that T is a contraction on BM . Indeed, for ϕ1,ϕ2 ∈ BM , by assumption (ii)
and Lemma 2.4 we have

∣∣Tϕ2(t) – Tϕ1(t)
∣∣ =

∣∣h(
t,Gβ (Gαϕ2)(t), –Gαϕ2(t)

)
– h

(
t,Gβ (Gαϕ1)(t), –Gαϕ1(t)

)∣∣
≤ L1

∣∣Gβ (Gαϕ2)(t) – Gβ (Gαϕ1)(t)
∣∣ + L2

∣∣Gαϕ1(t) – Gαϕ2(t)
∣∣

= L1
∣∣Gβ

(
Gα(ϕ2 – ϕ1)

)
(t)

∣∣ + L2
∣∣Gα(ϕ1 – ϕ2)(t)

∣∣
≤ (L1MαMβ + L2Mα)‖ϕ2 – ϕ1‖.

Since q := L1MαMβ + L2Mα < 1, we deduce that T is a contraction operator on BM . Hence
there exists a unique ϕ ∈ BM such that

ϕ(t) = h
(
t,Gβ (Gαϕ)(t), –Gαϕ(t)

)
for t ∈ [0, 1].

So, problem (1.2) admits a unique solution ω(t) := Gβ (Gαϕ)(t) ∈ C([0, 1],R) satisfying
(3.1). �
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Remark 3.2 Theorem 3.1 extends Theorem 1 in [1] to the fractional setting.

To establish the positivity of solution of problem (1.2), for M > 0, we denote

D+
M =

{
(t, y, z) ∈R

3 : 0 ≤ t ≤ 1, 0 ≤ y ≤ MMαMβ , –MMα ≤ z ≤ 0
}

.

Corollary 3.3 Let h be a continuous function on [0, 1] × R × R. Assume that there exist
M > 0 and Li > 0 (i = 1, 2) such that

(i) 0 ≤ h(t, y, z) ≤ M for all (t, y, z) ∈D+
M .

(ii) |h(t, y2, z2) – h(t, y1, z2)| ≤ L1|y2 – y1| + L2|z2 – z1| for all (t, yi, zi) ∈D+
M , i = 1, 2.

(iii) q := L1MαMβ + L2Mα < 1.
Then problem (1.2) admits a unique nonnegative continuous function ω satisfying

0 ≤ ω(t) ≤ MMαMβ for t ∈ [0, 1]. (3.5)

Theorem 3.4 (Iterative method) Under the assumptions of Theorem 3.1, consider the it-
erative process defined by

ϕ0 ∈ BM and ϕk+1(t) := h
(
t,Gβ (Gαϕk)(t), –Gαϕk(t)

)
. (3.6)

The sequence (Gβ (Gαϕk))k≥0 converges uniformly to ω, the unique solution of problem (1.2),
and we have

∥∥Gβ (Gαϕk) – ω
∥∥ ≤ MαMβ

qk

(1 – q)
‖ϕ1 – ϕ0‖, (3.7)

where q := L1MαMβ + L2Mα < 1.

Proof From the proof of Theorem 3.1 we know that the sequence (ϕk)k≥0 converges to a
unique ϕ ∈ BM satisfying T(ϕ) = ϕ, and we have

‖ϕk – ϕ‖ ≤ qk

1 – q
‖ϕ1 – ϕ0‖. (3.8)

By using Lemma 2.6 we deduce

∥∥Gβ (Gαϕk) – ω
∥∥ =

∥∥Gβ (Gαϕk) – Gβ (Gαϕ)
∥∥

=
∥∥Gβ

(
Gα(ϕk – ϕ)

)∥∥
≤ MαMβ‖ϕk – ϕ‖

≤ MαMβ

qk

1 – q
‖ϕ1 – ϕ0‖.

Hence the sequence (Gβ (Gαϕk))k≥0 converges uniformly to ω, and inequality (3.7) holds. �

Remark 3.5 Theorem 3.4 extends Theorem 3 in [1] to the fractional setting.



Bachar and Eltayeb Advances in Difference Equations        (2020) 2020:609 Page 7 of 9

Example 3.6 Let α = β = 3
2 , and consider the problem

⎧⎨
⎩D 3

2 (D 3
2 ω)(t) = eω(t), 0 < t < 1,

ω(0) = ω(1) = D 3
2 ω(0) = D 3

2 ω(1) = 0.
(3.9)

In this example, Mα = Mβ = 8
27

√
3√
π

and f (t, y, z) = ey. To ensure assumption (i) in Theo-
rem 3.1, we have to choose M > 0 such that

e
64

243π M ≤ M.

This holds, for example, with M = 2.
On the other hand, in D2 = {(t, y, z) ∈R

3 : 0 ≤ t ≤ 1, |y| ≤ 128
243π

, |z| ≤ 16
27

√
3√
π
}, since

f ′
y = ey and f ′

z = 0,

we have

∣∣f ′
y
∣∣ ≤ 2.

Hence assumption (ii) in Theorem 3.1 is satisfied with L1 = 2 and L2 = 1. Also, we have
q := L1MαMβ + L2Mα ≈ 0.45721 < 1. Thus by Theorem 3.1 problem (3.9) admits a unique
continuous solution ω satisfying

‖ω‖ ≤ 128
243π

and
∥∥D

3
2 ω

∥∥ ≤ 16
27

√
3√
π

.

Take the initial approximation ϕ0(t) = 1. Some iterations of ωk(t) := G 3
2

(G 3
2
ϕk)(t) are pre-

sented in Fig. 1.

Figure 1 Graphs of the successive approximation of ω
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Example 3.7 For α = 4
3 and β = 5

3 , consider the problem

⎧⎨
⎩D 4

3 (D 5
3 ω)(t) = tω(t) + t2(D 5

3 ω(t))2 + 1, 0 < t < 1,

ω(0) = ω(1) = D 5
3 ω(0) = D 5

3 ω(1) = 0.
(3.10)

In this example, Mα = 3
4�( 7

3 )
( 1

4 ) 1
3 , Mβ = 3

5�( 8
3 )

( 2
5 ) 2

3 , and f (t, y, z) = ty + t2z2 + 1.
Assumption (i) in Theorem 3.1 will hold if we choose M > 0 such that

MMαMβ + M2M2
α + 1 ≤ M.

We can verify that M = 2 is a suitable candidate. On the other hand, since

f ′
y = t and f ′

z = 2t2z,

it follows that for (t, y, z) ∈D2 = {(t, y, z) ∈R
3 : 0 ≤ t ≤ 1, |y| ≤ 2MαMβ , |z| ≤ 2Mα},

∣∣f ′
y
∣∣ ≤ 1 and

∣∣f ′
z
∣∣ ≤ 4Mα ≤ 2.

So assumption (ii) in Theorem 3.1 is satisfied with L1 = 1 and L2 = 2. Also, we have q :=
L1MαMβ + L2Mα ≈ 0.87955 < 1.

Hence problem (3.10) admits a unique continuous solution ω satisfying

‖ω‖ ≤ 2MαMβ and
∥∥D

5
3 ω

∥∥ ≤ 2Mα .

This solution can be approximate by the sequence ωk(t) : G 5
3

(G 4
3
ϕk)(t) with ϕ0(t) = 1. Some

iterations are presented in Fig. 2.

Figure 2 Graphs of the successive approximation of ω
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