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Abstract
Our main purpose in this work is to derive an existence criterion for a Caputo
conformable hybrid multi-term integro-differential equation equipped with initial
conditions. In this way, we consider a partially ordered Banach space, and, by applying
the lower solution property, the existence and successive approximations of solutions
for the mentioned hybrid initial problem are investigated. Eventually, we formulate an
illustrative example for this hybrid IVP to support our findings from a numerical point
of view. Moreover, we plot the sequence of the obtained approximate solutions for
different values of noninteger orders.
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1 Introduction
From the beginning of creation, human beings were interested in discovering the mech-
anism of various processes of the world around in order to be able to answer some im-
portant questions. For this reason, by increasing the human’s knowledge and the comple-
tion of the science and technology, the mankind invoked new logical and computational
tools based on the modeling and computers. In this direction, the mathematical operators
are some of these tools useful for modeling the natural processes in the world. Over the
years, mathematicians have introduced various operators for different models, but since
fractional order models are more accurate than those of integer order, new fractional op-
erators have been defined for this goal today.

As we know, the Caputo and Riemann–Liouville fractional operators have been used
more than other operators for complicated fractional models (see, for example, [1–17]).
Later, the Hadamard and Caputo–Hadamard fractional operators were introduced by
some researchers and then different models were studied using these operators (see [18–
21]). In 2015, Caputo and Fabrizio [22] presented a new fractional derivative without sin-
gular kernel entitled the fractional Caputo–Fabrizio operator; and in the same year, Losada
and Nieto [23] investigated some properties of this new fractional operator. Some flexible
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properties of this nonsingular operator led to numerous published papers on the various
fractional models in this regard [24–27].

Following this path, Abdeljawad [28] developed the concepts introduced in [29] and in-
vestigated some properties of the well-behaved conformable fractional derivatives. In a
paper published in 2017, Jarad et al. [30] wanted to answer the question if one can extend
the standard Riemann–Liouville integral of fractional order so that we obtain a unification
to other fractional operators, including Riemann–Liouville, Caputo, Hadamard, Caputo–
Hadamard, and other derivatives [31]. To reach this goal, the authors introduced novel
integration and differentiation operators of fractional order based on conformable oper-
ators. Indeed, they defined new functional spaces and established some basic properties
of these new combined operators. After that manuscript, few papers have been published
so far which rely on these novel operators. For instance, in the following paper for the
first time, the authors applied new Caputo and Riemann–Liouville conformable opera-
tors in their BVP. Later the new problem involving the conformable differential equation
of Caputo type with four-point integral conditions

⎧
⎨

⎩

CCDυ,�
a w(s) = ğ(s, w(s)) (a < s < T),

w(a) = μ1w(ξ ) + μ2, w(T) = λRCIυ,β
a w(σ ),

where CCDυ,�
a is the conformable derivative of Caputo type of order � ∈ (1, 2] with υ ∈

(0, 1], was considered. Above, RCIυ,β
a is the conformable integral of Riemann–Liouville

type of order β > 0.
In this manuscript, we intend to study the existence and approximation of solutions for

a fractional hybrid multi-term integro-differential equation in the Caputo conformable
setting. It is notable that the main motivation for this work is taken from a valuable paper
published by Somjaiwang and Ngiamsunthorn in 2016 [32]. They formulated a fractional
hybrid IVP involving the Caputo derivative as follows:

⎧
⎨

⎩

d�

ds� [w(s) – g̃(s, w(s))] = h̃(s, w(s)),

w(s0) = w0 ∈R
+,

(1)

where d�

ds� is the Caputo derivative with respect to s ∈ J = [s0, s0 + k] of fractional order
� ∈ (0, 1] with s0 ≥ 0 and k > 0. The authors dealt with the existence of mild solutions for
this hybrid IVP and also they obtained an approximation of solutions by the help of an
iterative sequence [32].

By extending the hybrid initial problem mentioned in [32] to the newly defined fractional
operator introduced by [30], we intend to investigate the existence and approximation of
solutions for the following Caputo conformable fractional hybrid initial value problem:

⎧
⎨

⎩

CCDυ,�
s0 [CCDυ,α∗

s0 w(s) – ϕ̂(s, w(s))] = RCIυ,θ∗
s0 σ̂ (s, w(s), RCIυ,η∗

s0 w(s)),

w(s0) = w0, CCDυ,α∗
s0 w(s0) = ϕ̂(s0, w(s0)),

(2)

where 0 < �, α∗ < 1, θ∗,η∗ > 0, CCDβ∗ ,�
s0 denotes the Caputo conformable derivative of frac-

tional order β∗ and RCIγ ∗ ,�
s0 denotes the Riemann–Liouville conformable integral of the

fractional order γ ∗ with υ ∈ (0, 1] and s ∈ J = [s0, s0 + k] so that s0 ≥ 0 and k > 0. Also,
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ϕ̂ : J × R → R and σ̂ : J × R×R → R are continuous functions. Notice that our pro-
posed hybrid initial problem is an extended version of the aforementioned hybrid problem
(1). Also, it is necessary to mention that we apply the same techniques used in the paper
published by Somjaiwang and Ngiamsunthorn [32] but for a new structure of the multi-
term integro-differential equation equipped with newly-defined Caputo and Riemann–
Liouville conformable derivative operator given by (2). In other words, in the current re-
search work, we discuss two results on the existence and approximation of solutions si-
multaneously. To reach this goal, we first construct a successive sequence which approxi-
mates solutions and then derive the existence criteria by applying a theorem demonstrated
by Dhage et al. [33] which guarantees the existence of such solutions.

2 Preliminaries
In the current section, we state some fundamental and auxiliary concepts. According to
existing definitions in the literature, the concept of the Riemann–Liouville integral of or-
der � > 0 for a function w : [0, +∞) → R is given by RI�

0 w(s) =
∫ s

0
(s–r)�–1

(�) w(r) dr provided
that the value of the integral is finite (see [34, 35]). Now, assume that � ∈ (n – 1, n) so that
n = [�] + 1. For a function w ∈ AC(n)

R
([0, +∞)), the fractional derivative of Caputo type is

given by

CD�

0 w(s) =
∫ s

0

(s – r)n–�–1

(n – �)
w(n)(r) dr

so that the RHS integral is finite-valued (see [34, 35]). The left conformable derivative at
the initial point s0 for a function w : [s0,∞) →R with υ ∈ (0, 1] is defined as follows:

Dυ
s0 w(s) = lim

λ→0

w(s + λ(s – s0)1–υ) – w(s)
λ

so that the limit exists [29]. Notice that Dυ
s0 w(s0) = lims→s0+ Dυ

s0 w(s) whenever Dυ
s0 w(s) ex-

ists on (s0, b). Moreover, if the function w is differentiable, then Dυ
s0 w(s) = (s – s0)1–υw′(s).

In this direction, the notion of the left conformable integral of w with υ ∈ (0, 1] is defined
by Iυ

s0 w(s) =
∫ s

s0
w(r) dr

(r–s0)1–υ if the integral is finite-valued [29]. In 2017, Jarad et al. [30] gen-
eralized the above notions of conformable operators to arbitrary orders in the Caputo and
Riemann–Liouville settings. For more information, assume that � ∈ C with Re(�) ≥ 0.
Then the Riemann–Liouville fractional conformable integral of a function w of order �

with υ ∈ (0, 1] is defined by

RCIυ,�
s0 w(s) =

1
(�)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)�–1

w(r)
dr

(r – s0)1–�

if the value of the integral exists [30]. One can easily observe that if s0 = 0 and υ = 1, then
RCIυ,�

s0 w(s) reduces to the usual Riemann–Liouville integral RI�

0 w(s). On the other hand,
the Riemann–Liouville conformable derivative of a function w of order � with υ ∈ (0, 1] is
given as follows:

RCDυ,�
s0 w(s) = Dυ,n

s0

(RCIυ,n–�
s0 w

)
(s)

=
Dυ,n

s0

(n – �)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)n–�–1

w(r)
dr

(r – s0)1–�
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so that n = [Re(�)] + 1 and Dυ,n
s0 =

n times
︷ ︸︸ ︷
Dυ

s0D
υ
s0 · · ·Dυ

s0 where Dυ
s0 denotes the left conformable

derivative with υ ∈ (0, 1] [30]. In a similar way, it is obvious that if we take s0 = 0 and
υ = 1, then RCDυ,�

s0 w(s) reduces to the usual Riemann–Liouville derivative RD�

0 w(s). Now,
to define a similar concept in the Caputo setting, we construct

Lυ (s0) :=
{
ϕ : [s0, b] →R : Iυ

s0ϕ(s) exists for any s ∈ [s0, b]
}

for υ ∈ (0, 1] and set

Iυ

(
[s0, b]

)
:=

{
w : [s0, b] →R : w(s) = Iυ

s0ϕ(s) + w(s0), for some ϕ ∈Lυ(s0)
}

,

where Iυ
s0ϕ(s) =

∫ s
s0

ϕ(r) dυ(r, s0) =
∫ s

s0
ϕ(r) dr

(r–s0)1–υ is the left conformable integral of ϕ [28].
For n ≥ 1, we define

Cn
s0,υ

(
[s0, b]

)
:=

{
w : [s0, b] →R : Dυ,n–1

s0 w ∈ Iυ

(
[s0, b]

)}
.

Then, the Caputo conformable derivative of a function w ∈ Cn
s0,υ([s0, b]) of order � with

υ ∈ (0, 1] is given by

CCDυ,�
s0 w(s) = RCIυ,n–�

s0

(
Dυ,n

s0 w
)
(s)

=
1

(n – �)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)n–�–1

Dυ,n
s0 w(r)

dr
(r – s0)1–�

,

where n = [Re(�)] + 1 [30]. Evidently, CCDυ,�
s0 w(s) = CD�

0 w(s) if s0 = 0 and υ = 1. Some
important and useful properties of the Caputo and Riemann–Liouville fractional con-
formable operators can be found in the following lemmas.

Lemma 2.1 ([30]) Let Re(�) > 0, Re(� ) > 0, and Re(β) > 0. Then for υ ∈ (0, 1] and for all
s > s0, the following statements hold:

(s1) RCIυ,�
s0 (RCIυ,�

s0 w)(s) = (RCIυ,�+�
s0 w)(s),

(s2) RCIυ,�
s0 (s – s0)υ(β–1)(z) = 1

υ�
(β)

(β+�) (z – s0)υ(β+�–1),
(s3) RCDυ,�

s0 (s – s0)υ(β–1)(z) = υ� (β)
(β–�) (z – s0)υ(β–�–1),

(s4) RCDυ,�
s0 (RCIυ,�

s0 w)(s) = (RCIυ,�–�
s0 w)(s), (Re(�) < Re(� )).

Lemma 2.2 ([32]) Let n – 1 < Re(�) < n and w ∈ Cn
s0,υ([s0, b]). Then for υ ∈ (0, 1], we have

RCIυ,�
s0

(CCDυ,�
s0 w

)
(s) = w(s) –

n–1∑

j=0

Dυ,j
s0 w(s0)
υ jj!

(s – s0)jυ .

Considering the above lemmas, it is verified that the general solution of the homoge-
neous equation (CCDυ,�

s0 w)(s) = 0 is obtained by

w(s) =
n–1∑

j=0

bj(s – s0)jυ = b0 + b1(s – s0)υ + b2(s – s0)2υ + · · · + bn–1(s – s0)(n–1)υ ,
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where n – 1 < Re(�) < n and b0, b1, . . . , bn–1 ∈ R. The rest of the present section is devoted
to recalling some preliminaries on the partially ordered Banach spaces (see [36–38]).

Assume that W = (W ,≤,‖ · ‖W ) is a partially ordered Banach space. The space W is
called regular if for every nondecreasing convergent sequence {wn}n≥1 ⊆ W such that
wn → w∗ as n → ∞, we have wn ≤ w∗ for each n ∈ N [33, 38]. We say that the opera-
tor P : W →W is nondecreasing if for each w1, w2 ∈W such that w1 ≤ w2, the inequality
Pw1 ≤ Pw2 holds [36]. An operator P : W → W is said to be partially continuous at
v ∈ W whenever for each ε > 0, there is δ > 0 such that ‖Pw – Pv‖W < ε for any w ∈ W
which is comparable to v ∈W with ‖w – v‖W < δ [37]. Moreover, P has the partial conti-
nuity property on W if it has the partial continuity property at every v ∈ W . Particularly,
if P is an operator possessing the partial continuity property on W , then P is continuous
on each chain C belonging to W [37]. In the following, we say that P is partially bounded
if P(C) is bounded for each chain C in the space W [37]. Besides, P is supposed to be
uniformly partially bounded whenever all chains P(C) belonging to W are bounded by
the same constant [37].

We say that P : W →W is partially compact if for every chain C in the partially ordered
space W , the subset P(C) ⊆W is a relatively compact [37]. Furthermore, P is supposed to
be partially totally bounded if the subset P(C) ⊆ W is a relatively compact for any totally
ordered and bounded subset C ⊆ W [37]. Therefore, when P is partially totally bounded
and partially continuous, we say that P has the partial complete continuity property on
the space W [37].

Here, consider a nonempty set W furnished with an order relation ≤ and a metric d.
The order relation ≤ and the metric d are said to be compatible whenever the subsequent
property holds: if {wn}n≥1 is a monotone sequence belonging to W for which a subse-
quence {wnk }k≥1 of {wn}n≥1 converges to w∗, then we have wn → w∗ by letting n → ∞
[36]. In the similar manner, let us assume that (W ,≤,‖ · ‖W ) is a partially ordered normed
linear space. In this case, the order relation ≤ and the norm ‖ · ‖W are said to be com-
patible whenever ≤ and the metric d induced by ‖ · ‖W are compatible [36]. For example,
notice that one can prove that the norms and the order relations defined on two spaces
(R,≤, | · |) and (CR(J),≤,‖ · ‖) are compatible [36].

Let K : R+ →R
+ be a nondecreasing function having the upper semicontinuity property.

We say that K is a D̆-function if K(0) = 0 [36]. An operator P : W → W is said to be
partially nonlinear D̆-Lipschitz if there exists a D̆-function, namely K : R+ → R

+, such
that

‖Pw1 – Pw2‖W ≤ K
(‖w1 – w2‖W

)

for all comparable elements w1, w2 ∈ W [37]. If for some k > 0 we have K(z) = kz, then
we say that P is a partially Lipschitz with constant k, where z ∈ R

+. Moreover, we say
that P is a partial contraction with constant k whenever k < 1 [37]. Finally, we say that
P is a nonlinear D̆-contraction whenever P is nonlinear D̆-Lipschitz with K(z) < z for
each z > 0 [37]. The subsequent hybrid theorem is employed to derive the existence and
approximation of solutions for our fractional initial problem.

Theorem 2.3 ([37]) Suppose that (W ,≤,‖ · ‖W ) is a regular partially ordered Banach
space furnished with the order relation ≤ and the norm ‖ · ‖W which are compatible. Fur-
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ther, let P : W →W and Q : W →W be two nondecreasing selfmaps having the following
properties:

(q1) P is a partially nonlinear D̆-contraction.
(q2) Q is partially continuous and partially compact.
(q3) There is an element w0 ∈W satisfying the inequality w0 ≤ Pw0 + Qw0.

Then there is a solution w∗ ∈ W satisfying the equation w = Pw + Qw. Also, the sequence
of successive iterations {wn}∞n=0 represented by

wn+1 = Pwn + Qwn (n = 0, 1, 2, . . . ) (3)

is a monotone sequence converging to a solution function w∗.

3 Main results
After presenting some basic concepts in the two previous sections, we are going to state
the desired existence and approximation theorems. To arrive at this goal, we define the
supremum norm ‖w‖W = sups∈J |w(s)| on the space W = {w(s) : w(s) ∈ CR(J)} where J =
[s0, s0 + k] with k > 0. Then (W ,‖ · ‖W ) is a Banach space. Moreover, we consider a partial
order relation on the Banach space W . Indeed, for any v, w ∈ W , the order relation v ≤ w
given by v(s) ≤ w(s) for all s ∈ J yields a partial ordering in W . Therefore, an ordered triple
(W ,≤,‖ · ‖W ) is a regular partially ordered Banach space [33].

In the following lemma, we introduce an equivalent integral structure for the solution
of the Caputo conformable hybrid IVP (2).

Lemma 3.1 Let h̆ ∈W . Then w0 is a solution function for the Caputo conformable hybrid
differential equation

CCDυ,�
s0

[CCDυ,α∗
s0 w(s) – ϕ̂

(
s, w(s)

)]
= h̆(s) (s ∈ J, s0 ≥ 0) (4)

endowed with initial value conditions w(s0) = w0 and CCDυ,α∗
s0 w(s0) = ϕ̂(s0, w(s0)) if and only

if w0 satisfies the integral equation

w(s) =
1

(α∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)α∗–1

ϕ̂
(
r, w(r)

) dr
(r – s0)1–υ

+ w0

+
1

(� + α∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)�+α∗–1

h̆(r)
dr

(r – s0)1–υ
. (5)

Proof At the beginning, w is supposed to satisfy the Caputo conformable hybrid equation
(4). Clearly, we have CCDυ,�

s0 [CCDυ,α∗
s0 w(s) – ϕ̂(s, w(s))] = h̆(s). Now, by taking the �th or-

der Riemann–Liouville conformable integral on the last equality, we obtain the following
equation:

CCDυ,α∗
s0 w(s) – ϕ̂

(
s, w(s)

)
=

1
(�)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)�–1
h̆(r)

dr
(r – s0)1–υ

+ b0, (6)

where we wish to seek the constant b0 ∈ R. By taking into account the second initial value
condition CCDυ,α∗

s0 w(s0) = ϕ̂(s0, w(s0)), we get b0 = 0. In the sequel, by computing the α∗th
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order Riemann–Liouville conformable integral on the two sides of (6), we obtain the fol-
lowing equation:

w(s) =
1

(� + α∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)�+α∗–1

h̆(r)
dr

(r – s0)1–υ

+
1

(α∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)α∗–1

ϕ̂
(
r, w(r)

) dr
(r – s0)1–υ

+ b1, (7)

where we wish to seek the constant b1 ∈ R. By taking into account the first initial value
condition, we get b1 = w0. As a consequence, by substituting the obtained b1 value into
(7), we get (5), which shows that the function w satisfies the integral equation (5). In
the opposite direction, one can easily check that w is a solution for the Caputo con-
formable hybrid IVP (4) whenever w satisfies the integral equation (5), and the proof is
completed. �

Remark 3.2 In view of Lemma 3.1, the initial value problem (2) is equivalent to the integral
equation

w(s) =
1

(α∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)α∗–1

ϕ̂
(
r, w(r)

) dr
(r – s0)1–υ

+ w0 +
1

(� + α∗ + θ∗)

×
∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1

σ̂
(
r, w(r), RCIυ,η∗

s0 w(r)
) dr

(r – s0)1–υ
.

Definition 3.3 An element u ∈ W is called a lower solution of the initial problem (2)
whenever we have

⎧
⎨

⎩

CCDυ,α∗
s0 u(s) ≤ ϕ̂(s, u(s)) + 1

(�)
∫ s

s0
( (s–s0)υ –(r–s0)υ

υ
)�–1h̆(r) dr

(r–s0)1–υ ,

u(s0) ≤ u0,
(8)

where h̆(s) = σ̂ (s, w(s), RCIυ,η∗
s0 w(s)).

This part of paper is devoted to proving the main result on the existence and approxi-
mation of solutions for the Caputo conformable hybrid multi-term IVP (2). For this aim,
consider the following assumptions:

(HP0) The real-valued functions ϕ̂ : J×R →R and σ̂ : J×R×R →R are continuous.
(HP1) ϕ̂ is nondecreasing with respect to w for each s ∈ J and w ∈R.
(HP2) There is a number Mϕ̂ > 0 so that 0 ≤ |ϕ̂(s, w)| ≤ Mϕ̂ for all s ∈ J and w ∈ R.
(HP3) There is a D̆-contraction K so that 0 ≤ ϕ̂(s, w1) – ϕ̂(s, w2) ≤ K(w1 – w2) for s ∈ J

and w1, w2 ∈R with w2 ≤ w1.
(HP4) σ̂ is nondecreasing with respect to (w1, u1) and (w2, u2) for any s ∈ J and

(w1, u1), (w2, u2) ∈R
2.

(HP5) There is a number Mσ̂ > 0 such that 0 ≤ |σ̂ (s, w, v)| ≤ Mσ̂ for all s ∈ J and
(w, v) ∈R

2.
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(HP6) There is a function u ∈ CR(J) so that u is a lower solution for the Caputo con-
formable hybrid multi-term IVP (2); i.e. an equation (8) holds.

Now, we are ready to demonstrate the main theorem based on above assumptions.

Theorem 3.4 Suppose that all seven assumptions (HP0)–(HP6) are valid. Then the Ca-
puto conformable hybrid multi-term initial problem (2) has a mild solution w∗ : J → R

and the sequence of successive approximations of wn (n = 0, 1, 2, . . . ) given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn+1(s) = 1
(α∗)

∫ s
s0

( (s–s0)υ –(r–s0)υ
υ

)α∗–1ϕ̂(r, wn(r)) dr
(r–s0)1–υ

+ w0 + 1
(�+α∗+θ∗)

× ∫ s
s0

( (s–s0)υ–(r–s0)υ
υ

)�+α∗+θ∗–1σ̂ (r, wn(r), RCIυ,η∗
s0 wn(r)) dr

(r–s0)1–υ ,

w0(s) = u(s),

(9)

is a monotone sequence converging to a solution function w∗.

Proof Assume that W is a partially ordered Banach space equipped with supremum norm
‖ ·‖W and order relation ≤ defined at the beginning of this section. We derive an existence
criterion for the solution of the Caputo conformable hybrid multi-term initial problem (2)
based on the following operator equation:

w(s) = Pw(s) + Qw(s), (10)

where P : W →W and Q : W →W are two operators given by

Pw(s) =
1

(α∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)α∗–1

ϕ̂
(
r, w(r)

) dr
(r – s0)1–υ

and

Qw(s) =
1

(� + α∗ + θ∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1

× σ̂
(
r, w(r), RCIυ,η∗

s0 w(r)
) dr

(r – s0)1–υ
+ w0

for any s ∈ J. In the following, we intend to prove that the two operators P and Q satisfy
all the assumptions of Theorem 2.3. This claim is proved in five steps.

Step I. In this step, we first verify that P and Q are nondecreasing. To do this, for any
w1, w2 ∈W with w2 ≤ w1 and by considering assumption (HP1), we obtain

Pw1(s) =
1

(α∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)α∗–1

ϕ̂
(
r, w1(r)

) dr
(r – s0)1–υ

≥ 1
(α∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)α∗–1

ϕ̂
(
r, w2(r)

) dr
(r – s0)1–υ

= Pw2(s).
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This inequality implies that the operator P is nondecreasing. In the same manner, in view
of assumption (HP4) and for each w1, w2 ∈W with w2 ≤ w1, one can write

Qw1(s) – Qw2(s)

= RCIυ,�+θ∗+α∗
s0

(
σ̂
(
s, w1(s), RCIυ,η∗

s0 w1(s)
)

– σ̂
(
s, w2(s), RCIυ,η∗

s0 w2(s)
)) ≥ 0.

So Qw2(s) ≤ Qw1(s), which means that Q is also nondecreasing.
Step II. In this step, we intend to confirm that P satisfies (q2) in Theorem 2.3. In other

words, we show that P is a partially bounded and also a partially nonlinear D̆-contraction
on the space W . To reach this goal, consider an arbitrary element w ∈ W . Due to the
boundedness of function ϕ̂ stated in assumption (HP2), we have

∣
∣Pw(s)

∣
∣ =

∣
∣
∣
∣

1
(α∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)α∗–1

ϕ̂
(
r, w(r)

) dr
(r – s0)1–υ

∣
∣
∣
∣

≤ kα∗Mϕ̂

υα∗
(α∗ + 1)

for any s ∈ J. By taking the supremum norm, we get ‖P‖W ≤ kα∗
Mϕ̂

υα∗
(α∗+1)

, which demon-
strates that P is bounded on the space W , and so by definition P is partially bounded.
Furthermore, according to assumption (HP3), for any w1, w2 ∈ W such that w2 ≤ w1, we
obtain

∣
∣Pw1(s) – Pw2(s)

∣
∣ = RCIυ,α∗

s0 ϕ̂
(
r, w1(r)

)
– ϕ̂

(
r, w2(r)

) ≤ kα∗
K(‖w1 – w2‖W )
υα∗

(α∗ + 1)

for each s ∈ J, where since K is nondecreasing, so the latter inequality is obtained. There-
fore, we get ‖Pw1(s) – Pw2(s)‖W ≤ kα∗

K(‖w1–w2‖W )
υα∗

(α∗+1)
for all w1, w2 ∈ W with w2 ≤ w1. It

follows that P is a partially nonlinear D̆-contraction on the space W , and so is partially
continuous.

Step III. At this moment, we investigate the partial continuity of the operator Q on the
space W . To achieve this purpose, let {wn}n≥1 be a sequence belonging to the chain C in
W which converges to w as n → ∞. From the boundedness of σ̂ based on assumption
(HP5) and also from the continuity of σ̂ based on assumption (HP0) and by applying the
dominated convergence theorem, we reach

lim
n→∞(Qwn)(s) =

1
(� + α∗ + θ∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1

× lim
n→∞ σ̂

(
r, wn(r), RCIυ,η∗

s0 wn(r)
) dr

(r – s0)1–υ
+ lim

n→∞(w0)

= (Qw)(s)

for any s ∈ J. It is observed that the operator sequence Qwn converges to Qw pointwise
on the interval J and also this convergence is monotonic due to the monotonicity of the
function σ̂ . In the next step, we check the equicontinuity of {Qwn}n≥1 in W . Let s1, s2 ∈



Amara et al. Advances in Difference Equations        (2020) 2020:608 Page 10 of 19

J = [s0, s0 + k] be such that s1 < s2. Again by assumption (HP5), we may write

∣
∣(Qwn)(s2) – (Qwn)(s1)

∣
∣

=
∣
∣
∣
∣

1
(� + α∗ + θ∗)

∫ s2

s0

(
(s2 – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1

× σ̂
(
r, wn(r), RCIυ,η∗

s0 wn(r)
) dr

(r – s0)1–υ

–
1

(� + α∗ + θ∗)

∫ s1

s0

(
(s1 – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1

× σ̂
(
r, wn(r), RCIυ,η∗

s0 wn(r)
) dr

(r – s0)1–υ

≤ 1
(� + α∗ + θ∗)

∫ s2

s1

(
(s2 – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1

× ∣
∣σ̂

(
r, wn(r), RCIυ,η∗

s0 wn(r)
)∣
∣ dr
(r – s0)1–υ

∣
∣
∣
∣

+
1

(� + α∗ + θ∗)

∫ s1

s0

[(
(s2 – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1

–
(

(s1 – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1]

× ∣
∣σ̂

(
r, wn(r), RCIυ,η∗

s0 wn(r)
)∣
∣ dr
(r – s0)1–υ

≤ Mσ̂

(� + α∗ + θ∗)

∫ s2

s1

(
(s2 – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1 dr
(r – s0)1–υ

+
Mσ̂

(� + α∗ + θ∗)
×

∫ s1

s0

[(
(s2 – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1

–
(

(s1 – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1] dr
(r – s0)1–υ

≤ Mσ̂

(� + α∗ + θ∗ + 1)

(
(s2 – s0)υ – (s1 – s0)υ

υ

)(�+α∗+θ∗)

+
Mσ̂

(� + α∗ + θ∗ + 1)
×

[

–
(

(s2 – s0)υ – (s1 – s0)υ

υ

)�+α∗+θ∗

+
(s2 – s0)υ(�+α∗+θ∗) – (s1 – s0)υ(�+α∗+θ∗)

υ(�+α∗+θ∗)

]

.

By utilizing the dominated convergence theorem for the limit with respect to the second
component, we deduce that the RHS of the above inequalities tends to 0 by letting s1 → s2.
Therefore, we find that Qwn → Qw uniformly for all n ∈N. Consequently, the operator Q
possesses the partial continuity property on the space W .

Step IV. Here, we claim that the operator Q has the partial compactness property on
the space W . To see the validity of this claim, let us assume that C is a chain belonging
to W . We need to check the uniform boundedness and equicontinuity of Q(C) in W . Let
v ∈Q(C) be arbitrary. Then we have v = Q(w) for some w ∈ C. In view of hypothesis (HP5),
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one can write

∣
∣v(s)

∣
∣ =

∣
∣Qw(s)

∣
∣

=
∣
∣
∣
∣

1
(� + α∗ + θ∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1

× σ̂
(
r, w(r), RCIυ,η∗

s0 w(r)
) dr

(r – s0)1–υ
+ w0

∣
∣
∣
∣

≤ |w0| +
∣
∣
∣
∣

Mσ̂

(� + α∗ + θ∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1 dr
(r – s0)1–υ

∣
∣
∣
∣

≤ |w0| +
∣
∣
∣
∣

Mσ̂

(� + α∗ + θ∗ + 1)

(
(s – s0)υ

υ

)�+α∗+θ∗ ∣
∣
∣
∣

≤ |w0| +
Mσ̂

(� + α∗ + θ∗ + 1)

(
kυ

υ

)�+α∗+θ∗

= O∗

for any s ∈ J. Hence, this yields ‖v‖W = ‖(Q)w‖W ≤ O∗ for each v ∈ Q(C), which illus-
trates that Q(C) is uniformly bounded. In the following, the equicontinuity of Q(C) is
checked. Let w ∈ C be arbitrary and take s1, s2 ∈ J such that s1 < s2. We get

∣
∣(Qw)(s2) – (Qw)(s1)

∣
∣

=
∣
∣
∣
∣

1
(� + α∗ + θ∗)

∫ s2

s0

(
(s2 – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1

× σ̂
(
r, w(r), RCIυ,η∗

s0 w(r)
) dr

(r – s0)1–υ

–
1

(� + α∗ + θ∗)

∫ s1

s0

(
(s1 – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1

× σ̂
(
r, w(r), RCIυ,η∗

s0 w(r)
) dr

(r – s0)1–υ

∣
∣
∣
∣

≤ 1
(� + α∗ + θ∗)

∫ s2

s1

(
(s2 – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1

× ∣
∣σ̂

(
r, w(r), RCIυ,η∗

s0 w(r)
)∣
∣ dr
(r – s0)1–υ

+
1

(� + α∗ + θ∗)

∫ s1

s0

[(
(s2 – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1

–
(

(s1 – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1]

× ∣
∣σ̂

(
r, w(r), RCIυ,η∗

s0 w(r)
)∣
∣ dr
(r – s0)1–υ

≤ Mσ̂

(� + α∗ + θ∗)

∫ s2

s1

(
(s2 – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1 dr
(r – s0)1–υ

+
Mσ̂

(� + α∗ + θ∗)
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×
∫ s1

s0

[(
(s2 – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1

–
(

(s1 – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1] dr
(r – s0)1–υ

≤ Mσ̂

(� + α∗ + θ∗ + 1)

(
(s2 – s0)υ – (s1 – s0)υ

υ

)(�+α∗+θ∗)

+
Mσ̂

(� + α∗ + θ∗ + 1)

×
[

–
(

(s2 – s0)υ – (s1 – s0)υ

υ

)�+α∗+θ∗

+
(s2 – s0)υ(�+α∗+θ∗) – (s1 – s0)υ(�+α∗+θ∗)

υ(�+α∗+θ∗)

]

.

It is observed that the RHS of the above inequalities tends to 0 uniformly for w ∈ C by
letting s1 → s2. This shows that Q(C) is equicontinuous. Hence, it is realized that Q(C) is
relatively compact, and so Q has the partial compactness property in W .

Step V. In the last part of the proof, we prove that there exists an element of W so that
condition (q3) of Theorem 2.3 holds. To reach this goal, in view of assumption (HP6),
there is a function u ∈ CR(J) such that u is a lower solution for the Caputo conformable
hybrid multi-term IVP (2). In other words, we have

⎧
⎨

⎩

CCDυ,α∗
s0 u(s) ≤ ϕ̂(s, u(s)) + 1

(�)
∫ s

s0
( (s–s0)υ –(r–s0)υ

υ
)�–1h̆(r) dr

(r–s0)1–υ ,

u(s0) ≤ u0 ∈R
+,

where h̆(s) = σ̂ (s, w(s), RCIυ,η∗
s0 w(s)). By considering Lemma 3.1 and by reformulating a mild

solution, we get

u(s) ≤ 1
(α∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)α∗–1

ϕ̂
(
r, u(r)

) dr
(r – s0)1–υ

+ w0

+
1

(� + α∗ + θ∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1

× σ̂
(
s, u(s), RCIυ,η∗

s0 u(s)
) dr

(r – s0)1–υ

= Pu + Qu (11)

for every s ∈ J. Hence, we find that u satisfies the operator inequality u ≤ Pu + Qu and
condition (q3) of Theorem 2.3 is valid.

After five steps, we realize that two operators P and Q satisfy all the conditions of Theo-
rem 2.3. Therefore, the operator equation w = Pw +Qw has a solution w∗. In other words,
w∗ is a solution for the Caputo conformable hybrid multi-term initial problem (2) and also,
by Theorem 2.3, the approximate solutions wn given by (9) for the Caputo conformable
hybrid multi-term initial problem (2) converge to w∗ monotonically for all n = 0, 1, 2, . . . ,
so finally, the proof is completed. �
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4 Numerical example
In the current section, we demonstrate an illustrative numerical example for the proposed
Caputo conformable hybrid multi-term initial problem (2). We show that our analytical
findings are valid and one can utilize the conditions of Theorem 3.4 to construct a succes-
sive sequence for approximating the solution function. We also illustrate these results by
plotting the graphs of approximate solutions for different values of noninteger orders.

Example 4.1 According to the proposed Caputo conformable hybrid multi-term initial
problem (2), we present the following hybrid multi-term IVP:

⎧
⎨

⎩

CCDυ,�
0.1 [CCDυ,α∗

0.1 w(s) – ϕ̂(s, w(s))] = RCIυ,θ∗
0.1 σ̂ (s, w(s), RCIυ,η∗

0.1 w(s)),

w(0.1) = 0.2, CCDυ,α∗
0.1 w(0.1) = ϕ̂(0.1, w(0.1)),

(12)

where �, α∗, θ∗, and η∗ ∈ (0, 1), υ ∈ (0, 1], s0 = 0.1, w0 = 0.2, and s ∈ J = [0.1, 1] with k = 0.9.
Moreover, two function ϕ̂ : J×R →R and σ̂ : J×R →R defined by

ϕ̂(s, w) =

⎧
⎨

⎩

1
2 ( w

w+1 ), w ≥ 0,

0, w < 0,

and

σ̂
(
s, w, RCIυ,η∗

s0 w
)

=
1
8

(

1 + tanh

(
1

(η∗)

∫ s

s0

(
(s – s0)v – (r – s0)v

v

)η∗–1

w(r)
dr

(r – s0)1–υ

))

are continuous on [0.1, 1] ×R×R and so assumption (HP0) holds. One can see the graph
of the functions ϕ̂ and σ̂ in Figs. 1 and 2. In view of the above graphs, it is obvious that
both functions ϕ̂ and σ̂ are nondecreasing with respect to their components, and this
shows that assumptions (HP1) and (HP4) are satisfied. On the other hand, the function
ϕ̂ is bounded with upper bound Mϕ̂ = 1

2 , that is, for each w ∈ R we have

0 ≤ ∣
∣ϕ̂(s, w)

∣
∣ ≤ 1

2

∣
∣
∣
∣

w
w + 1

∣
∣
∣
∣ ≤ Mϕ̂ =

1
2

.

Figure 1 Graph of the function ϕ̂(s,w(s))
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Figure 2 Graph of the function σ̂ (s,w, RCIυ ,η∗
s0 w)

with υ = 1 and η∗ = 0.99

Besides, the function σ̂ is bounded by Mσ̂ = 1
4 , since we have

0 ≤ ∣
∣σ̂

(
s, w, RCIυ,η∗

s0 w
)∣
∣ =

1
8
∣
∣
(
1 + tanh RCIυ,η∗

s0 w
)∣
∣ ≤ Mσ̂ =

1
4

for all w ∈ R. Therefore, both assumptions (HP2) and (HP5) are satisfied. To check as-
sumption (HP3), we verify that there is a D̆-contraction K : R+ → R

+ given by K(z) = 1
2 z

for any z > 0 so that 0 ≤ ϕ̂(s, w1) – ϕ̂(s, w2) ≤ K(w1 – w2) for each s ∈ [0.1, 1] and w1, w2 ∈R

with w2 ≤ w1. In the first step, we take 0 ≤ w2 ≤ w1. Then we observe that for any
s ∈ [0.1, 1], the following inequalities hold:

0 ≤ ϕ̂
(
s, w1(s)

)
– ϕ̂

(
s, w2(s)

)

=
1
2

(
w1(s)

w1(s) + 1
–

w2(s)
w2(s) + 1

)

≤ 1
2

(
w1(s) – w2(s)

w1(s)w2(s) + w1(s) + w2(s) + 1

)

≤ 1
2
∣
∣w1(s) – w2(s)

∣
∣

= K
(
w1(s) – w2(s)

)
.

In a similar manner, for all s ∈ [0.1, 1], one can easily see that the inequality 0 ≤ ϕ̂(s, w1) –
ϕ̂(s, w2) ≤ K(w1 – w2) is also valid for w2 ≤ w1 < 0 and w2 < 0 ≤ w1. Hence assumption
(HP3) is satisfied for the D̆-contractionK in all three cases. Eventually, we check the valid-
ity of assumption (HP6) on the existence of the lower solution for the Caputo conformable
hybrid multi-term initial problem formulated by (12). We claim that the constant function
u(s) = 0 is a lower solution for the hybrid multi-term IVP (12) for any s ∈ J = [0.1, 1]. To
see this, one can write

1
(α∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)α∗–1

ϕ̂
(
r, w(r)

) dr
(r – s0)1–υ

+ w0

+
1

(� + α∗ + θ∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1
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× σ̂
(
r, w(r), RCIυ,η∗

s0 w(r)
) dr

(r – s0)1–υ

= 0.2 +
1

8(� + α∗ + θ∗ + 1)

(
(s – 0.1)υ

υ

)�+α∗+θ∗

for any s ∈ J = [0.1, 1]. This implies that

0 = u(s) ≤ 0.2 +
1

8(� + α∗ + θ∗ + 1)

(
(s – 0.008)υ

υ

)�+α∗+θ∗

for each s ∈ J = [0.1, 1] and so the constant function u(s) = 0 is a lower solution for the
hybrid IVP (12). Therefore, assumption (HP6) holds. Thus, we see that all hypotheses
(HP0)–(HP6) hold.

Hence, due to Theorem 3.4, we find that the Caputo conformable hybrid multi-term
initial value problem (12) has a mild solution w∗ : [0.1, 1] →R which is a limit function of
the monotone convergent sequence wn (n = 0, 1, 2, . . . ) defined by

wn+1(s) =
1

2(α∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)α∗–1 wn(r)
wn(r) + 1

dr
(r – s0)1–υ

+
1

8(� + α∗ + θ∗)

∫ s

s0

(
(s – s0)υ – (r – s0)υ

υ

)�+α∗+θ∗–1

×
(

1 + tanh

(
1

(η)

∫ r

s0

(
(r – s0)v – (t – s0)v

v

)1–η

× wn(t)
dt

(t – s0)1–υ

))
dr

(r – s0)1–υ
(13)

for each s ∈ J = [0.1, 1], where w0(s) = u(s) = 0 for any s ∈ J = [0.1, 1].
The successive iterations of the sequence wn to approximate the solution function w∗

for the Caputo conformable hybrid multi-term initial value problem (12) are illustrated
in Figs. 3 and 4 when the fractional order equals to � = 0.2 with υ = 0.2 and υ = 0.8. In a
similar manner, Figs. 5–6 illustrate the successive iterations of the sequence wn to approx-
imate the solution function w∗ for the mentioned hybrid initial problem (12) when the
fractional order equals to � = 0.8 with υ = 0.3 and υ = 0.7. Finally, Figs. 7 and 8 illustrate

Figure 3 Approximating the successive iterations
wn for the solution when � = 0.2
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Figure 4 Approximating the successive iterations
wn for the solution when � = 0.2

Figure 5 Approximating the successive iterations
wn for the solution when � = 0.8

Figure 6 Approximating the successive iterations
wn for the solution when � = 0.8

the successive iterations of the sequence wn to approximate the solution function w∗ for
the mentioned hybrid multi-term initial problem (12) when the fractional order equals to
� = 0.9 with υ = 0.1 and υ = 1, respectively. In this illustration for the iterative sequence wn

formulated by (13), we utilize the trapezoidal rule for an integration with step size 0.009
numerically.
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Figure 7 Approximating the successive iterations
wn for the solution when � = 0.9

Figure 8 Approximating the successive iterations
wn for the solution when � = 0.9

Table 1 Some values of ‖w6 –w5‖ for different � and υ

� α∗ θ∗ η∗ υ s0 ‖w6 –w5‖
0.2 0.44 0.12 0.99 0.2 0.1 9.9103× 10–5

0.2 0.44 0.12 0.99 0.8 0.1 2.1518× 10–7

0.5 0.44 0.12 0.99 0.2 0.1 1.0155× 10–4

0.5 0.44 0.12 0.99 0.6 0.1 8.9234× 10–7

0.8 0.44 0.12 0.99 0.3 0.1 2.4123× 10–5

0.8 0.44 0.12 0.99 0.7 0.1 3.5160e× 10–7

0.9 0.44 0.12 0.99 0.1 0.1 2.3424× 10–4

0.9 0.44 0.12 0.99 1 0.1 1.1042× 10–7

Moreover, since we cannot obtain the exact solution w∗ explicitly, we identify the relative
error between two iterates ‖wn – wn–1‖ as a stopping factor of the iterations whenever this
constant value is less than 0.009. In Table 1, we assemble the relative errors between two
successive iterates ‖w6 – w5‖ for four different orders � = 0.2, 0.5, 0.8, and � = 0.9, respec-
tively. The obtained results demonstrate that the sequence of successive approximations
of solutions wn for the Caputo conformable hybrid multi-term initial value problem (12)
is convergent monotonically.
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5 Conclusion
It is important that we examine the fractional equations of the function with distinct
derivatives numerically from different aspects. In the current manuscript, we derive an
existence criterion for a Caputo conformable hybrid multi-term integro-differential equa-
tion equipped with initial conditions (2). Note that unlike other published papers in the
field of the existence theory, this hybrid problem is considered by a newly defined Ca-
puto fractional conformable derivative for the first time. In this direction, we consider
a partially ordered Banach space, and, by applying the lower solution property, the exis-
tence and successive approximations of solutions for the hybrid multi-term initial problem
(2) are investigated. Eventually, we formulate an illustrative example (12) to support our
findings from a numerical point of view. Moreover, we plot the sequence of the obtained
approximate solutions for different values of noninteger orders in Figs. 3–8.
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