
Wu and Teng Advances in Difference Equations        (2020) 2020:614 
https://doi.org/10.1186/s13662-020-03073-2

R E S E A R C H Open Access

Traveling waves in nonlocal dispersal SIR
epidemic model with nonlinear incidence
and distributed latent delay
Weixin Wu1 and Zhidong Teng1*

*Correspondence:
zhidong_teng@sina.com;
zhidong1960@163.com
1College of Mathematics and
Systems Science, Xinjiang
University, Urumqi 830046, People’s
Republic of China

Abstract
This paper studies the traveling waves in a nonlocal dispersal SIR epidemic model
with nonlinear incidence and distributed latent delay. It is found that the traveling
waves connecting the disease-free equilibrium with endemic equilibrium are
determined by the basic reproduction numberR0 and the minimal wave speed c∗.
WhenR0 > 1 and c > c∗, the existence of traveling waves is established by using the
upper-lower solutions, auxiliary system, constructing the solution map, and then the
fixed point theorem, limiting argument, diagonal extraction method, and Lyapunov
functions. WhenR0 > 1 and 0 < c < c∗, the nonexistence result is also obtained by
using the reduction to absurdity and the theory of asymptotic spreading.
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1 Introduction
Mathematical models can be a powerful tool for designing strategies to control the spread
of diseases. Over the past decades, great attention has been paid to describing the spread of
an epidemic by mathematical methods, especially ordinary differential equations. How-
ever, because individuals (humans, birds, mosquitoes) always move frequently between
regions, so when we study the spread of infectious diseases, the factors about the spatial
diffusion of individuals cannot be ignored. Therefore, the reaction-diffusion model has at-
tracted a lot of attention of researchers [1–9]. The equilibria, basic reproduction number,
asymptotic and global stability, uniform persistence, bifurcation, and traveling waves are
the focus of reaction-diffusion models [2, 3, 5–7, 10–20].

As is well known, the incidence function plays a very important role in modeling in-
fectious diseases. Some factors, such as media coverage, density of population, and life
style, may affect the incidence rate directly or indirectly. In 1978, Capasso et al. [21] intro-
duced a saturated incidence rate g(I)S by research of the cholera epidemic spread in Bari,
which includes the behavioral change and crowding effect and avoids the unboundedness
of the effective contact. If the function g(I) is decreasing on I > 0, it can be interpreted
as the “psychological” effect. In 1995, this effect was also observed, when Brown et al.
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[22] studied infection of the two-spotted spider mites, Tetranychus urticae, with the ento-
mopathogenic fungus, Neozygites floridana. Thus, it can be seen that many realistic epi-
demic systems can be accurately modeled only by using the nonlinear incidence. Recently,
Zhou et al. [23] proposed the following nonlocal dispersal susceptible-infected-removed
(SIR) epidemic model with nonlinear incidence f (S)g(I):

⎧
⎪⎪⎨

⎪⎪⎩

∂tS(x, t) = d1(J ∗ S(x, t) – S(x, t)) – f (S(x, t))g(I(x, t)),

∂tI(x, t) = d2(J ∗ I(x, t) – I(x, t)) + f (S(x, t))g(I(x, t)) – γ I(x, t),

∂tR(x, t) = d3(J ∗ R(x, t) – R(x, t)) + γ I(x, t),

(1)

where J ∗ u(x, t) with u(x, t) = S(x, t), I(x, t) and R(x, t) denote nonlocal diffusion with the
following form:

J ∗ u(x, ·) =
∫

R

J(x – y)u(y, ·) dy =
∫

R

J(y)u(x – y, ·) dy. (2)

The kernel function J(x – y) is the probability of dispersal from location y to x, and
∫

R
J(x–y)u(y, ·) dy stands for the rate at which individuals arrive at location x from all other

locations. Zhou et al. [23] studied the existence and nonexistence of traveling waves. It is
shown that the traveling wave solutions are completely dependent on critical wave speed
c∗ and basic reproduction number R0. When R0 > 1 and wave speed c > c∗, then the ex-
istence theorem is established for model (1) (see Theorem 2.3 in [23]); otherwise, when
R0 > 1 and 0 < c < c∗ or R0 < 1, then the nonexistence theorems are obtained (see Theo-
rems 3.1 and 3.2 in [23]).

On the one hand, we also know that the time delay has a great influence on dynamic
behavior in many infectious diseases, since some disease may take time to reach the in-
fection stage from the point of being infected [24–33]. Zhang et al. [34] established the
following SIR epidemic model with nonlocal dispersal and nonlinear incidence:

⎧
⎪⎪⎨

⎪⎪⎩

∂tS(x, t) = d1(J ∗ S(x, t) – S(x, t)) – f (S(x, t))g(I(x, t – τ )),

∂tI(x, t) = d2(J ∗ I(x, t) – I(x, t)) + f (S(x, t))g(I(x, t – τ )) – γ I(x, t),

∂tR(x, t) = d3(J ∗ R(x, t) – R(x, t)) + γ I(x, t).

(3)

The existence and nonexistence of traveling waves of the system are established. It is
shown that the spread speed c is dependent on the dispersal rate of the infected individuals
and the time delay. In model (3), the time delay is considered to be a constant.

However, for some diseases, such as rabies, the incubation period fluctuates in a wide
range. According to a study of dog diseases, the incubation period for many rabies cases is
within two months, while for about 5% of rabies cases incubation period is more than two
months (2–5 months). In humans, the incubation period of most cases is 1 to 2 months.
There are still more than 15% cases where incubation period is more than 3 months or
even years [35]. Therefore, the latent period from the point of being infected to infection
is often a variable [36]. The above facts make us ponder what would be the conclusion
when considering the distributed latent delay and the nonlinear incidence.

On the other hand, we also notice that in models (1) and (3), the authors do not con-
sider the supplement of the susceptible, the natural death of the susceptible, infected, and
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removed, and the disease-related death of the infected. We know that if these factors are
considered, then we will get a completely different situation from models (1) and (3). Par-
ticularly, the endemic equilibrium point will appear in this case.

Therefore, in this paper, we propose the following nonlocal dispersal SIR epidemic
model with the general nonlinear incidence f (S, I) and the distributed latent delay:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tS(x, t) = d1(J ∗ S(x, t) – S(x, t)) + � – μS(x, t) – βf (S(x, t), I(x, t)),

∂tI(x, t) = d2(J ∗ I(x, t) – I(x, t)) + β
∫ τ

0 h(s)f (S(x, t – s), I(x, t – s)) ds

– (μ + γ + α)I(x, t),

∂tR(x, t) = d3(J ∗ R(x, t) – R(x, t)) + γ I(x, t) – μR(x, t).

(4)

Here, S, I , and R denote the amount of susceptible, infected, and removed individuals
at location x and time t, respectively. Parameter � > 0 is the total recruitment rate; β >
0 stands for the per-capita effective transmission rate; μ > 0 and α > 0 are the natural
death rate and the disease-related death rate, respectively; di ≥ 0 (i = 1, 2, 3) describes the
diffusion rates for the three groups, respectively; γ represents the recovery rate of infected
individuals and τ > 0 is a constant. Function f (S, I) denotes the nonlinear incidence rate;
the distributed latent delay term

∫ τ

0 h(s)f (S(x, t – s), I(x, t – s)) ds shows that the disease
transmission has an incubation period, and the period of incubation is not constant.

In addition, for model (1) and model (3), the authors investigated the traveling wave
solution (S(ξ ), I(ξ ), R(ξ )) with ξ = x + ct satisfying (S(–∞), I(–∞), R(–∞)) = (S0, 0, 0)
and (S(∞), I(∞), R(∞)) = (S∞, 0, 0), where S0 > 0 is interpreted as the number of the
susceptible individuals before being infected, and S∞ < S0. However, in this paper, we
study the traveling wave solution (S(ξ ), I(ξ ), R(ξ )) connecting the disease-free equilibrium
(S0, 0, 0) with endemic equilibrium (S∗, I∗, R∗), namely (S(–∞), I(–∞), R(–∞)) = (S0, 0, 0)
and (S(∞), I(∞), R(∞)) = (S∗, I∗, R∗).

The paper is organized as follows. In the next section, we study the existence of equi-
libria and critical wave speed c∗ of model (4). In Sect. 3, the upper-lower solutions of the
auxiliary system are defined. In Sect. 4, a convex set and a solution map defined on this
set are constructed for the auxiliary system. In Sect. 5, the existence of traveling waves
is established firstly for the auxiliary system, and then for model (4) by using Schauder’s
fixed point theorem, the limiting argument, and the diagonal extraction method. Further-
more, asymptotic boundary properties are obtained by means of the Lyapunov functions
technique. In Sect. 6, the nonexistence of traveling waves is discussed by the asymptotic
spreading theory. In Sect. 7, we derive some number simulations to verify our results. In
Sect. 8, a brief conclusion is given.

2 Preliminary
For convenience, let p(x) with x = (x1, x2, . . . , xn) be a quadratic continuously differentiable
function, we denote pxi (x) = ∂p(x)

∂xi
and pxixj (x) = ∂2p(x)

∂xi∂xj
.

We always assume that functions f (S, I), J(x), and h(s) in model (4) satisfy the following
assumptions:

(A1) f (S, I) is quadratic continuously differentiable, nondecreasing and
f (0, I) = f (S, 0) = 0 for all S > 0 and I > 0; f (S,I)

I is nonincreasing for all I > 0.
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(A2) J(x) is local Lipschitz continuous and compactly supported on R,
∫

R
J(x) dx = 1,

J(x) = J(–x) ≥ 0 for any x ∈R, J(0) > 0, limλ→+∞ 1
λ

∫

R
J(y) e–λy dy = +∞ and

limλ→0+ 1
λ

∫

R
J(y)(e–λy – 1) dy = 0.

(A3) h(s) is nonnegative and integrable on (0, τ ) and
∫ τ

0 h(s) ds = 1.

Remark 1 It is clear that the nonlinear incidence f (S, I) satisfying assumption (A1) in-
cludes many common incidence functions, such as f (S, I) = SI , which was studied by
Zhang et al. in [37]; f (S, I) = SI

S+I , which was studied by Xu in [38]; f (S, I) = SI2

1+aI2 with a > 0,
which was studied by Ruan et al. in [39].

Define the basic reproduction number of model (4) as follows:

R0 =
βfI(S0, 0)
μ + γ + α

,

where S0 = �
μ

. Model (4) always has a disease-free equilibrium E0 = (S0, 0, 0). WhenR0 > 1,
by (A1) we easily prove that model (4) has a unique endemic equilibrium E∗ = (S∗, I∗, R∗).

The traveling wave in model (4) is defined as a special solution (S(x + ct), I(x + ct), R(x +
ct)), where c > 0 is the wave speed. Let ξ = x + ct, then from model (4) we obtain the
following system:

⎧
⎪⎪⎨

⎪⎪⎩

cS′(ξ ) = d1(J ∗ S(ξ ) – S(ξ )) + � – μS(ξ ) – βf (S(ξ ), I(ξ )),

cI ′(ξ ) = d2(J ∗ I(ξ ) – I(ξ )) + β
∫ τ

0 h(s)f (S(ξ – cs), I(ξ – cs)) ds – (μ + γ + α)I(ξ ),

cR′(ξ ) = d3(J ∗ R(ξ ) – R(ξ )) + γ I(ξ ) – μR(ξ ),

(5)

where J ∗ u(ξ ) =
∫

R
J(ξ – y)u(y) dy with u(ξ ) = S(ξ ), I(ξ ) and R(ξ ).

In this paper, we investigate the existence of traveling wave (S(ξ ), I(ξ ), R(ξ )) of model (5)
for ξ ∈R with the asymptotic boundary conditions:

lim
ξ→–∞

(
S(ξ ), I(ξ ), R(ξ )

)
= (S0, 0, 0), lim

ξ→∞
(
S(ξ ), I(ξ ), R(ξ )

)
=

(
S∗, I∗, R∗). (6)

Since the third equation in system (5) is fully decoupled with the first two equations, in
the following we first consider the subsystem

⎧
⎨

⎩

cS′(ξ ) = d1(J ∗ S(ξ ) – S(ξ )) + � – μS(ξ ) – βf (S(ξ ), I(ξ )),

cI ′(ξ ) = d2(J ∗ I(ξ ) – I(ξ )) + β
∫ τ

0 h(s)f (S(ξ – cs), I(ξ – cs)) ds – (μ + γ + α)I(ξ ).
(7)

Linearizing the second equation of system (7) at equilibrium E0, we have

cI ′(ξ ) = d2

∫

R

J(y)
(
I(ξ – y) – I(ξ )

)
dy+βfI(S0, 0)

∫ τ

0
h(s)I(ξ – cs) ds – (μ+γ +α)I(ξ ). (8)

Substituting I(ξ ) = eλξ into (8), it follows that


(λ, c) := d2

∫

R
J(y)

(
e–λy – 1

)
dy – cλ + βfI(S0, 0)

∫ τ

0
h(s)e–λcs ds

– (μ + γ + α) = 0.
(9)
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Lemma 1 Assume R0 > 1, then there exist unique c∗ > 0 and λ∗ > 0 satisfying 
(λ∗, c∗) = 0
and ∂
(λ∗ ,c∗)

∂λ
= 0. Furthermore,

(i) if c > c∗, then there are two positive constants λ1(c) < λ2(c) such that 
(λi(c), c) = 0
(i = 1, 2), 
(λ, c) > 0 for λ ∈ (0,λ1(c)) ∪ (λ2(c), +∞) and 
(λ, c) < 0 for λ ∈ (λ1(c),λ2(c));

(ii) if 0 < c < c∗, then 
(λ, c) > 0 for all λ > 0.

Proof We have 
(0, c) = βfI(S0, 0) – (μ + γ + α) > 0 since R0 > 1, 
(+∞, c) = +∞ by (A2)
and

∂
(λ, c)
∂λ

∣
∣
∣
∣
λ=0

= –c – cβfI(S0, 0)
∫ τ

0
sh(s) dy ds < 0,

∂2
(λ, c)
∂λ2 = d2

∫

R

y2J(y)e–λy dy + βfI(S0, 0)
∫ τ

0
h(s)(cs)2e–λcs ds > 0.

Besides, for any λ > 0, we have 
(λ, +∞) = –∞ and


(λ, 0) ≥ d2

∫

R

J(y)(–λy) dy + βfI(S0, 0)
∫ τ

0
h(s) ds – (μ + γ + α)

= βfI(S0, 0) – (μ + γ + α) > 0,

∂
(λ, c)
∂c

= –λ – λβfI(S0, 0)
∫ τ

0
sh(s)e–λcs ds < 0.

Therefore, there exist unique c∗ > 0 and λ∗ > 0 satisfying 
(λ∗, c∗) = 0 and ∂
(λ∗ ,c∗)
∂λ

= 0.
When c > c∗, we easily get that there are two positive numbers λ1(c) < λ2(c) such that


(λi(c), c) = 0 (i = 1, 2), 
(λ, c) > 0 for λ ∈ (0,λ1(c)) ∪ (λ2(c), +∞) and 
(λ, c) < 0 for λ ∈
(λ1(c),λ2(c)). If 0 < c < c∗, then it is clear that 
(λ, c) > 0 for all λ > 0. This completes the
proof. �

3 Upper-lower solutions
In this section, we always assume R0 > 1 and c > c∗. We introduce the auxiliary system

⎧
⎪⎪⎨

⎪⎪⎩

cS′(ξ ) = d1(J ∗ S(ξ ) – S(ξ )) + � – μS(ξ ) – βf (S(ξ ), I(ξ )),

cI ′(ξ ) = d2(J ∗ I(ξ ) – I(ξ )) + β
∫ τ

0 h(s)f (S(ξ – cs), I(ξ – cs)) ds

– (μ + γ + α)I(ξ ) – εI2(ξ ),

(10)

where ε > 0 is a constant. We define four functions: S(ξ ) = S0, S(ξ ) = max{S0(1–M1eε1ξ ), 0},
I(ξ ) = min{eλ1ξ , Kε}, and I(ξ ) = max{eλ1ξ (1 – M2eε2ξ ), 0} for ξ ∈R, where λ1 = λ1(c) is given
in Lemma 1, Kε = βfI (S0,0)–(μ+γ +α)

ε
and Mi, εi (i = 1, 2) are positive constants to be deter-

mined in the following lemmas. Now, we prove that (S(ξ ), I(ξ )) and (S(ξ ), I(ξ )) are the
upper and lower solutions respectively for system (10).

Lemma 2 Function S(ξ ) satisfies

cS′(ξ ) ≥ d1
(
J ∗ S(ξ ) – S(ξ )

)
+ � – μS(ξ ) – βf

(
S(ξ ), I(ξ )

)
, ξ ∈ R.
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Lemma 3 Function I(ξ ) satisfies

cI ′(ξ ) ≥ d2
(
J ∗ I(ξ ) – I(ξ )

)
+ β

∫ τ

0
h(s)f

(
S(ξ – cs), I(ξ – cs)

)
ds

– (μ + γ + α)I(ξ ) – εI2(ξ )
(11)

for any ξ 	= ξ1 := 1
λ1

ln Kε .

The proofs of Lemmas 2 and 3 are simple, we here omit them.

Lemma 4 There exists a constant ε1 ∈ (0,λ1) small enough such that function S(ξ ) satisfies

cS′(ξ ) ≤ d1
(
J ∗ S(ξ ) – S(ξ )

)
+ � – μS(ξ ) – βf

(
S(ξ ), I(ξ )

)
(12)

for any ξ 	= ξ2 := 1
ε1

ln ε1.

Proof Choose M1 = 1
ε1

. When ξ > ξ2, then S(ξ ) = 0. Since d1J ∗ S(ξ ) + � > 0, we obtain that
(12) holds. When ξ < ξ2, then S(ξ ) = S0(1 – M1eε1ξ ) and I(ξ ) ≤ eλ1ξ . To obtain (12), it is
sufficient to prove the following inequality:

cS′(ξ ) ≤ d1
(
J ∗ S(ξ ) – S(ξ )

)
+ � – μS(ξ ) – βfI(S0, 0)I(ξ )

for ξ < ξ2, which is equivalent to proving

cM1S0ε1eε1ξ ≥ d1S0M1eε1ξ

∫

R

J(y)
(
e–ε1y – 1

)
dy – μM1eε1ξ S0 + βfI(S0, 0)eλ1ξ ,

that is,

d1S0
1
ε1

∫

R

J(y)
(
e–ε1y – 1

)
dy – μ

1
ε1

S0 + βfI(S0, 0)e(λ1–ε1)ξ ≤ cS0 (13)

for ξ < ξ2. By (A2), it is clear that inequality (13) holds for 0 < ε1 < λ1 small enough. This
completes the proof. �

Lemma 5 There exist the constants 0 < ε2 < min{ε1,λ2 – λ1} and M2 > 1 large enough with
– 1

ε2
ln M2 < ξ2 such that function I(ξ ) satisfies

cI ′(ξ ) ≤ d2
(
J ∗ I(ξ ) – I(ξ )

)
+ β

∫ τ

0
h(s)f

(
S(ξ – cs), I(ξ – cs)

)
ds

– (μ + γ + α)I(ξ ) – εI2(ξ )
(14)

for any ξ 	= ξ3 := – 1
ε2

ln M2.
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Proof Obviously, (14) can be rewritten as follows:

cI ′(ξ ) ≤ d2
(
J ∗ I(ξ ) – I(ξ )

)
+ βfI(S0, 0)

∫ τ

0
h(s)I(ξ – cs) ds – (μ + γ + α)I(ξ )

+ β

∫ τ

0
h(s)f

(
S(ξ – cs), I(ξ – cs)

)
ds

– βfI(S0, 0)
∫ τ

0
h(s)I(ξ – cs) ds – εI2(ξ ).

(15)

When ξ > ξ3, then I(ξ ) = 0. Hence, (15) clearly holds. When ξ < ξ3, since ξ3 < ξ2, we have
S(ξ ) = S0, S(ξ ) = S0(1 – M1eε1ξ ) and I(ξ ) = eλ1ξ (1 – M2eε2ξ ). Hence, for ξ < ξ3, we obtain

cI ′(ξ ) – d2
(
J ∗ I(ξ ) – I(ξ )

)
– βfI(S0, 0)

∫ τ

0
h(s)I(ξ – cs) ds + (μ + γ + α)I(ξ )

= –eλ1ξ
(λ1, c) + M2e(λ1+ε2)ξ
(λ1 + ε2, c)

= M2e(λ1+ε2)ξ
(λ1 + ε2, c).

(16)

From (A1), we can obtain f (S(ξ – cs), I(ξ – cs)) ≤ fI(S0, 0)I(ξ – cs), which implies

β

∫ τ

0
h(s)f

(
S(ξ – cs), I(ξ – cs)

)
ds – βfI(S0, 0)

∫ τ

0
h(s)I(ξ – cs) ds – εI2(ξ ) < 0

and

β

∫ τ

0
h(s)f

(
S(ξ – cs), I(ξ – cs)

)
ds – βfI(S0, 0)

∫ τ

0
h(s)I(ξ – cs) ds

= β

∫ τ

0
h(s)fS

(
δ, I(ξ – cs)

)(
S(ξ – cs) – S0

)
ds

+ β

∫ τ

0
h(s)

[
f (S0, I(ξ – cs))

I(ξ – cs)
– fI(S0, 0)

]

I(ξ – cs) ds

= β

∫ τ

0
h(s)

fS(δ, I(ξ – cs))
I(ξ – cs)

I(ξ – cs)
(
S(ξ – cs) – S0

)
ds

+ β

∫ τ

0
h(s)

[
fI(S0, θ )θ – f (S0, θ )

θ2

]
(
I(ξ – cs)

)2 ds,

(17)

where δ = δ(ξ , s) ∈ [S(ξ – cs), S0] and θ = θ (ξ , s) ∈ [0, I(ξ – cs)].
Noting S(ξ – cs) ≥ S0(1 – M1eεξ ) for ξ ≤ ξ3 and s ∈ [0,∞), we have δ(ξ , s) ∈ [S0(1 –

M1eεξ ), S0] for ξ ≤ ξ3 and s ∈ [0,∞). Hence, limξ→–∞ δ(ξ , s) = S0 uniformly for s ∈ [0,∞).
It follows from (A1) that fI(S, I)I – f (S, I) ≤ 0 and f (S,I)

I ≤ fI(S, 0) for S ≥ 0 and I > 0. Hence,
fS(δ,I(ξ–cs))

I(ξ–cs) ≤ fSI(δ(ξ , s), 0) for ξ ≤ ξ3 and s ∈ [0,∞). Then we have

lim
ξ→–∞ fSI

(
δ(ξ , s), 0

)
= fSI(S0, 0) uniformly for s ∈ [0,∞). (18)

Noting that I(ξ – cs) ≤ eλ1ξ for ξ ≤ ξ3 and s ∈ [0,∞), we have θ (ξ , s) ∈ [0, eλ1ξ ] for ξ ≤ ξ3

and s ∈ [0,∞). Hence, limξ→–∞ θ (ξ , s) = 0 uniformly for s ∈ [0,∞). Then we obtain

lim
ξ→–∞

fI(S0, θ (ξ , s))θ (ξ , s) – f (S0, θ (ξ , s))
θ (ξ , s)2 = fII(S0, 0), (19)

uniformly for s ∈ [0,∞).
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Since 0 ≥ S(ξ – cs) – S0 ≥ –S0M1eε1ξ for ξ ≤ ξ3 and s ∈ [0,∞), we also have

∫ τ

0
h(s)

fS(δ(ξ , s), I(ξ – cs))
I(ξ – cs)

I(ξ – cs)
(
S(ξ – cs) – S0

)
ds

≥ –S0M1

∫ τ

0
h(s)fSI

(
δ(ξ , s), 0

)
ds e(λ1+ε1)ξ .

Furthermore,

∫ τ

0
h(s)

[
fI(S0, θ (ξ , s))θ (ξ , s) – f (S0, θ (ξ , s))

θ (ξ , s)2

]
(
I(ξ – cs)

)2 ds

≥
∫ τ

0
h(s)

[
fI(S0, θ (ξ , s))θ (ξ , s) – f (S0, θ (ξ , s))

θ (ξ , s)2

]

ds e2λ1ξ .

Then, from (17), for ξ ≤ ξ3 we have

β

∫ τ

0
h(s)f

(
S(ξ – cs), I(ξ – cs)

)
ds – βfI(S0, 0)

∫ τ

0
h(s)I(ξ – cs) ds – ε

(
I(ξ )

)2

≥
(

–S0M1β

∫ τ

0
h(s)fSI

(
δ(ξ , s), 0

)
ds e(ε1+λ1)ξ

+ β

∫ τ

0
h(s)

[
fI(S0, θ (ξ , s))θ (ξ , s) – f (S0, θ (ξ , s))

θ (ξ , s)2

]

ds – ε

)

e2λ1ξ =: P(ξ ).

To obtain (15), from (16) we only need to show that there is a constant M2 > 1 such that
M2e(λ1+ε2)ξ
(λ1 + ε2, c) ≤ P(ξ ) for any ξ ≤ ξ3, which is equivalent to

M2
(λ1 + ε3, c) ≤ P(ξ )e–(ε1+λ1)ξ

= –S0M1

∫ τ

0
h(s)fSI

(
δ(ξ , s), 0

)
ds e(ε1–ε2)ξ

+
∫ τ

0
h(s)

[
fI(S0, θ (ξ ))θ (ξ ) – f (S0, θ (ξ ))

θ (ξ )2

]

ds e(λ1–ε2)ξ – εe(λ1–ε2)ξ .

(20)

From Lemma 1, we know 
(λ1 + ε2, c) < 0 as λ1 < λ1 + ε2 < λ2. Since limξ→–∞ e(ε1–ε2)ξ = 0,
limξ→–∞ e(λ1–ε2)ξ = 0, from (18) and (19) we can obtain limξ→–∞ P(ξ )e–(ε1+λ1)ξ = 0. There-
fore, there is ξ3 < 0 with ξ3 < ξ2 such that (20) holds for ξ < ξ3. Choose M2 > 1 such that
ξ3 = – 1

ξ2
ln M2. Then we have that (15) holds for ξ < ξ3. This completes the proof. �

4 Solution map on a convex set
For any given X > max{|ξ1|, |ξ3|, r}, we construct a set of functions as follows:

�X =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
φ(ξ ),ϕ(–X)

) ∈ C
(
[–X, X],R2) :

φ(–X) = S(–X)
ϕ(–X) = I(–X)
S(ξ ) ≤ φ(ξ ) ≤ S0

I(ξ ) ≤ ϕ(ξ ) ≤ I(ξ )
ξ ∈ [–X, X]

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (21)
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For any (φ(ξ ),ϕ(ξ )) ∈ �X , we define

φ̂(ξ ) =

⎧
⎪⎪⎨

⎪⎪⎩

φ(X), ξ > X,

φ(ξ ), |ξ | ≤ X,

S(ξ ), ξ < –X,

ϕ̂(ξ ) =

⎧
⎪⎪⎨

⎪⎪⎩

ϕ(X), ξ > X,

ϕ(ξ ), |ξ | ≤ X,

I(ξ ), ξ < –X.

(22)

Obviously, �X is a closed and convex set. (φ̂(ξ ), ϕ̂(ξ )) satisfies

S(ξ ) ≤ φ̂(ξ ) ≤ S0, I(ξ ) ≤ ϕ̂(ξ ) ≤ I(ξ ), ξ ∈R. (23)

Consider the initial value problem

⎧
⎪⎪⎨

⎪⎪⎩

cS′(ξ ) = d1(J ∗ φ̂(ξ ) – S(ξ )) + � – μS(ξ ) – βf (S(ξ ),ϕ(ξ )),

cI ′(ξ ) = d2(J ∗ ϕ̂(ξ ) – I(ξ )) + β
∫ τ

0 h(s)f (φ̂(ξ – cs), ϕ̂(ξ – cs)) ds

– (μ + γ + α)I(ξ ) – εI2(ξ )

(24)

with

S(–X) = S(–X), I(–X) = I(–X). (25)

The ODE theory ensures that initial value problem (24) and (25) admits a unique solution
(SX(ξ ), IX(ξ )) defined for ξ ∈ [–X, X]. Thus, we define a map F = (F1,F2) on �X by

F1(φ,ϕ) = SX , F2(φ,ϕ) = IX . (26)

Lemma 6 For any given X > max{|ξ1|, |ξ3|, r}, map F = (F1,F2) is �X → �X .

Lemma 6 can be easily proved by using (A1), (A2), Lemmas 2–5, and the comparison
principle, we hence omit it here.

Lemma 7 Map F = (F1,F2) : �X → �X is completely continuous.

Proof For any (φ,ϕ) ∈ �X , we easily obtain from (24) that (SX(ξ ), IX(ξ )) ∈ C1([–X, X],R2).
Thus, the compactness of map F = (F1,F2) can be obtained by the Arzelà–Ascoli theo-
rem.

Now, we show the continuity of F = (F1,F2). Let SX,i(ξ ) = F1(φi,ϕi)(ξ ) and IX,i(ξ ) =
F2(φi,ϕi)(ξ ), where (φi(ξ ),ϕi(ξ )) ∈ �X (i = 1, 2) for ξ ∈ [–X, X]. We first consider the con-
tinuity of F1. It follows from the first equation of (24) that

c
(
S′

X,1(ξ ) – S′
X,2(ξ )

)
+ (d1 + μ)

(
SX,1(ξ ) – SX,2(ξ )

)

= d1

∫

R

J(y)
(
φ̂1(ξ – y) – φ̂2(ξ – y)

)
dy + β

(
f
(
SX,2(ξ ),ϕ2(ξ )

)
– f

(
SX,1(ξ ),ϕ1(ξ )

))
.

(27)

Since

∫

R

J(y)φ̂(ξ – y) dy =
∫ –X

–∞
J(ξ – y)S(y) dy +

∫ X

–X
J(ξ – y)φ(y) dy +

∫ +∞

X
J(ξ – y)φ(X) dy,
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we have
∣
∣
∣
∣

∫

R

J(y)
(
φ̂1(ξ – y) dy – φ̂2(ξ – y)

)
dy

∣
∣
∣
∣ ≤ 2 max

y∈[–X,X]

∣
∣φ1(y) – φ2(y)

∣
∣. (28)

From (A1), for any (φ1,ϕ1), (φ2,ϕ2) ∈ �X , since I(ξ ) ≤ Kε for ξ ∈ [–X, X], then

∣
∣f

(
φ1(ξ ),ϕ1(ξ )

)
– f

(
φ2(ξ ),ϕ2(ξ )

)∣
∣ ≤ M4

(∣
∣φ1(ξ ) – φ2(ξ )

∣
∣ +

∣
∣ϕ1(ξ ) – ϕ2(ξ )

∣
∣
)
, (29)

where M4 = sup{fI(S0, 0), fS(ϑ , Kε) : 0 ≤ ϑ ≤ S0}.
Let u(ξ ) = c|SX,1(ξ ) – SX,2(ξ )|. Then from (27)–(29) we obtain

u′(ξ ) = c sign
(
SX,1(ξ ) – SX,2(ξ )

)(
S′

X,1(ξ ) – S′
X,2(ξ )

)

≤ 2d1 max
y∈[–X,X]

∣
∣φ1(y) – φ2(y)

∣
∣ – (d1 + μ – βM4)

∣
∣SX,1(ξ ) – SX,2(ξ )

∣
∣ + βM4|ϕ2 – ϕ1|

=
(

–
d1 + μ

c
+

βM4

c

)

u(ξ ) + 2d1 max
y∈[–X,X]

∣
∣φ1(y) – φ2(y)

∣
∣

+ βM4 max
y∈[–X,X]

∣
∣ϕ2(y) – ϕ1(y)

∣
∣.

Thus, for all ξ ∈ [–X, X], we obtain

u(ξ ) ≤ u(–X)e(– d1+μ
c + βM4

c )(ξ+X) +
∫ ξ

–X

(
2d1 max

y∈[–X,X]

∣
∣φ1(y) – φ2(y)

∣
∣

+ βM4 max
y∈[–X,X]

∣
∣ϕ2(y) – ϕ1(y)

∣
∣
)

e(– d1+μ
c + βM4

c )(ξ–τ ) dτ .
(30)

Since u(–X) = 0, from (30) we finally have ‖u(ξ )‖�X → 0 as ‖(φ2,ϕ2) – (φ1,ϕ1)‖�X → 0.
Therefore, F1 is continuous on �X . Similarly, we can obtain the continuity of F2. �

Since �X is closed and convex, combining Lemmas 6 and 7, applying Schauder’s fixed
point theorem, we obtain the following theorem.

Theorem 1 Map F has at least one fixed point (S∗
X(ξ ), I∗

X(ξ )) ∈ �X .

Now, we give some estimates for the fixed point (S∗
X(ξ ), I∗

X(ξ )) of map F in the space
C1,1([–X, X]), where

C1,1([–X, X]
)

=
{

u ∈ C1([–X, X]
)

: u and u′ are Lipschitz continuous
}

,

with the norm

‖u‖C1,1([–X,X]) = max
x∈[–X,X]

∣
∣u(x)

∣
∣ + max

x∈[–X,X]

∣
∣u′(x)

∣
∣ + sup

x,y∈[–X,X],x 	=y

|u′(x) – u′(y)|
|x – y| . (31)

We have the following result.

Lemma 8 Let (S∗
X(ξ ), I∗

X(ξ )) be the fixed point of map F , then there exists a constant C > 0
independent of X satisfying ‖S∗

X(ξ )‖C1,1([–X,X]) ≤ C and ‖I∗
X(ξ )‖C1,1([–X,X]) ≤ C for any X >

max{|ξ1|, |ξ3|, r}.
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Proof Obviously, we have

⎧
⎪⎪⎨

⎪⎪⎩

cS∗′
X (ξ ) = d1(J ∗ ŜX(ξ ) – S∗

X(ξ )) + � – μS∗
X(ξ ) – βf (S∗

X(ξ ), I∗
X(ξ )),

cI∗′
X (ξ ) = d2J ∗ ÎX(ξ ) + β

∫ τ

0 h(s)f (ŜX(ξ – cs), ÎX(ξ – cs)) ds

– (d2 + μ + γ + α)I∗
X(ξ ) – εI∗2

X (ξ )

(32)

for ξ ∈ [–X, X], where

ŜX(ξ ) =

⎧
⎪⎪⎨

⎪⎪⎩

S∗
X(X), ξ > X,

S∗
X(ξ ), |ξ | ≤ X,

S(ξ ), ξ < –X,

ÎX(ξ ) =

⎧
⎪⎪⎨

⎪⎪⎩

I∗
X(X), ξ > X,

I∗
X(ξ ), |ξ | ≤ X,

I(ξ ), ξ < –X.

Since S∗
X(ξ ) ≤ S0 and I∗

X(ξ ) ≤ Kε for ξ ∈ [–X, X], from (32) we can obtain

∣
∣S∗′

X (ξ )
∣
∣ ≤ 1

c
(
2d1S0 + � + μS0 + βfI(S0, 0)Kε

)
:= L1,

∣
∣I∗′

X (ξ )
∣
∣ ≤ 1

c
(
2d2Kε + (μ + γ + α)Kε + βfI(S0, 0)Kε + εK2

ε

)
:= L2.

(33)

It follows that

∣
∣S∗

X(ξ ) – S∗
X(η)

∣
∣ ≤ L1|ξ – η|, ∣

∣I∗
X(ξ ) – I∗

X(η)
∣
∣ ≤ L2|ξ – η|. (34)

Combining (32) and (33), we further have

c
∣
∣S∗′

X (ξ ) – S∗
X

′(η)
∣
∣ ≤ d1

∣
∣
∣
∣

∫

R

J(y)
(
ŜX(ξ – y) – ŜX(η – y)

)
dy

∣
∣
∣
∣

+ (d1 + μ)
∣
∣S∗

X(ξ ) – S∗
X(η)

∣
∣

+ β
∣
∣f

(
S∗

X(ξ ), I∗
X(ξ )

)
– f

(
S∗

X(η), I∗
X(η)

)∣
∣,

(35)

and

c
∣
∣I∗′

X (ξ ) – I∗
X

′(η)
∣
∣ ≤ d2

∣
∣
∣
∣

∫

R

J(y)
(
ÎX(ξ – y) – ÎX(η – y)

)
dy

∣
∣
∣
∣

+ (d2 + μ + γ + α)
∣
∣I∗

X(ξ ) – I∗
X(η)

∣
∣

+ β

∫ τ

0
h(s)

∣
∣f

(
ŜX(ξ – cs), ÎX(ξ – cs)

)

– f
(
ŜX(η – cs), ÎX(η – cs)

)∣
∣ds

+ ε
∣
∣I∗2

X(ξ ) – I∗2
X(η)

∣
∣.

(36)

Let [–r, r] be the compact support of J(x). Since J(x) is Lipschitz continuous, there is a
constant LJ > 0 satisfying J(x) ≤ LJ r and |J(x) – J(y)| ≤ LJ |x – y| for all x, y ∈ [–r, r]. Then
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we infer that
∣
∣
∣
∣

∫ +∞

–∞
J(y)ŜX(ξ – y) dy –

∫ +∞

–∞
J(y)ŜX(η – y) dy

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ ξ+r

η+r
J(ξ – y)ŜX(y) dy +

∫ η–r

ξ–r
J(ξ – y)ŜX(y) dy

+
∫ η+r

η–r

(
J(ξ – y) – J(η – y)

)
ŜX(y) dy

∣
∣
∣
∣

≤ 4LJ rS0|ξ – η|.

(37)

Similarly, we have

∣
∣
∣
∣

∫ +∞

–∞
J(y)ÎX(ξ – y) dy –

∫ +∞

–∞
J(y)ÎX(η – y) dy

∣
∣
∣
∣ ≤ 4LJ rK ε|ξ – η|. (38)

Then it follows from (29) and (34) that

∫ ∞

0
h(s)

∣
∣f

(
ŜX(ξ – cs), ÎX(ξ – cs)

)
– f

(
ŜX(η – cs), ÎX(η – cs)

)∣
∣ds ≤ M4(L1 + L2)|ξ – η|.

Meanwhile,

∣
∣I∗2

X(ξ ) – I∗2
X(η)

∣
∣ =

∣
∣I∗

X(ξ ) + I∗
X(η)

∣
∣
∣
∣I∗

X(ξ ) – I∗
X(η)

∣
∣ ≤ 2Kε

∣
∣I∗

X(ξ ) – I∗
X(η)

∣
∣. (39)

Combining (35)–(39), we know |S∗
X

′(ξ )–S∗
X

′(η)| ≤ CS|ξ –η| and |I∗
X

′(ξ )– I∗
X

′(η)| ≤ CI |ξ –η|,
where

CS =
1
c
(
4d1LJ rS0 + (d1 + μ)L1 + βM4(L1 + L2)

)
,

CI =
1
c
(
4d2LJ rK ε + (d2 + μ + γ + α)L2 + 2εKε + βM4(L1 + L2)

)
.

From the above discussions, we finally obtain ‖S∗
X(ξ )‖C1,1([–X,X]) ≤ C and

‖I∗
X(ξ )‖C1,1([–X,X]) ≤ C with C = max{S0 + L1 + CS, Kε + L2 + CI}. This completes the proof. �

5 Existence of traveling waves
In this section, we investigate the existence of traveling waves of system (5). Firstly, for
auxiliary system (10), we have the following result.

Theorem 2 Assume R0 > 1 and c > c∗, then system (10) admits a solution (S∗(ξ ), I∗(ξ ))
defined for ξ ∈ R satisfying S(ξ ) ≤ S∗(ξ ) < S0, I(ξ ) ≤ I∗(ξ ) ≤ I(ξ ), S∗(ξ ) > 0, and I∗(ξ ) > 0
for ξ ∈R.

Proof Let the sequence {Xn}∞n=1 satisfy Xn > max{|ξ1|, |ξ3|, r} and limn→∞ Xn = +∞.
Schauder’s fixed point theorem ensures that there exists the fixed point (S∗

Xn (ξ ), I∗
Xn (ξ )) ∈

�Xn of map F for every Xn. It follows from Lemma 8 that ‖S∗
Xn (ξ )‖C1,1([–Xn ,Xn]) ≤ C

and ‖I∗
Xn (ξ )‖C1,1([–Xn ,Xn]) ≤ C for n = 1, 2, . . . . Therefore, for any integer k, sequences

{(S∗
Xn (ξ ), I∗

Xn (ξ ))} and {(S∗′
Xn (ξ ), I∗′

Xn (ξ ))} for n ≥ k are uniformly bounded and equicontinu-
ous on [–Xk , Xk]. Thus, the Arzelà–Ascoli theorem and the diagonal extraction method
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ensure that there exists a subsequence {(S∗
Xm (ξ ), I∗

Xm (ξ ))} such that (S∗
Xm (ξ ), I∗

Xm (ξ )) and
(S∗′

Xm (ξ ), I∗′
Xm (ξ )) uniformly converge in each interval [–Xk , Xk] (k = 1, 2, . . .) as m → ∞.

Let limm→∞(S∗
Xm (ξ ), I∗

Xm (ξ )) = (S∗(ξ ), I∗(ξ )), then we have limm→∞(S∗′
Xm (ξ ), I∗′

Xm (ξ )) =
(S∗′(ξ ), I∗′(ξ )). Let r be the supported radius of J(x). Since (S∗

Xm (ξ ), I∗
Xm (ξ )) ≤ (S(ξ ), I(ξ ))

for ξ ∈ R and m = 1, 2, . . . , using the Lebesgue dominated convergence theorem, it follows
that

lim
m→∞

∫

R

J(y)SXm (ξ – y) dy = lim
m→∞

∫ r

–r
J(y)SXm (ξ – y) dy = J ∗ S∗(ξ ).

Similarly, we can obtain limm→∞ J ∗ IXm (ξ ) = J ∗ I∗(ξ ). Therefore, (S∗(ξ ), I∗(ξ )) satisfies (10)
and S(ξ ) ≤ S∗(ξ ) ≤ S0 and I(ξ ) ≤ I∗(ξ ) ≤ I(ξ ) for ξ ∈ R.

Now, we prove S0 > S∗(ξ ) > 0 and I∗(ξ ) > 0. Since S(–∞) = S0 > 0, suppose there exists
ξ0 ∈ R such that S(ξ0) = 0 and S(ξ ) > 0 for all ξ ∈ (–∞, ξ0), then we have S′(ξ0) ≤ 0. From
the first equation of system (10), we have d1

∫

R
J(y)S(ξ0 – y) dy + � ≤ 0. This leads to a

contradiction. Hence, S∗(ξ ) > 0 for all ξ ∈ R. Similarly, we have I∗(ξ ) > 0 for ξ ∈ R. Next,
we prove S∗(ξ ) < S0. Suppose that there exists ξ0 ∈ R such that S∗(ξ0) = S0, then we have
S∗′(ξ0) ≥ 0. Combining the first equation of system (10), we know

d1

∫

R

J(y)
(
S∗(ξ0 – y) – S0

)
dy + � – μS0 – βf

(
S∗(ξ0), I(ξ0)

) ≥ 0,

that is, d1
∫

R
J(y)(S∗(ξ0 – y) – S0) dy – βf (S0, I(ξ0)) ≥ 0, which reduces to a contradiction

since S∗(ξ0 – y) – S0 ≤ 0 and f (S0, I(ξ0)) > 0. Thus, S∗(ξ ) < S0 for ξ ∈ R. This completes the
proof. �

Next, for subsystem (7), we further have the following result.

Theorem 3 Assume R0 > 1 and c > c∗, then system (7) admits a solution (S∗(ξ ), I∗(ξ ))
defined for ξ ∈ R satisfying limξ→–∞(S∗(ξ ), I∗(ξ )) = (S0, 0), 0 < S∗(ξ ) < S0, and I∗(ξ ) > 0 for
ξ ∈R.

Proof Let the sequence {εn} satisfy 0 < εn+1 < εn < 1 for n = 1, 2, . . . and limn→+∞ εn = 0.
According to Theorem 2, there exists a solution sequence �n(ξ ) = (S∗

n(ξ ), I∗
n(ξ )) with ε = εn

for each n ∈ N
∗ and ξ ∈R, satisfying

⎧
⎪⎪⎨

⎪⎪⎩

cS∗′
n (ξ ) = d1J ∗ S∗

n(ξ ) – d1S∗
n(ξ ) + � – μS∗

n(ξ ) – βf (S∗
n(ξ ), I∗

n(ξ )),

cI∗′
n (ξ ) = d2J ∗ I∗

n(ξ ) + β
∫ τ

0 h(s)f (S∗
n(ξ – cs), I∗

n(ξ – cs)) ds

– (d2 + μ + γ + α)I∗
n(ξ ) – εnI∗2

n (ξ ),

(40)

and

S(ξ ) < S∗
n(ξ ) < S0, I(ξ ) ≤ I∗

n(ξ ) ≤ I(ξ ), S∗
n(ξ ) > 0, I∗

n(ξ ) > 0, ξ ∈ R. (41)

In the interval [–1, 1], since Kεn = 1
εn

(βfI(S0, 0) – (μ + γ + α)) → +∞ as n → +∞, there
exists n1 ∈ N

∗ such that eλ1ξ < Kεn , that is, I(ξ ) = eλ1ξ for any n > n1 and ξ ∈ [–1, 1]. There-
fore, when n > n1, {�n(ξ )} is uniformly bounded on [–1, 1]. From (40), we further obtain
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that both {�n(ξ )} and {�′
n(ξ )} for n > n1 are equicontinuous and uniformly bounded on

[–1, 1]. Therefore, there exists a subsequence {�1,m(ξ )} of {�n(ξ )} such that {�1,m(ξ )} and
{�′

1,m(ξ )} uniformly converge on [–1, 1] as m → ∞ by using the Arzelà–Ascoli theorem.
Furthermore, we obtain I∗

1,m(ξ ) ≤ eλ1ξ for all ξ ∈ [–1, 1].
Assume that in the interval [–(k –1), k –1] we have selected a subsequence {�k–1,m(ξ )} of

{�k–2,m(ξ )} such that {�k–1,m(ξ )} and {�′
k–1,m(ξ )} uniformly converge on [–(k – 1), k – 1]

as m → ∞. We also have I∗
k–1,m(ξ ) ≤ eλ1ξ for all ξ ∈ [–(k – 1), k – 1]. Then in the inter-

val [–k, k], since Kεk–1,m → +∞ as m → +∞, there exists mk ∈ N
∗ such that eλ1ξ < Kεk–1,m

for any m > mk and ξ ∈ [–k, k]. Hence I(ξ ) = eλ1ξ for ξ ∈ [–k, k]. Thus, when m > mk ,
{�k–1,m(ξ )} is uniformly bounded on [–k, k]. Deduced by (36), we further obtain that both
{�k–1,m(ξ )} and {�′

k–1,m(ξ )} are equicontinuous and uniformly bounded on [–k, k]. There-
fore, there exists a subsequence {�k,m(ξ )} of {�k–1,m(ξ )} such that {�k,m(ξ )} and {�′

k,m(ξ )}
uniformly converge on [–k, k] as m → ∞. We also have I∗

k,m(ξ ) ≤ eλ1ξ for all ξ ∈ [–k, k].
Thus, by using the diagonal extraction method, we can select the subsequences

{�m,m(ξ )} and {�′
m,m(ξ )} which uniformly converge on each interval [–k, k] (k = 1, 2, 3, . . .).

Let {�m,m(ξ )} → (S∗(ξ ), I∗(ξ )) as m → +∞. Then we further have {�′
m,m(ξ )} → (S∗′(ξ ),

I∗′(ξ )) as m → +∞. Since for every m ∈ N
∗ we have

⎧
⎪⎪⎨

⎪⎪⎩

cS∗′
m,m(ξ ) = d1J ∗ S∗

m,m(ξ ) – d1S∗
m,m(ξ ) + � – μS∗

m,m(ξ ) – βf (S∗
m,m(ξ ), I∗

m,m(ξ )),

cI∗′
m,m(ξ ) = d2J ∗ I∗

m,m(ξ ) – (d2 + μ + γ + α)I∗
m,m(ξ )

+ β
∫ τ

0 h(s)f (S∗
m,m(ξ – cs), I∗

m,m(ξ – cs)) ds – εm,mI∗2
m,m(ξ ).

(42)

Taking m → +∞, combining (A1), using the continuity of f (S, I), limm→∞ εm,m = 0, and
the dominated convergence theorem ensures that we finally obtain

⎧
⎪⎪⎨

⎪⎪⎩

cS∗′(ξ ) = d1(J ∗ S∗(ξ ) – S∗(ξ )) + � – μS∗(ξ ) – βf (S∗(ξ ), I∗(ξ )),

cI∗′(ξ ) = d2(J ∗ I∗(ξ ) – I∗(ξ )) + β
∫ τ

0 h(s)f (S∗(ξ – cs), I∗(ξ – cs)) ds

– (μ + γ + α)I∗(ξ )

(43)

for all ξ ∈R. That is, (S∗(ξ ), I∗(ξ )) is the solution of system (7) defined for ξ ∈R.
From (41), we obtain S(ξ ) < S∗(ξ ) ≤ S0 and I(ξ ) ≤ I∗(ξ ) for all ξ ∈ R. Since for any inte-

ger k > 0, when m ≥ k, I∗
m,m(ξ ) ≤ eλ1ξ for all ξ ∈ [–k, k], we further obtain I∗(ξ ) ≤ eλ1ξ

for ξ ∈ R. Combining the upper-lower solutions, it follows that (S∗(ξ ), I∗(ξ )) satisfies
limξ→–∞(S∗(ξ ), I∗(ξ )) = (S0, 0).

Using similar arguments as in Theorem 2, we easily prove that 0 < S∗(ξ ) < S0 for all
ξ ∈ R. Similarly, suppose there exists ξ̂ ∈ R such that I∗(ξ̂ ) = 0; moreover, I∗(ξ ) > 0 for all
ξ ∈ (–∞, ξ̂ ). It is clear that ξ̂ > ξ3 and I∗′(ξ̂ ) ≤ 0. Then the second equation of (43) yields

cI∗′(ξ̂ ) = d2J ∗ I∗(ξ̂ ) + β

∫ τ

0
h(s)f

(
S∗(ξ̂ – cs), I∗(ξ̂ – cs)

)
ds > 0.

This is a contradiction. Thus, I∗(ξ ) > 0 for all ξ ∈ R. This completes the proof. �

Let the solution (S∗(ξ ), I∗(ξ )) be determined in Theorem 3. To obtain the asymptotic
boundary condition (S∗(ξ ), I∗(ξ )) → (S∗, I∗) as ξ → +∞, we need to introduce the follow-
ing assumption.



Wu and Teng Advances in Difference Equations        (2020) 2020:614 Page 15 of 26

(A4) For any S > 0 and I > 0,

f (S, I)
f (S, I∗)

–
f (S∗, I∗)
f (S, I∗)

–
I
I∗ +

If (S∗, I∗)
I∗f (S∗, I)

+
f (S∗, I)
f (S, I)

– 1 ≤ 0.

Theorem 4 Assume that R0 > 1, c > c∗ and (A4) holds. Then system (7) admits a
positive traveling wave (S∗(ξ ), I∗(ξ )) which satisfies limξ→–∞(S∗(ξ ), I∗(ξ )) = (S0, 0) and
limξ→∞(S∗(ξ ), I∗(ξ )) = (S∗, I∗).

Proof Let H(x) = x – 1 – ln x, α1(y) =
∫ +∞

y J(x) dx, and α2(y) =
∫ y

–∞ J(x) dx. From (A2), let
the compact support of J(x) be [–r, r], we have α1(y) = 0 for y ≥ r and α2(y) = 0 for y ≤ –r.
Consider the Lyapunov function

L = c1V1 + c2V2 + c3VS + c4VI ,

where the constants c1, c2, c3, and c4 will be determined later, and

V1 =
(

S(ξ ) – S∗ –
∫ S(ξ )

S∗

f (S∗, I∗)
f (η, I∗)

dη

)

+ I(ξ ) – I∗ –
∫ I(ξ )

I∗

f (S∗, I∗)
f (S∗,η)

dη,

V2 =
∫ τ

0
h(s)

∫ ξ

ξ–cs

(
f (S(u), I(u))

f (S∗, I∗)
– 1 – ln

f (S(u), I(u))
f (S∗, I∗)

)

du ds,

VS =
∫ +∞

0
α1(y)

[

H
(

S(ξ – y)
S∗

)

– H
(

f (S∗, I∗)S(ξ – y)
f (S(ξ ), I∗)S∗

)]

dy

–
∫ 0

–∞
α2(y)

[

H
(

S(ξ – y)
S∗

)

– H
(

f (S∗, I∗)S(ξ – y)
f (S(ξ ), I∗)S∗

)]

dy,

VI =
∫ +∞

0
α1(y)

[

H
(

I(ξ – y)
I∗

)

– H
(

f (S∗, I∗)I(ξ – y)
f (S∗, I(ξ ))I∗

)]

dy

–
∫ 0

–∞
α2(y)

[

H
(

I(ξ – y)
I∗

)

– H
(

f (S∗, I∗)I(ξ – y)
f (S∗, I(ξ ))I∗

)]

dy.

Calculating the derivative of V1, V2, VS , and VI with respect to system (7), we have

dV1

dξ
=

(

1 –
f (S∗, I∗)
f (S, I∗)

)
1
c
(
d1(J ∗ S – S) + � – μS – βf (S, I)

)
+

(

1 –
f (S∗, I∗)
f (S∗, I)

)

× 1
c

(

d2(J ∗ I – I) + β

∫ τ

0
h(s)f

(
S(ξ – cs), I(ξ – cs)

)
ds – (μ + γ + α)I

)

,

dV2

dξ
=

∫ τ

0
h(s)

[
f (S, I)

f (S∗, I∗)
–

f (S(ξ – cs), I(ξ – cs))
f (S∗, I∗)

+ ln
f (S(ξ – cs), I(ξ – cs))

f (S, I)

]

ds.

Since αi(0) = 1
2 , dα1(y)

dy = –J(y) and dα2(y)
dy = J(y), we have

dVS

dξ
= –

∫ +∞

0
α1(y)

d
dy

[

H
(

S(ξ – y)
S∗

)

– H
(

f (S∗, I∗)S(ξ – y)
f (S, I∗)S∗

)]

dy

+
∫ 0

–∞
α2(y)

d
dy

[

H
(

S(ξ – y)
S∗

)

– H
(

f (S∗, I∗)S(ξ – y)
f (S, I∗)S∗

)]

dy

= H
(

S
S∗

)

– H
(

f (S∗, I∗)S
f (S, I∗)S∗

)

–
∫

R

J(y)
[

H
(

S(ξ – y)
S∗

)

– H
(

f (S∗, I∗)S(ξ – y)
f (S, I∗)S∗

)]

dy.



Wu and Teng Advances in Difference Equations        (2020) 2020:614 Page 16 of 26

Similarly,

dVI

dξ
= H

(
I
I∗

)

– H
(

f (S∗, I∗)I
f (S∗, I)I∗

)

–
∫

R

J(y)
[

H
(

I(ξ – y)
I∗

)

– H
(

f (S∗, I∗)I(ξ – y)
f (S∗, I)I∗

)]

dy.

Choose c1 = c, c2 = βf (S∗, I∗), c3 = d1S∗, and c4 = d2I∗, then we obtain

dL
dξ

= B1 + d1B2 + d2B3,

where

B1 =
(

1 –
f (S∗, I∗)
f (S, I∗)

)
(
� – μS – βf (S, I)

)

+
(

1 –
f (S∗, I∗)
f (S∗, I)

)(

β

∫ τ

0
h(s)f

(
S(ξ – cs), I(ξ – cs)

)
ds – (μ + γ + α)I

)

+ βf
(
S∗, I∗)

∫ τ

0
h(s)

[
f (S, I)

f (S∗, I∗)
–

f (S(ξ – cs), I(ξ – cs))
f (S∗, I∗)

+ ln
f (S(ξ – cs), I(ξ – cs))

f (S, I)

]

ds,

B2 =
(

1 –
f (S∗, I∗)
f (S, I∗)

)

(J ∗ S – S) + S∗H
(

S
S∗

)

– S∗H
(

f (S∗, I∗)S
f (S, I∗)S∗

)

– S∗
∫

R

J(y)
[

H
(

S(ξ – y)
S∗

)

– H
(

f (S∗, I∗)S(ξ – y)
f (S, I∗)S∗

)]

dy,

B3 =
(

1 –
f (S∗, I∗)
f (S∗, I)

)

(J ∗ I – I) + I∗H
(

I
I∗

)

– I∗H
(

f (S∗, I∗)I
f (S∗, I)I∗

)

– I∗
∫

R

J(y)
[

H
(

I(ξ – y)
I∗

)

– H
(

f (S∗, I∗)I(ξ – y)
f (S∗, I)I∗

)]

dy.

By computation, we further obtain

B1 = μ

(

1 –
f (S∗, I∗)
f (S, I∗)

)
(
S∗ – S

)
+ βf

(
S∗, I∗)

∫ τ

0
h(s)

[

1 –
f (S∗, I∗)
f (S, I∗)

+
f (S, I)
f (S, I∗)

–
I
I∗ +

If (S∗, I∗)
I∗f (S∗, I)

–
f (S(ξ – cs), I(ξ – cs))

f (S∗, I)
+ ln

f (S(ξ – cs), I(ξ – cs))
f (S, I)

]

ds

= μ

(

1 –
f (S∗, I∗)
f (S, I∗)

)
(
S∗ – S

)
+ βf

(
S∗, I∗)

∫ τ

0
h(s)

[

–
f (S∗, I∗)
f (S, I∗)

+
f (S, I)
f (S, I∗)

–
I
I∗ +

If (S∗, I∗)
I∗f (S∗, I)

+
f (S∗, I)
f (S, I)

– 1 – H
(

f (S(ξ – cs), I(ξ – cs))
f (S∗, I)

)

– H
(

f (S∗, I)
f (S, I)

)]

ds,

B2 = S∗
∫

R

J(y)
[

S(ξ – y)
S∗ –

f (S∗, I∗)S(ξ – y)
f (S, I∗)S∗ – ln

S
S∗ + ln

f (S∗, I∗)S
f (S, I∗)S∗

]

dy

– S∗
∫

R

J(y)
[

H
(

S(ξ – y)
S∗

)

– H
(

f (S∗, I∗)S(ξ – y)
f (S, I∗)S∗

)]

dy

= S∗
∫

R

J(y)
[

H
(

S(ξ – y)
S∗

)

–
f (S∗, I∗)S(ξ – y)

f (S, I∗)S∗ + 1 + ln
f (S∗, I∗)
f (S, I∗)

S(ξ – y)
S∗

]

dy

– S∗
∫

R

J(y)
[

H
(

S(ξ – y)
S∗

)

– H
(

f (S∗, I∗)S(ξ – y)
f (S, I∗)S∗

)]

dy = 0,
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B3 = I∗
∫

R

J(y)
[

I(ξ – y)
I∗ –

f (S∗, I∗)I(ξ – y)
f (S∗, I)I∗ – ln

I
I∗ + ln

f (S∗, I∗)I
f (S∗, I)I∗

]

dy

– I∗
∫

R

J(y)
[

H
(

I(ξ – y)
I∗

)

– H
(

f (S∗, I∗)I(ξ – y)
f (S∗, I)I∗

)]

dy

= I∗
∫

R

J(y)
[

H
(

I(ξ – y)
I∗

)

–
f (S∗, I∗)I(ξ – y)

f (S∗, I)I∗ + 1 + ln
f (S∗, I∗)
f (S∗, I)

I(ξ – y)
I∗

]

dy

– I∗
∫

R

J(y)
[

H
(

I(ξ – y)
I∗

)

– H
(

f (S∗, I∗)I(ξ – y)
f (S∗, I)I∗

)]

dy = 0.

It follows from (A1) that (1 – f (S∗ ,I∗)
f (S,I∗) )(S∗ – S) ≤ 0. (A4) implies dL

dξ
≤ 0. Furthermore,

dL
dξ

= 0 if and only if S = S∗ and I = I∗. Using LaSalle’s invariance principle, we know that
limξ→∞ S(ξ ) = S∗ and limξ→∞ I(ξ ) = I∗. From Theorem 3, we know that limξ→–∞(S∗(ξ ),
I∗(ξ )) = (S0, 0). This completes the proof. �

Lastly, on the existence of traveling waves for system (5), we establish the following re-
sult.

Theorem 5 Assume that R0 > 1, c > c∗ and (A4) holds. Then system (5) admits a positive
traveling wave (S∗(ξ ), I∗(ξ ), R∗(ξ )) defined for ξ ∈ R which satisfies asymptotic boundary
conditions (6).

Proof From Theorems 3 and 4, it follows that there exists a positive traveling wave
(S∗(ξ ), I∗(ξ )) defined for ξ ∈ R satisfying the first two equations of system (5) and I∗(ξ ) ≤
eλ1ξ for ξ ∈R.

From the third equation of system (5) we have

cR′(ξ ) = d3
(
J ∗ R(ξ ) – R(ξ )

)
+ γ I∗(ξ ) – μR(ξ ). (44)

It is sufficient to prove that equation (44) has a solution R∗(ξ ) defined for ξ ∈R satisfying
the asymptotic boundary conditions limξ→–∞ R∗(ξ ) = 0 and limξ→∞ R∗(ξ ) = R∗.

Let R(ξ ) ≡ 0 and R(ξ ) = min{Aeαξ , A} for ξ ∈R, where α > 0 is a constant, A = γ

μ
(I∗

M + 1)
and I∗

M = supξ∈R I∗(ξ ) < ∞. It is clear that R(ξ ) is the lower solution of equation (44). When
ξ ≥ 0, since R(ξ ) = A, we obtain

d3
(
J ∗ R(ξ ) – R(ξ )

)
+ γ I∗(ξ ) – μR(ξ ) – cR′(ξ ) ≤ γ I∗

μ – μA < 0.

Since limα→0+
∫ r

–r J(y)(e–αy – 1) dy = 0, there exists α ∈ (0,λ1) such that d3A
∫ r

–r J(y)(e–αy –
1) dy + γ e(λ1–α)ξ – μA < 0 for all ξ < 0. When ξ < 0, since R(ξ ) = Aeαξ , we obtain

d3
(
J ∗ R(ξ ) – R(ξ )

)
+ γ I∗(ξ ) – μR(ξ ) – cR′(ξ )

= eαξ

(

d3A
∫

R

J(y)
(
e–αy – 1

)
dy + γ I∗(ξ )e–αξ – μA

)

– cAαeαξ

≤ eαξ

(

d3A
∫ r

–r
J(y)

(
e–αy – 1

)
dy + γ e(λ1–α)ξ – μA

)

< 0.

This shows that R(ξ ) is the upper solution of equation (44).
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Define a function set

�H =

{

ω(ξ ) ∈ C
(
[–H , H], R

)
:

ω(–H) = R(–H)
R(ξ ) ≤ ω(ξ ) ≤ R(ξ ),

ξ ∈ [–H , H], H > 0

}

.

For any ω(ξ ) ∈ �H , we define a function ω̂(ξ ) for ξ ∈ R as follows: ω̂(ξ ) = ω(H) if ξ > H ,
ω̂(ξ ) = ω(ξ ) if ξ ∈ [–H , H] and ω̂(ξ ) = R(ξ ) if ξ < –H . Obviously, �H is closed and convex,
and R(ξ ) ≤ ω̂(ξ ) ≤ R(ξ ) for all ξ ∈R.

Consider the initial value problem

⎧
⎨

⎩

cR′(ξ ) = d3(J ∗ ω̂(ξ ) – R(ξ )) + γ I∗(ξ ) – μR(ξ ),

R(–H) = R(–H).
(45)

The ODE theory implies that equation (45) has a unique solution RH (ξ ) defined for
[–H , H]. Thus, we can define the map G as follows:

G(ω)(ξ ) = RH (ξ ), ω(ξ ) ∈ �H .

Similar to Lemma 6, Lemma 7, and Theorem 1, we can prove that operator G maps �H

to �H and is completely continuous. Schauder’s fixed point theorem ensures that map G
admits a fixed point R∗

H(ξ ) ∈ �H such that cR∗′
H (ξ ) = d3(J ∗ R̂∗

H(ξ ) – R∗
H(ξ )) +γ I∗(ξ ) –μR∗

H(ξ )
and R(ξ ) ≤ R∗

H (ξ ) ≤ R(ξ ) for all ξ ∈ [–H , H].
Choose H = Hk for k = 1, 2, . . . such that the sequence {Hk} is strictly increasing and

limk→∞ Hk = +∞, then we can obtain a solution sequence {R∗
Hk

(ξ )}. By a similar argument
as in Lemma 8, we know that there is a constant C which is independent of k such that
‖R∗

Hk
(ξ )‖C1,1([–Hk ,Hk ]) ≤ C for each k = 1, 2, . . . . Furthermore, using a similar argument as in

Theorem 3, we can obtain that there exists a solution R∗(ξ ) of equation (44) defined for
ξ ∈ R satisfying R(ξ ) < R∗(ξ ) ≤ R(ξ ). Obviously, limξ→–∞ R∗(ξ ) = R∗(–∞) = 0. Next, we
prove limξ→+∞ R∗(ξ ) = R∗(+∞) = R∗. In fact, define the Lyapunov function

L(ξ ) = cR∗H
(

R(ξ )
R∗

)

+ d3R∗
(∫ +∞

0
α1(y)H

(
R(ξ – y)

R∗

)

dy –
∫ 0

–∞
α2(y)H

(
R(ξ – y)

R∗

)

dy
)

,

where H(x) and αi(y) (i = 1, 2) are defined in Theorem 4. By a similar calculation as in
Theorem 4, we have

dL(ξ )
dξ

=
(

1 –
R∗

R

)
(
d3(J ∗ R – R) + γ I∗ – μR

)

+ d3R∗
(

H
(

R(ξ )
R∗

)

–
∫

R

J(y)H
(

R(ξ – y)
R∗

)

dy
)

= μ

(

1 –
R∗

R

)
(
R∗ – R

)
– d3R∗

∫

R

J(y)H
(

R(ξ – y)
R(ξ )

)

dy ≤ 0,

and dL
dξ

= 0 if and only if R(ξ ) = R∗. Therefore, by LaSalle’s invariance principle, we have
R(+∞) = R∗. This completes the proof. �
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As a special case, we consider the nonlinear incidence function f (S, I) = p(S)g(I) and
introduce the following assumption.

(A5) Functions g(I) and p(S) are quadric continuously differentiable and nondecreasing
for S ≥ 0 and I ≥ 0, g(I)

I is nonincreasing for I > 0, and p(0) = g(0) = 0.
It is easy to verify that when (A5) holds, then (A4) also holds. Therefore, as a conse-

quence of Theorem 5, we have the following corollary.

Corollary 1 Assume that f (S, I) = p(S)g(I), R0 > 1, c > c∗ and (A5) holds. Then system (5)
admits a positive traveling wave (S∗(ξ ), I∗(ξ ), R∗(ξ )) defined for ξ ∈ R satisfying asymptotic
boundary conditions (6).

6 Nonexistence of traveling waves
In this section we investigate the nonexistence of a traveling wave (S∗(ξ ), I∗(ξ ), R∗(ξ )) of
system (5). We have the following result.

Theorem 6 Assume that R0 > 1 and 0 < c < c∗, then there does not exist a traveling wave
(S∗(ξ ), I∗(ξ ), R∗(ξ )) of system (5) defined for ξ ∈ R satisfying asymptotic boundary condi-
tions (6).

Proof Suppose that there exists a traveling wave (S∗(ξ ), I∗(ξ ), R∗(ξ )) of system (5) satisfying
conditions (6) for some 0 < c1 < c∗. From (6) and R0 > 1, for any given ε > 0, there exists
some Mε > 0 large enough such that S0 – ε ≤ S∗(ξ ) < S0 for all ξ < –Mε . Combining the
second equation of system (5), we have

c1I∗′(ξ ) = d2
(
J ∗ I∗(ξ ) – I∗(ξ )

)

+ β

∫ τ

0
h(s)f

(
S∗(ξ – c1s), I∗(ξ – c1s)

)
ds – (μ + γ + α)I∗(ξ )

≥ d2
(
J ∗ I∗(ξ ) – I∗(ξ )

)

+ β

∫ τ

0
h(s)f

(
S0 – ε, I∗(ξ – c1s)

)
ds – (μ + γ + α)I∗(ξ )

(46)

for ξ < –Mε . Noting the continuity and asymptotic boundary conditions (6) of traveling
waves, there exist positive constants δ and M0 such that S∗(ξ ) ≥ δ and I∗(ξ ) ≤ M0 for all
ξ ∈R. Using assumption (A1), we obtain that

f ((S0 – ε, I∗(ξ – c1s))
f (S∗(ξ – c1s), I∗(ξ – c1s))

≤ f (S0 – ε, I∗(ξ – c1s))
f (δ, I∗(ξ – c1s))

=
f (S0 – ε, I∗(ξ – c1s))

I∗(ξ – c1s)
I∗(ξ – c1s)

f (δ, I∗(ξ – c1s))

≤ M0

f (δ, M0)
fI(S0, 0) < ∞, ξ > –Mε .

Noting that I∗(ξ ) > 0 for ξ ∈ R and I∗(+∞) = I∗ > 0, there exists a positive constant I > 0
such that I∗(ξ ) ≥ I for all ξ > –Mε . Therefore, we can choose a constant h > 1 such that
f (S0–ε,I∗(ξ–c1s))

(1+I∗(ξ–c1s))h ≤ f (S∗(ξ – c1s), I∗(ξ – c1s)) for ξ > –Mε . Then, for ξ > –Mε , the following
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inequality holds:

c1I∗′(ξ ) ≥ d2
(
J ∗ I∗(ξ ) – I∗(ξ )

)
+ β

∫ τ

0
h(s)

f (S0 – ε, I∗(ξ – c1s))
(1 + I∗(ξ – c1s))h ds

– (μ + γ + α)I∗(ξ ).
(47)

Combining (46) and (47), we finally obtain

c1I∗′(ξ ) ≥ d2
(
J ∗ I∗(ξ ) – I∗(ξ )

)
+ β

∫ τ

0
h(s)

f (S0 – ε, I∗(ξ – c1s))
(1 + I∗(ξ – c1s))h ds

– (μ + γ + α)I∗(ξ ), ξ ∈R.
(48)

Let b(u) = infu≤v≤M0{ βf (S0–ε,v)
(1+v)h } and u(x, t) = I∗(x + c1t). It follows from (48) that

⎧
⎨

⎩

∂u(x,t)
∂t ≥ d2(J ∗ u(x, t) – u(x, t)) + β

∫ τ

0 h(s)b(u(x, t – s)) ds – (μ + γ + α)u(x, t),

u(x, s) = I∗(x + c1s), x ∈R, s ∈ [–τ , 0].

By the comparison principle [40], we have

u(x, t) ≥ v(x, t), x ∈R, t ≥ 0, (49)

where v(x, t) is the solution of the following equation:

⎧
⎨

⎩

∂v(x,t)
∂t = d2(J ∗ v(x, t) – v(x, t)) + β

∫ τ

0 h(s)b(v(x, t – s)) ds – (μ + γ + α)v(x, t),

v(x, s) = I∗(x + c1s), x ∈R, s ∈ [–τ , 0].
(50)

Now, we prove that for any ĉ ∈ (0, c∗)

lim
t→∞ inf

|x|≤ĉt
v(x, t) > 0 (51)

by using the asymptotic spreading theory [41]. We know that the operator J ∗ · – · can
generate a C0-semigroup [42, 43]. It is clear that system (50) is Fisher–KPP type equation
and admits only two equilibria: v ≡ 0 and a positive equilibrium v∗ satisfying βb(v∗) –
(μ + γ + α)v∗ = 0. We denote C = C(R × [–τ , 0]) and Cv∗ = {v ∈ C : 0 ≤ v ≤ v∗}. Applying
the semigroup theory [42, 43], we know that system (50) generates a monotone semi-flow
Qt : Cv∗ → Cv∗ defined as follows:

Qt(ψ)(x) = v(x, t + s), x ∈R, t ≥ 0, s ∈ [–τ , 0],ψ ∈ Cv∗ ,

where v(x, t) is the unique solution of system (50) with the initial value v(x, s) = ψ .
Denote C̃ = C([–τ , 0]) and C̃v∗ = {v ∈ C̃ : 0 ≤ v ≤ v∗}. Let Q̃t : C̃v∗ → C̃v∗ be the solution

semi-flow generated by the following delayed differential equation:

dv(t)
dt

=
∫ τ

0
h(s)b

(
v(t – s)

)
ds – (μ + γ + α)v(t), t ≥ 0,
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with the initial value v0 = ψ0 ∈ C̃v∗ , where vt = v(t +s) for s ∈ [–τ , 0]. From Corollary 5.3.5 in
[44], we have that Q̃t is eventually strongly monotone on C̃v∗ . Furthermore, combining the
Dancer–Hess connecting orbit lemma [45], we obtain that Q̃t also is a strongly monotone
full orbit connecting 0 to v∗. Hence, hypothesis (A5) in [41] holds. In fact, we can easily
see that for each t > 0, Q̃t satisfies all hypotheses (A1)–(A5) in [41]. It is clear that Q̃t

also satisfies equation (50). Hence, Q̃t also is the restriction of Qt to C̃v∗ . This implies that
Theorem 2.17 in [41] can be applied. Therefore, we finally obtain that (51) holds.

Choosing c0 ∈ (c1, c∗) and letting x = –c0t, it follows from (49) and (51) that

lim inf
t→∞ u(x, t) ≥ lim

t→∞ inf|x|≤c0t
v(x, t) > 0. (52)

Since ξ = x + c1t = (c1 – c0)t → –∞ as t → ∞, we finally obtain limt→∞ u(x, t) =
limt→∞ I∗(x + c1t) = limt→∞ I∗((c1 – c0)t) = limξ→–∞ I∗(ξ ) = 0. This is a contradiction to
(52). This completes the proof. �

7 Numerical examples
In this section, we give some numerical simulations to verify the validity of our theoretical
results obtained in Sect. 5. We directly simulate the traveling wave system, which is the
system satisfied by the traveling wave solution of the model. We adopt the following kernel
functions:

J(x) =

⎧
⎨

⎩

Ce
1

4x2–1 , –0.5 < x < 0.5,

0, otherwise,

where C is a constant taken as 4.5046 such that
∫

R
J(x) dx =

∫ 0.5
–0.5 J(x) dx ≈ 1. Similarly, the

kernel function h(s) is defined by

h(s) = 4.5046e
1

4(s–0.5)2–1 , 0 < s < 1,

we can verify
∫ 1

0 h(s) ds ≈ 1.

Example 1 In system (5), we set d1 = 0.01, d2 = 0.1, d3 = 0.01, � = 0.1, μ = 0.15, β = 0.15,
γ = 0.1, α = 0.04, c = 1, τ = 1, and f (S, I) = SI . By simple calculation, we know that sys-
tem (5) with the above parameters has a disease-free equilibrium E0 = (10, 0, 0) and an
endemic equilibrium E∗ = (1, 0.6, 6). It follows from equation (9) that the minimal wave
speed c∗ = 0.112167 and the basic reproduction number R0 = 10. Since R0 > 1 and c > c∗,
it follows from Theorem 5 that system (4) admits a nonnegative traveling wave solution
(S∗(ξ ), I∗(ξ ), R∗(ξ )) connecting the disease-free equilibrium E0 and the endemic equilib-
rium E∗. The dynamical behavior of (S(ξ ), I(ξ ), R(ξ )) is given in Fig. 1.

We can also observe that the dynamical behavior of traveling wave solution (S(x+t), I(x+
t), R(x+ t)) of system (4) by the numerical simulations is given in Fig. 2. From the numerical
simulations, we see that the solution (S(x + t), I(x + t), R(x + t)) is a nonnegative and non-
trivial traveling wave solution connecting the disease-free equilibrium E0 and the endemic
equilibrium E∗.
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Figure 1 When the incidence function is bilinear, that is, f (S, I) = SI, then system (4) admits a solution
(S∗(ξ ), I∗(ξ ),R∗(ξ )) connecting E0(S0, 0, 0) with E∗(S∗ , I∗ ,R∗) for c > c∗

Figure 2 The traveling solution (S(x + t), I(x + t),R(x + t)) is observed for system (4), where the initial
(S(0), I(0),R(0)) = (10, 0.00000001, 0)

Example 2 In system (5), we set d1 = d2 = d3 = 0.01, � = 0.1, μ = 0.01, β = 0.15, γ = 0.1,
α = 0.04, c = 1, τ = 1 and an incidence function f (S, I) = SI

S+I . By a simple calculation,
we know that system (5) with the above parameters has a disease-free equilibrium E0 =
(10, 0, 0), an endemic equilibrium E∗ = (1.6667, 0.8333, 8.3333), the minimal wave speed
c∗ = 0.065823, and the basic reproduction number R0 = 10. Since R0 > 1 and the wave
speed c > c∗, it follows from Theorem 5 that system (4) admits a nonnegative travel-
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Figure 3 When the incidence function is standard, that is, f (S, I) = SI
S+I , then system (4) admits a traveling wave

(S∗(ξ ), I∗(ξ ),R∗(ξ )) connecting E0(S0, 0, 0) with E∗(S∗ , I∗ ,R∗) for c > c∗

Figure 4 The traveling solution is observed in system (4), where the initial (S(0), I(0),R(0)) = (10, 0.01.0)

ing wave solution (S∗(ξ ), I∗(ξ ), R∗(ξ )) connecting E0 and E∗. The dynamical behavior of
(S(ξ ), I(ξ ), R(ξ )) by the numerical simulations is given in Fig. 3.

The dynamical behavior of traveling wave solution (S(x + t), I(x + t), R(x + t)) of system
(4) by the numerical simulations is given in Fig. 4. From the numerical simulations, we see
that the solution (S(x + t), I(x + t), R(x + t)) is a nonnegative and nontrivial traveling wave
solution connecting E0 and E∗.

In order to observe the effects of distributed time delay on disease propagation, we study
the relationship between time delay τ and the critical wave speed c∗ from equation (9). For
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Figure 5 The relationship between time delay τ and the critical wave speed c∗

any given τ > 0, we can choose the distributed delay kernel function h(s) as follows:

h(s) =
1.57079

τ
sin

(
πs
τ

)

, 0 < s < τ .

We can verify
∫ τ

0 h(s) ds ≈ 1 for all τ > 0. Suppose that all parameters and incidence func-
tion are as in Example 1 except the distributed delay kernel function and the wave speed.
The relationship between the distributed time delay τ and the critical wave speed c∗ is
given in Fig. 5. The numerical simulation results show that the critical wave speed de-
creases with the time delay.

8 Conclusions
In this paper, we have dealt with the existence and nonexistence of traveling waves for
a nonlocal dispersal SIR epidemic model with nonlinear incidence and distributed latent
delay. In the model, the incidence function f (S, I) is assumed to satisfy biologically reason-
able criteria given in (A1). These criteria are sufficient for our main results to hold, but are
probably not necessary. Our results are more general and more reasonable than previous
work.

We define the basic reproduction number R0 and the minimal wave speed c∗, which
is a very important quantity on the spread of disease. The existence of traveling waves
(S∗(ξ ), I∗(ξ ), R∗(ξ )) connecting E0(S0, 0, 0) with E∗(S∗, I∗, R∗) is proved by introducing an
auxiliary system, combining upper-lower solutions, applying Schauder’s fixed point the-
orem, limiting arguments, and Lyapunov function methods. Our results show that, when
R0 > 1 and c > c∗, then there exists a traveling wave satisfying asymptotic boundary con-
ditions (6), and the existence of traveling waves reveals that the disease can spread. Fur-
thermore, when R0 > 1 and 0 < c < c∗, then our results show that there does not exist
traveling waves connecting the equilibrium E0 with E∗ for system (5). Clearly, if R0 ≤ 1,
then system (5) has no endemic equilibrium. Therefore, there are no nontrivial traveling
wave solutions (S∗(ξ ), I∗(ξ ), R∗(ξ )) connecting E0 and E∗ of system (5) for any wave speed
c > 0.

Our model contains some classes of epidemic models found in the literature such as in
Li et al. [22] and Li and Wang [46]. Moreover, according to Yang and Li [47], it is interesting
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to investigate traveling waves with c = c∗. However, as we all know, it is difficult to consider
the critical wave speed. We have to leave this as future work.
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