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Abstract
This paper is devoted to Kirchhoff-type parabolic problem with nonlocal integral
condition. Our problem has many applications in modeling physical and biological
phenomena. The first part of our paper concerns the local existence of the mild
solution in Hilbert scales. Our results can be studied into two cases: homogeneous
case and inhomogeneous case. In order to overcome difficulties, we applied Banach
fixed point theorem and some new techniques on Sobolev spaces. The second part of
the paper is to derive the ill-posedness of the mild solution in the sense of Hadamard.
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1 Introduction
Kirchhoff problems have been considerably investigated recently, see [1–6]. The topic of
Kirchhoff-type models arises from their contributions to the modeling of many physical
and biological phenomena. Kirchhoff-type problems also appear in reaction–diffusion
equations that concern population density. For more applications of such modeling
and Kirchhoff-type problems, we refer to [7]. In our paper, we consider the following
Kirchhoff-type problem for parabolic equation:

⎧
⎨

⎩

∂tu(x, t) = M(‖u‖L2 )�u + F(x, t), (x, t) ∈ � × (0, T),

u(x, t) = 0, x ∈ ∂�, t ∈ (0, T],
(1.1)

with the following nonlocal condition:

αu(x, 0) + β

∫ T

0
u(x, t) dt = ψ(x), x ∈ �. (1.2)

Here M ∈ C1(R) is a function satisfying m0 ≤ M(s) ≤ m0 ∀s ∈ R. Moreover, we assume
that there exists K > 0 such that |M(s) – M(t)| ≤ K |s – t|, s, t ∈ R. The nonlocal problem
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as above was first considered in [8], where Chipot et al. focused on the following equation:

∂tu(x, t) = M
(∫

�

u dx
)

�u + F(x, t). (1.3)

One application of equation (1.3) is to model the density of a population of bacteria; it also
appears when investigating heat propagation or in epidemic theory.

In [8], the authors also studied a nonlocal problem as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ut(x, t) – M(�(u)(t))�u = F(x, t), in � × (0, T),

u = 0, on 	,

u(x, 0) = u0(x), in � × {T}.
(1.4)

Here � : L2(�) → R is a continuous linear form. The function u is here the density of a
population located at x at the time t, F is the external source, M is the diffusion rate. Very
recently, Ferreira et al. [9] have studied a model with nonlocal coupled diffusivity terms

⎧
⎪⎪⎨

⎪⎪⎩

ut – D1(p(u)(t), q(v)(t))�u = f1(u, v), in QT ,

vt – D2(r(u)(t), s(v)(t))�v = f2(u, v), in QT ,

u = u0, v = v0, in � × {0}.

Although initial problems have been investigated by many authors, there are very few
papers for the inverse problems of a nonlocal parabolic equation. In [10], the authors con-
sider the backward in time nonlocal nonlinear parabolic equation as follows

⎧
⎪⎪⎨

⎪⎪⎩

ut(x, t) – D(�(u)(t))�u = F(u, x, t), in � × (0, T),
∂u
∂σ

= 0, on 	,

u(x, T) = g(x), in � × {T}.
(1.5)

Very recently, Tuan, Nam, and Nhat [11] first studied a terminal value problem for Kirch-
hoff’s model of parabolic type as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂tu(x, t) = M(‖u‖L2 )�u + F(x, t), (x, t) ∈ � × (0, T),

u(x, t) = 0, x ∈ ∂�, t ∈ (0, T],

u(x, T) = g(x) x ∈ ∂�.

(1.6)

If α = 0, β = 1, problem (1.1) and some similar models have been recently considered
by N. Dokuchaev [12, 13], S.I. Volodymyr et al. [14], S.L. Pulkina et al. [15], and in the
references therein. Besides, there are many works which focused on this topic; see, e.g.,
[16–27].

For the two problems above, the authors showed that they are ill-posed and then fo-
cused on their regularization methods. Our paper is motivated by the recent paper [12] in
which the authors considered the nonlocal in time condition replacing the usual Cauchy
conditions, that is,

αu(x, 0) + β

∫ T

0
u(x, t) dt = ψ(x). (1.7)
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The problem for this equation with the Cauchy condition u(x, 0) ≡ g(x) at the initial
time t = 0 is well-posed in the usual classes of solutions. In contrast, the problem with the
Cauchy condition u(x, T) ≡ g(x) at the terminal time t = T is ill-posed. This means that
a prescribed profile of temperature at time t = T cannot be achieved via an appropriate
selection of the initial temperature. Respectively, the initial temperature profile cannot be
recovered from the observed temperature at the terminal time. In particular, the process is
not robust with respect to small deviations of its terminal profile u(·, T). This makes this
problem ill-posed, despite the fact that solvability and uniqueness can still be achieved
for some very smooth analytical boundary data or for a special selection of the domains.
We can interpret this as the existence of a diffusion with a prescribed average over a time
interval. In addition, this can be interpreted as solvability of the following inverse problem:
given

∫ T
0 u(x, t) dt for all x ∈ �, recover the entire process u(x, t) on � × (0, T).

Our main results in this paper are described as follows:
• The first part focuses on the local existence of a mild solution.
• The second part gives the ill-posedness of our problem in the simple case F = 0, α = 0.

To the best of our knowledge, our results concerning the nonlocal condition for Kirchhoff
diffusion equation have not been investigated, yet.

This paper is organized as follows. Section 2 introduces some preliminaries and mild
solutions of our problem. Section 3 derives the well-posedness of the mild solution in the
homogeneous case. In Sect. 4, we extend the results of Sect. 3 to the inhomogeneous case.
Finally, in Sect. 5, we show the ill-posedness of the mild solution.

2 Preliminaries
Let us introduce a few properties of the eigenvalues of the operator –�, see [6]. We have
the following equality:

–�ϕn(x) = –λnϕn(x), x ∈ �; ϕn = 0, x ∈ ∂�, n ∈N, (2.1)

where {λn}∞n=1 is called the set of eigenvalues of –� satisfying

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · , (2.2)

and limn→∞ λn = ∞. For any q ≥ 0, we also define the space

Hq(�) =

{

u ∈ L2(�) :
∞∑

n=1

λ2q
n

∣
∣(u,ϕn)

∣
∣2 < ∞

}

, (2.3)

then Hq(�) is a Hilbert space endowed with the norm

‖u‖Hq(�) =

( ∞∑

n=1

λ2q
n

∣
∣(u, en)

∣
∣2

) 1
2

· (2.4)

Lemma 2.1 The following inclusions hold true:

Lp(�) ↪→ D(Aσ ), if – d
4 < σ ≤ 0, p ≥ 2d

d–4σ
,

D(Aσ ) ↪→ Lp(�), if 0 ≤ σ < d
4 , p ≤ 2d

d–4σ
.

}

(2.5)
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For r ≥ 0 and v ∈ L∞((0, T); D(Ar)), we denote

‖v‖r = esssup
0≤t≤T

∥
∥v(t)

∥
∥

D(Ar).

2.1 The mild solution of our problem
Let us assume that problem (1.1) has a unique solution u. Assume that the exact u is given
by a Fourier series

u(t, x) =
∞∑

n=1

un(t)ϕn(x), with un(t) =
〈
u(t, ·),ϕn(·)〉. (2.6)

Multiplying both sides of (1.1) by the term exp(
∫ t

0 λnM(‖u(·, s)‖L2 ) ds), we get that

un(t) = exp

(

–λn

∫ t

0
M

(∥
∥u(·, s)

∥
∥

L2
)

ds
)

un(0)

+
∫ t

0
exp

(

–λn

∫ t

s
M

(∥
∥u(·,η)

∥
∥

L2
)

dη

)

Fn(s) ds. (2.7)

From the condition αu(x, 0) + β
∫ T

0 u(x, t) dt = ψ(x), we know that

αun(0) + β

∫ T

0
un(t) dt = ψn. (2.8)

Therefore, we obtain that
(

α + β

∫ T

0
exp

(

–λn

∫ t

0
M

(∥
∥u(·, s)

∥
∥

L2
)

ds
)

dt
)

un(0)

+ β

∫ T

0

∫ t

0
exp

(

–λn

∫ t

s
M

(∥
∥u(·,η)

∥
∥

L2
)

dη

)

Fn(s) ds dt = ψn. (2.9)

This gives that

un(0) =
ψn – β

∫ T
0

∫ t
0 exp(–λn

∫ t
s M(‖u(·,η)‖L2 ) dη)Fn(s) ds dt

α + β
∫ T

0 exp(–λn
∫ t

0 M(‖u(·, s)‖L2 ) ds) dt
. (2.10)

The latter equality, together with expression (2.7), yields that

un(t) =
exp(–λn

∫ t
0 M(‖u(·, s)‖L2 ) ds)ψn

α + β
∫ T

0 exp(–λn
∫ t

0 M(‖u(·, s)‖L2 ) ds) dt

– β
exp(–λn

∫ t
0 M(‖u(·, s)‖L2 ) ds)

∫ T
0

∫ t
0 exp(–λn

∫ t
s M(‖u(·,η)‖L2 ) dη)Fn(s) ds dt

α + β
∫ T

0 exp(–λn
∫ t

0 M(‖u(·, s)‖L2 ) ds) dt

+
∫ t

0
exp

(

–λn

∫ t

s
M

(∥
∥u(·,η)

∥
∥

L2
)

dη

)

Fn(s) ds. (2.11)

Let us define the following operators:

�1u(t) =
∞∑

n=1

exp(–λn
∫ t

0 M(‖u(·, s)‖L2 ) ds)ψn

α + β
∫ T

0 exp(–λn
∫ t

0 M(‖u(·, s)‖L2 ) ds) dt
ϕn, (2.12)
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�2u(t)

= β

∞∑

n=1

exp(–λn
∫ t

0 M(‖u(·, s)‖L2 ) ds)
∫ T

0
∫ t

0 exp(–λn
∫ t

s M(‖u(·,η)‖L2 ) dη)Fn(s) ds dt

α + β
∫ T

0 exp(–λn
∫ t

0 M(‖u(·, s)‖L2 ) ds) dt
ϕn, (2.13)

and

�3u(t) =
∞∑

n=1

(∫ t

0
exp

(

–λn

∫ t

s
M

(∥
∥u(·,η)

∥
∥

L2
)

dη

)

Fn(s) ds
)

ϕn. (2.14)

The above three definitions lead to

u(t) = �1u(t) + �2u(t) + �3u(t). (2.15)

3 The existence of a mild solution in the homogeneous case
In this section, we derive the existence and uniqueness of the mild solution in the case of
F = 0. We will show that the following integral equation:

u(t) =
∞∑

n=1

exp(–λn
∫ t

0 M(‖u(·, s)‖L2 ) ds)ψn

α + β
∫ T

0 exp(–λn
∫ t

0 M(‖u(·, s)‖L2 ) ds) dt
ϕn (3.1)

has a unique solution.

Theorem 3.1
(a) Let α > 0, β > 0, and ψ ∈ D(Ar+1). If T is small enough, problem (3.1) has a unique

solution u ∈ L∞(0, T ; D(Ar)).
(b) Let α = 0, β > 0, and ψ ∈ D(Ar+2). If T is small enough, problem (3.1) has a unique

solution u ∈ L∞(0, T ; D(Ar)).

Remark 3.1 The property of global existence for the mild solution of problem (3.1) is an
open problem and is more difficult. We will discuss it in future works.

Proof We will show that

�1u = u

by using Banach fixed point theorem. Now, we divide the proof into two parts.
Part 1. Estimate the term ‖�1u – �1v‖L∞

a (0,T ;D(Ar)) in the case α > 0, β > 0
First, we get that

‖�1u – �1v‖2
D(Ar)

=
∞∑

n=1

λ2r
n

(
exp(–λn

∫ t
0 M(‖u(·, s)‖L2 ) ds)

α + β
∫ T

0 exp(–λn
∫ t

0 M(‖u(·, s)‖L2 ) ds) dt

–
exp(–λn

∫ t
0 M(‖v(·, s)‖L2 ) ds)

α + β
∫ T

0 exp(–λn
∫ t

0 M(‖v(·, s)‖L2 ) ds) dt

)2

ψ2
n

≤ 2α2
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×
∞∑

n=1

λ2r
n

(H1(u, v))2

(α + β
∫ T

0 exp(–λn
∫ t

0 M(‖u(·, s)‖L2 ) ds) dt)2(α + β
∫ T

0 exp(–λn
∫ t

0 M(‖v(·, s)‖L2 ) ds) dt)2
ψ2

n

+ 2β2

×
∞∑

n=1

λ2r
n

(H2(u, v))2

(α + β
∫ T

0 exp(–λn
∫ t

0 M(‖u(·, s)‖L2 ) ds) dt)2(α + β
∫ T

0 exp(–λn
∫ t

0 M(‖v(·, s)‖L2 ) ds) dt)2
ψ2

n

= J1 + J2, (3.2)

where we denote

H1,n(u, v) = exp

(

–λn

∫ t

0
M

(∥
∥u(·, s)

∥
∥

L2
)

ds
)

– exp

(

–λn

∫ t

0
M

(∥
∥v(·, s)

∥
∥

L2
)

ds
)

(3.3)

H2,n(u, v)

= exp

(

–λn

∫ t

0
M

(∥
∥u(·, s)

∥
∥

L2
)

ds
)∫ T

0
exp

(

–λn

∫ t

0
M

(∥
∥v(·, s)

∥
∥

L2
)

ds
)

dt

– exp

(

–λn

∫ t

0
M

(∥
∥v(·, s)

∥
∥

L2
)

ds
)∫ T

0

× exp

(

–λn

∫ t

0
M

(∥
∥u(·, s)

∥
∥

L2
)

ds
)

dt. (3.4)

First, applying the inequality |e–y – e–z| ≤ |y – z|, we estimate H1 as follows:

∣
∣H1,n(u, v)

∣
∣ ≤ λn

∫ t

0

(
M

(∥
∥u(·, s)

∥
∥

L2
)

– M
(∥
∥v(·, s)

∥
∥

L2
))

ds

≤ Kλn

∫ t

0
‖u – v‖2

L2 ds. (3.5)

The latter inequality leads to

J1 ≤ 2
α2

∞∑

n=1

∣
∣H1,n(u, v)

∣
∣2

λ2r
n ψ2

n

≤ 2K2

α2

∞∑

n=1

λ2r+2
n ψ2

n

(∫ t

0
‖u – v‖2

L2 ds
)

≤ 2K2T
α2 ‖ψ‖2

D(Ar+1)‖u – v‖2
r . (3.6)

Noting that m0 ≤M(z) ≤ m0, we get that

H2,n(u, v)

≤ exp

(

–λn

∫ t

0
M

(∥
∥u(·, s)

∥
∥

L2
)

ds
)

×
(∫ T

0
exp

(

–λn

∫ t

0
M

(∥
∥v(·, s)

∥
∥

L2
)

ds
)

dt

–
∫ T

0
exp

(

–λn

∫ t

0
M

(∥
∥u(·, s)

∥
∥

L2
)

ds
)

dt
)
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+
∫ T

0
exp

(

–λn

∫ t

0
M

(∥
∥u(·, s)

∥
∥

L2
)

ds
)

dt

×
(

exp

(

–λn

∫ t

0
M

(∥
∥u(·, s)

∥
∥

L2
)

ds
)

– exp

(

–λn

∫ t

0
M

(∥
∥v(·, s)

∥
∥

L2
)

ds
))

≤
∫ T

0
λn

∫ t

0

(
M

(∥
∥v(·, s)

∥
∥

L2
)

– M
(∥
∥u(·, s)

∥
∥

L2
))

ds dt

+ Tλn

∫ t

0

(
M

(∥
∥v(·, s)

∥
∥

L2
)

– M
(∥
∥u(·, s)

∥
∥

L2
))

ds. (3.7)

Since M is globally Lipschitz and noting the Sobolev embedding D(Ar) ↪→ L2(�), we
derive that

∣
∣H2,n(u, v)

∣
∣2

≤ K2λ2
n

(∫ T

0

∫ t

0

∥
∥u(·, s) – v(·, s)

∥
∥

L2 ds dt
)2

+ T2λ2
n

(∫ t

0

∥
∥u(·, s) – v(·, s)

∥
∥

L2 ds
)2

≤ (
K2λ2

nT3 + T3λ2
n
)‖u – v‖2

r . (3.8)

Here we have applied Hölder inequality. Combining (3.2), (3.6), and (3.8), we get that

‖�1u – �1v‖2
D(Ar) ≤ C1(T)‖ψ‖2

D(Ar+1)‖u – v‖2
a,r , (3.9)

where we denote C1(T) = 2β2(K2T3 + T3) + 2K2T
α2 . Since the left-hand side of (3.9) is inde-

pendent of t, we know that

‖�1u – �1v‖2
r ≤ C1(T)‖ψ‖2

D(Ar+1)‖u – v‖2
r . (3.10)

By choosing T small enough, we can deduce that �1 is a contraction on L∞(0, T ; D(Ar)).
We only show that if v0 = 0 then �1v0 ∈ L∞(0, T ; D(Ar)). Indeed,

�1v0 =
∞∑

n=1

exp(–λn
∫ t

0 M(‖v(·, s)‖L2 ) ds)ψn

α + β
∫ T

0 exp(–λn
∫ t

0 M(‖v(·, s)‖L2 ) ds) dt
ϕn

=
1

α + βT

∞∑

n=1

ψnϕn =
ψ

α + βT
. (3.11)

Since ψ ∈ D(Ar+1), we know that �1v0 ∈ L∞(0, T ; D(Ar)). Based on the previous observa-
tions, we deduce that �1v = v has a fixed point u. So, we conclude that problem (3.1) has
a unique solution u ∈ L∞(0, T ; D(Ar)).

Part 2. Estimate the term ‖�1u – �1v‖L∞
a (0,T ;D(Ar)) in the case α = 0, β > 0.

First, we get that

‖�1u – �1v‖2
D(Ar)

=
∞∑

n=1

λ2r
n

(
exp(–λn

∫ t
0 M(‖u(·, s)‖L2 ) ds)

β
∫ T

0 exp(–λn
∫ t

0 M(‖u(·, s)‖L2 ) ds) dt

–
exp(–λn

∫ t
0 M(‖v(·, s)‖L2 ) ds)

β
∫ T

0 exp(–λn
∫ t

0 M(‖v(·, s)‖L2 ) ds) dt

)2

ψ2
n
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≤ 2α2

β4

×
∞∑

n=1

λ2r
n

(H1(u, v))2

(
∫ T

0 exp(–λn
∫ t

0 M(‖u(·, s)‖L2 ) ds) dt)2(
∫ T

0 exp(–λn
∫ t

0 M(‖v(·, s)‖L2 ) ds) dt)2
ψ2

n

+
2
β2

×
∞∑

n=1

λ2r
n

(H2(u, v))2

(
∫ T

0 exp(–λn
∫ t

0 M(‖u(·, s)‖L2 ) ds) dt)2(
∫ T

0 exp(–λn
∫ t

0 M(‖v(·, s)‖L2 ) ds) dt)2
ψ2

n

= J1 + J2. (3.12)

Since M(z) ≤ m0, we get two following estimates:

∫ T

0
exp

(

–λn

∫ t

0
M

(∥
∥u(·, s)

∥
∥

L2
)

ds
)

dt ≥ m0

∫ T

0
exp

(

–λn

∫ t

0
ds

)

dt

= m0

∫ T

0
e–λnt dt =

m0(1 – e–Tλn )
λn

(3.13)

and

∫ T

0
exp

(

–λn

∫ t

0
M

(∥
∥v(·, s)

∥
∥

L2
)

ds
)

dt ≥ m0(1 – e–Tλn )
λn

. (3.14)

From two estimates above, we find that

J1 ≤ 2α2m2
0

β4

( ∞∑

n=1

λ2r+4
n

(1 – e–Tλn )2 ψ2
n

)(∫ t

0
‖u – v‖2

L2 ds
)

≤ 2α2m2
0

β4(1 – e–Tλ1 )2 ‖ψ‖2
D(Ar+2)‖u – v‖2

r

≤ TC2
2‖ψ‖2

D(Ar+2)‖u – v‖2
r . (3.15)

By a similar argument as above, we can obtain that

J2 ≤ TC2
3‖ψ‖2

D(Ar+2)‖u – v‖2
r . (3.16)

Combining (3.12), (3.15), and (3.16) yields that

∥
∥�1(t)u – �1(t)v

∥
∥2

D(Ar) ≤ T
(
C2

2 + C2
3
)‖ψ‖2

D(Ar+2)‖u – v‖2
r . (3.17)

Since the left-hand side of (3.17) is independent of t, we arrive at

‖�1u – �1v‖2
r ≤ T

(
C2

2 + C2
3
)‖ψ‖2

D(Ar+2)‖u – v‖2
r . (3.18)

By letting T be small enough, we get that �1 is a contraction mapping on L∞(0, T ; D(Ar)).
By a similar argument as in Part 1, we can conclude that problem (3.1) has a unique solu-
tion u ∈ L∞(0, T ; D(Ar)). �



Nam et al. Advances in Difference Equations        (2020) 2020:617 Page 9 of 15

4 The existence of a mild solution in the inhomogeneous case
In this section, we focus on the existence of the mild solution of the inhomogeneous prob-
lem in the simple case α = 0, β > 0. The proof of the second case α > 0, β > 0 is more
delicate, and we can treat it in a similar way. Hence, we do not consider it here.

Theorem 4.1 Let α = 0, β > 0 and ψ ∈ D(Ar+2). If T is small enough, problem (3.1) has a
unique solution u ∈ L∞(0, T ; D(Ar)).

Proof Now, we estimate the term ‖�2u – �2v‖L∞(0,T ;D(Ar)) in the case α = 0, β > 0. Let us
set

H1,n(u) = exp

(

–λn

∫ t

0
M

(∥
∥u(·, s)

∥
∥

L2
)

ds
)

,

H2,n(u) =
∫ T

0

∫ t

0
exp

(

–λn

∫ t

s
M

(∥
∥u(·,η)

∥
∥

L2
)

dη

)

Fn(s) ds dt,

H3,n(u) =
∫ T

0
exp

(

–λn

∫ t

0
M

(∥
∥u(·, s)

∥
∥

L2
)

ds
)

dt. (4.1)

It is easy to see that

‖�2u – �2v‖2
D(Ar)

=
∞∑

n=1

λ2r
n

(
H1,n(u)H2,n(u)

H3,n(u)
–

H1,n(v)H2,n(v)
H3,n(v)

)2

=
∞∑

n=1

λ2r
n

(
H1,n(u)H2,n(u)H3,n(v) – H1,n(v)H2,n(v)H3,n(u)

H3,n(u)H3,n(v)

)2

. (4.2)

From (3.13) and (3.14), we deduce that

H3,n(u)H3,n(v) ≥
(

m0(1 – e–Tλn )
λn

)2

, (4.3)

which allows us to obtain that

‖�2u – �2v‖2
D(Ar)

≤ 1
m2

0(1 – e–Tλ1 )2

∞∑

n=1

λ2r+2
n

(
H1,n(u)H2,n(u)H3,n(v) – H1,n(v)H2,n(v)H3,n(u)

)2

≤ 2
m2

0(1 – e–Tλ1 )2

∞∑

n=1

λ2r+2
n |J1,n|2 +

2
m2

0(1 – e–Tλ1 )2

∞∑

n=1

λ2r+2
n |J2,n|2, (4.4)

where we note that

∣
∣H1,n(u)H2,n(u)H3,n(v) – H1,n(v)H2,n(v)H3,n(u)

∣
∣

≤ ∣
∣H1,n(u)H2,n(u)

∣
∣
∣
∣H3,n(v) – H3,n(u)

∣
∣

︸ ︷︷ ︸
J1,n

+
∣
∣H3,n(u)

∣
∣
∣
∣H1,n(u)H2,n(u) – H1,n(v)H2,n(v)

∣
∣

︸ ︷︷ ︸
J2,n

. (4.5)
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First, we have the following estimate:

∣
∣H3,n(v) – H3,n(u)

∣
∣

=
∣
∣
∣
∣

∫ T

0
exp

(

–λn

∫ t

0
M

(∥
∥u(·, s)

∥
∥

L2
)

ds
)

dt

–
∫ T

0
exp

(

–λn

∫ t

0
M

(∥
∥v(·, s)

∥
∥

L2
)

ds
)

dt
∣
∣
∣
∣

≤ Kλn

(∫ T

0

∫ t

0

∥
∥u(·, s) – v(·, s)

∥
∥

L2 ds dt
)

. (4.6)

Hence, we easily see that

λ2r+2
n |J1,n|2 ≤ λ2r+4

n
∣
∣H2,n(u)

∣
∣2K2

(∫ T

0

∫ t

0

∥
∥u(·, s) – v(·, s)

∥
∥

L2 ds dt
)2

≤ K2T2

2
‖u – v‖2

r λ
2r+4
n

∣
∣H2,n(u)

∣
∣2

≤ K2T2

2
‖u – v‖2

r λ
2r+4
n

×
∣
∣
∣
∣

∫ T

0

∫ t

0
exp

(

–λn

∫ t

s
M

(∥
∥u(·,η)

∥
∥

L2
)

dη

)

Fn(s) ds dt
∣
∣
∣
∣

2

, (4.7)

where we observe that

∣
∣H1,n(u)

∣
∣ ≤ 1.

It is not difficult to check that

∣
∣
∣
∣

∫ T

0

∫ t

0
exp

(

–λn

∫ t

s
M

(∥
∥u(·,η)

∥
∥

L2
)

dη

)

Fn(s) ds dt
∣
∣
∣
∣

2

≤ T
∫ T

0

(∫ t

0
exp

(

–2λn

∫ t

s
M

(∥
∥u(·,η)

∥
∥

L2
)

dη

)

ds
)(∫ t

0
F2

n(s) ds
)

dt

≤ T2
∫ T

0

(∫ t

0
F2

n(s) ds
)

dt. (4.8)

Combining (4.7) and (4.8), we get

∞∑

n=1

λ2r+2
n |J1,n|2 ≤ K2T4

2
‖u – v‖2

r

∫ T

0

(∫ t

0

∞∑

n=1

λ2r+2
n F2

n(s) ds

)

dt

≤ K2T5

2
‖u – v‖2

r ‖F‖2
L2(0,T ;D(Ar+1)). (4.9)

Now it is obvious that

∣
∣H1,n(u)H2,n(u) – H1,n(v)H2,n(v)

∣
∣ ≤ ∣

∣H1,n(u)
∣
∣
∣
∣H2,n(u) – H2,n(v)

∣
∣

+
∣
∣H2,n(v)

∣
∣
∣
∣H1,n(u) – H1,n(v)

∣
∣. (4.10)
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So, since H3,n(u) ≤ T and H1,n(u) ≤ 1, by using (a + b)2 ≤ 2a2 + 2b2, we derive

λ2r+2
n |J2,n|2 ≤ T2λ2r+2

n
∣
∣H1,n(u)H2,n(u) – H1,n(v)H2,n(v)

∣
∣2

≤ 2T2λ2r+2
n

∣
∣H2,n(u) – H2,n(v)

∣
∣2

+ 2T2λ2r+2
n

∣
∣H2,n(v)

∣
∣2∣∣H1,n(u) – H1,n(v)

∣
∣2. (4.11)

Let us continue and give the following bound:

∣
∣H2,n(u) – H2,n(v)

∣
∣2

=
∣
∣
∣
∣

∫ T

0

∫ t

0
exp

(

–λn

∫ t

s
M

(∥
∥u(.,η)

∥
∥

L2
)

dη

)

Fn(s) ds dt

–
∫ T

0

∫ t

0
exp

(

–λn

∫ t

s
M

(∥
∥v(.,η)

∥
∥

L2
)

dη

)

Fn(s) ds dt
∣
∣
∣
∣

2

≤ Tλ2
n

∫ T

0

(∫ t

0

∥
∥u(·, s) – v(·, s)

∥
∥2

L2 ds
)(∫ t

0
F2

n(s) ds
)

dt

≤ T2‖u – v‖2
r

∫ T

0

∫ t

0
λ2

nF2
n(s) ds dt. (4.12)

This implies that

∞∑

n=1

λ2r+2
n

∣
∣H2,n(u) – H2,n(v)

∣
∣2 ≤ T2‖u – v‖2

r

∫ T

0

∫ t

0

∥
∥F(·, s)

∥
∥2

D(Ar+1) ds dt

≤ T3‖u – v‖2
r ‖F‖2

L2(0,T ;D(Ar+1)). (4.13)

From (3.5), we recall the following estimate:

∣
∣H1,n(u) – H1,n(v)

∣
∣2 ≤ TK2λ2

n‖u – v‖2
r , (4.14)

which allows us to get that

∞∑

n=1

λ2r+2
n

∣
∣H2,n(v)

∣
∣2∣∣H1,n(u) – H1,n(v)

∣
∣2

≤ TK2λ2r+4
n ‖u – v‖2

r

∣
∣
∣
∣

∫ T

0

∫ t

0
exp

(

–λn

∫ t

s
M

(∥
∥u(·,η)

∥
∥

L2
)

dη

)

Fn(s) ds dt
∣
∣
∣
∣

2

≤ T2K2λ2r+4
n ‖u – v‖2

r

×
∫ T

0

(∫ t

0
exp

(

–2λn

∫ t

s
M

(∥
∥u(·,η)

∥
∥

L2
)

dη

)

ds
)(∫ t

0
F2

n(s) ds
)

dt

≤ T3K2‖u – v‖2
r

∫ T

0

( ∞∑

n=1

λ2r+4
n

∫ t

0
F2

n(s) ds

)

dt

≤ T4K2‖u – v‖2
r ‖F‖2

L2(0,T ;D(Ar+2)). (4.15)
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Combining (4.11), (4.13), and (4.15), we find that

∞∑

n=1

λ2r+2
n |J2,n|2 ≤ 2T2

∞∑

n=1

λ2r+2
n

∣
∣H2,n(u) – H2,n(v)

∣
∣2+

+ T2
∞∑

n=1

λ2r+2
n

∣
∣H2,n(v)

∣
∣2∣∣H1,n(u) – H1,n(v)

∣
∣2

≤ 2T5‖u – v‖2
r ‖F‖2

L2(0,T ;D(Ar+1))

+ T6K2‖u – v‖2
r ‖F‖2

L2(0,T ;D(Ar+2)). (4.16)

It follows from (4.4) that

‖�2u – �2v‖2
D(Ar) ≤ 2

m2
0(1 – e–Tλ1 )2

∞∑

n=1

λ2r+2
n |J1,n|2 +

2
m2

0(1 – e–Tλ1 )2

∞∑

n=1

λ2r+2
n |J2,n|2

≤ 4T5

m2
0(1 – e–Tλ1 )2

‖u – v‖2
r ‖F‖2

L2(0,T ;D(Ar+1))

+
4T6K2

m2
0(1 – e–Tλ1 )2

‖u – v‖2
r ‖F‖2

L2(0,T ;D(Ar+2)). (4.17)

The inequality
√

a2 + b2 ≤ a + b for any a, b ≥ 0 implies that

‖�2u – �2v‖D(Ar) ≤ 2T5/2

m0(1 – e–Tλ1 )
‖u – v‖2

r ‖F‖2
L2(0,T ;D(Ar+1))

+
2T3K

m0(1 – e–Tλ1 )
‖u – v‖r‖F‖L2(0,T ;D(Ar+2)). (4.18)

Next, we continue to estimate the term ‖�3u – �3v‖D(Ar). It is obvious that

∣
∣
∣
∣

∫ t

0
exp

(

–λn

∫ t

s
M

(∥
∥u(·,η)

∥
∥

L2
)

dη

)

Fn(s) ds dt

–
∫ t

0
exp

(

–λn

∫ t

s
M

(∥
∥v(·,η)

∥
∥

L2
)

dη

)

Fn(s) ds dt
∣
∣
∣
∣

2

≤ λ2
n

(∫ t

0

∥
∥u(·, s) – v(·, s)

∥
∥2

L2 ds
)(∫ t

0
F2

n(s) ds
)

dt

≤ T2‖u – v‖2
r

∫ t

0
λ2

nF2
n(s) ds. (4.19)

Hence, we derive the following estimate:

‖�3u – �3v‖2
D(Ar)

=
∞∑

n=1

λ2r
n

∣
∣
∣
∣

∫ t

0
exp

(

–λn

∫ t

s
M

(∥
∥u(·,η)

∥
∥

L2
)

dη

)

Fn(s) ds dt

–
∫ t

0
exp

(

–λn

∫ t

s
M

(∥
∥v(·,η)

∥
∥

L2
)

dη

)

Fn(s) ds dt
∣
∣
∣
∣

2
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≤ T2‖u – v‖2
r

∫ t

0

∞∑

n=1

λ2r+2
n F2

n(s) ds

= T2‖u – v‖2
r ‖F‖2

L2(0,T ;D(Ar+1)), (4.20)

which allows us to obtain that

‖�3u – �3v‖D(Ar) ≤ T‖u – v‖r‖F‖L2(0,T ;D(Ar+1)). (4.21)

Combining (3.18), (4.18), and (4.21), we find that

‖�u – �v‖r ≤ ‖�1u – �1v‖D(Ar) + ‖�2u – �2v‖D(Ar) + ‖�3u – �3v‖D(Ar)

≤
√

T
(
C2

2 + C2
3
)‖ψ‖D(Ar+2)‖u – v‖r + T‖u – v‖r‖F‖L2(0,T ;D(Ar+1))

+
2T5/2

m0(1 – e–Tλ1 )
‖u – v‖2

r ‖F‖2
L2(0,T ;D(Ar+1))

+
2T3K

m0(1 – e–Tλ1 )
‖u – v‖r‖F‖L2(0,T ;D(Ar+2)). (4.22)

From the latter estimate, we can find T small enough such that �1 is a contraction mapping
on L∞(0, T ; D(Ar)). �

5 Ill-posedness of the mild solution
If α = 0 and if ψ ∈ D(A), the mild solution of problem (1.1) is given by the integral equation

u(t) =
∞∑

n=1

exp(–λn
∫ t

0 M(‖u(·, s)‖L2 ) ds)〈ψ ,ϕn〉
β

∫ T
0 exp(–λn

∫ t
0 M(‖u(·, s)‖L2 ) ds) dt

ϕn. (5.1)

Assume that ψ0 = 0 then u∗ = 0. For m ∈N, let ψm be measured data which satisfy

ψm(x) = ψ0(x) +
1√
λm

ϕm(x) =
1√
λm

ϕm(x).

It is easy to see that ψm ∈ D(A) and the following fact holds:

∥
∥ψ

m – ψ0∥∥
L2 =

1√
λm

→ 0, m → ∞. (5.2)

The mild solution of problem (1.1) corresponding to ψm is

um(t) =
∞∑

n=1

exp(–λn
∫ t

0 M(‖um(·, s)‖L2 ) ds)〈ψm,ϕn〉
β

∫ T
0 exp(–λn

∫ t
0 M(‖um(·, s)‖L2 ) ds) dt

ϕn

=
exp(–λm

∫ t
0 M(‖um(·, s)‖L2 ) ds)

β
√

λm
∫ T

0 exp(–λm
∫ t

0 M(‖um(·, s)‖L2 ) ds) dt
ϕm. (5.3)

It implies immediately that

∥
∥um(·, 0)

∥
∥

L2 =
1

β
√

λm
∫ T

0 exp(–λm
∫ t

0 M(‖um(·, s)‖L2 ) ds) dt
. (5.4)
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Let us emphasize that

∫ T

0
exp

(

–λm

∫ t

0
M

(∥
∥um(·, s)

∥
∥

L2
)

ds
)

dt ≥
∫ T

0
exp

(

–λm

∫ t

0
m0 ds

)

dt

=
1 – e–m0λmT

m0λm
. (5.5)

Hence, we get the following estimate:

∥
∥um(·, 0)

∥
∥

L2 =
∥
∥um(·, 0) – u∗(0)

∥
∥

L2

≥ m0λm

1 – e–m0λmT
1

β
√

λm

=
m0

√
λm

β(1 – e–m0λmT )
. (5.6)

From the fact that

lim
m→∞

m0
√

λm

β(1 – e–m0λmT )
= ∞,

we deduce

lim
m→∞

∥
∥um(·, 0) – u∗(0)

∥
∥

L2 = ∞. (5.7)
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