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1 Introduction
The study of the discrete analogues in harmonic analysis became an active field of research
in recent years. For example, the study of regularity and boundedness of discrete operators
on lp analogues for Lp-regularity and higher summability of sequences has been consid-
ered by some authors, see for example [3–7, 24, 25, 28] and the references cited therein.
Whereas some results from Euclidean harmonic analysis admit an obvious variant in the
discrete setting, others do not. The main challenge in such studies is that there are no gen-
eral methods to study these questions and the discrete operators may behave differently
from their continuous counterparts as is exhibited by the discrete spherical maximal oper-
ator [19]. We confine ourselves in proving some basic properties of discrete Muckenhoupt
and discrete Gehring classes. For properties and the structure of classical Muckenhoupt
and Gehring classes (in integral forms), the relation between them and their applications in
mathematical analysis, we refer the reader to the papers [1, 2, 8–18, 20–23, 27, 29] and the
references cited therein. Throughout this paper, we assume that 1 < p < ∞ and I stands
for a subset of Z+ of the form I = {1, 2, . . . , N}, where N is a fixed positive integer and n
be a positive integer in I. A discrete weight on Z+ = {1, 2, . . .} is a sequence u = {u(n)}∞n=1

of positive real numbers. The discrete positive weight u is said to belong to the discrete
Muckenhoupt class Ap(A) on the interval I, for p > 1 and A > 1 (independent of p), if, for
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every n ∈ I,

1
n

n∑

k=1

u(k) ≤ A

(
1
n

n∑

k=1

u
1

1–p (k)

)1–p

.

For a given exponent p > 1, we define theAp-norm of the discrete weight u by the following
quantity:

[u]Ap := sup
n∈I

(
1
n

n∑

k=1

u(k)

)(
1
n

n∑

k=1

u
–1

p–1 (k)

)p–1

, (1)

where the supremum is taken over all n ∈ I. The discrete weight u is said to belong to the
discrete Muckenhoupt class A1(A) if, for every n ∈ I,

1
n

n∑

k=1

u(k) ≤ A inf
1≤k≤n

u(k),

for A > 1, holds and we define the A1-norm by the following quantity:

[u]A1 = sup
n∈I

1
n

(
1

inf1≤k≤n u(k)

n∑

k=1

u(k)

)
.

The discrete weight u is said to belong to the discrete Muckenhoupt class A∞(A) if, for
every n ∈ I,

(
1
n

n∑

k=1

u(k)

)(
exp

1
n

n∑

k=1

log
1

u(k)

)
≤ A,

for A > 1, and we define the A∞-norm by the following quantity:

[u]A∞ := sup
n∈I

(
1
n

n∑

k=1

u(k)

)(
exp

1
n

n∑

k=1

log
1

u(k)

)
,

where the supremum is taken over all n ∈ I. The discrete positive weight u is said to belong
to the discrete Gehring classGq(G) on the interval I ⊂ Z

+, for q > 1 and G > 1 (independent
of q), if, for every n ∈ I,

(
1
n

n∑

k=1

uq(k)

)1/q

≤ G
1
n

n∑

k=1

u(k). (2)

For a given exponent q > 1, we define the Gq-norm by the following quantity:

[u]Gq := sup
n∈I

[(
1
n

n∑

k=1

u(k)

)–1(
1
n

n∑

k=1

uq(k)

) 1
q
] q

q–1

,
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where the supremum is taken over all n ∈ I. The discrete weight u is said to belong to the
discrete Gehring class G∞(G) if for every n ∈ I

sup
1≤k≤n

u(k) ≤ G
1
n

n∑

k=1

u(k),

for G > 0. The discrete weight is said to belong to the discrete Gehring class G1(G) if, for
every n ∈ I,

exp

(
1
n

n∑

k=1

u(k)
1
n
∑n

k=1 u(k)
log

u(k)
1
n
∑n

k=1 u(k)

)
≤ G,

where G > 1 and we define the G1-norm by the following quantity:

[u]G1 := sup
n∈I

[
exp

(
1
n

n∑

k=1

u(k)
1
n
∑n

k=1 u(k)
log

u(k)
1
n
∑n

k=1 u(k)

)]
,

where the supremum is taken over all n ∈ I. The objective of this paper is classified as
follows:

(1) Prove some basic properties of the discrete Muckenhoupt class Ap.
(2) Prove some basic properties of the discrete Gehring class Gq .
(3) Prove some fundamental relations between Ap and Gq.
(4) Prove some fundamental relations between A∞ and Gq and their norms.
The paper is organized as follows: In the next section, we state and prove some basic

lemmas that are needed in the proofs of the main results. In Sect. 3, we present properties
of the Muckenhoupt class which include the self-improving property. In Sect. 4, we prove
the basic properties of the Gehring class which include also the self-improving property.
In Sect. 5, we prove the transition and inclusion relations between the two classes which
give embedding relations between Ap and Gq and also relations between A∞ and Gq and
their norms.

2 Basic lemmas
In what follows, all sequences in the statements of the theorems are assumed to be pos-
itive sequences defined on I ⊆ Z+ and use the conventions 0 · ∞ = 0 and 0/0 = 0 and∑b

k=m y(k) = 0, whenever m > b and

�

( k–1∑

s=a
y(s)

)
= y(k),

k–1∑

s=a
�y(s) = y(k) – y(a).

The classical Hölder inequality is given by

n∑

k=1

|uv| ≤
[ n∑

k=1

|u|p
]1/p[ n∑

k=1

|v|q
]1/q

, (3)

where 1/p + 1/q = 1, and p, q > 1. This inequality is reversed for 0 < p < 1 and if p < 0 or
q < 0. For instance the inequality

n∑

k=1

|uv| ≥
[ n∑

k=1

|u|1/p

]p[ n∑

k=1

|v|–1/(p–1)

]–(p–1)

, (4)
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holds if 0 < p < 1 or p > 1, q = –1/(p – 1) < 0. If p = 1 and q = ∞, the Hölder inequality is
given by

n∑

k=1

|uv| ≤
( n∑

k=1

|u|
)(

sup
n

|v|
)

, (5)

if
∑n

k=1 |u(k)| < ∞, and supn |v(n)| < ∞. Throughout we assume that u : I →R
+ is positive

sequence and define

Mqu(n) :=

(
1
n

n∑

k=1

uq(k)

)1/q

,

for any real number q and any n ∈ I. Note that, for q = 0, the operator Mq takes the form

M0u = exp

(
1
n

n∑

k=1

log u(k)

)
.

In the following lemma, we state the basic property of the operator Mqu which is proved
directly by applying Jensen’s inequality.

Lemma 1 Let u be a positive weight and p and q be real numbers. If p ≤ q, then Mpu ≤
Mqu.

We recall that the discrete positive weight u is said to belong to the discrete Gehring
class Gq(G) on the interval I ⊂ Z

+, for q > 1 and G > 1, if, for every n ∈ I,

(
1
n

n∑

k=1

uq

)1/q

≤ G

(
1
n

n∑

k=1

u

)
. (6)

It is clear that the Hölder inequality (in terms of Mqu) reads

Mqu ≥M1u, for q ≥ 1. (7)

The reverse of (7) is given by (6), which in terms of M reads

Mqu ≤ GM1u, (8)

for some constant G > 1. A generalization of inequality (8) for 1 < p ≤ q, which we call the
generalized reverse Hölder inequality, is given in terms of M by

Mqu ≤ GMpu, (9)

for some constant G > 1. In [26], the authors proved the following transition properties
which gives a transition relation between the class Ap and the class Gq.

Theorem 2 Let u be a positive weight and p and q be real numbers. Then u ∈Ap for some
p if and only if u ∈ Gq for some q.
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Remark 1 The equivalence in this theorem gives the transition property between the dis-
crete Muckenhoupt and Gehring classes. The main question which is interesting is what
the relation is between p and q for which the inclusions Ap ⊂ Gq and Gq ⊂ Ap hold, and
this remains an open problem.

3 Some basic properties of Muckenhoupt weights
In this section, we prove some basic properties of Muckenhoupt weights. The first lemma
proves the inclusion of the class Ap in the class A∞ for all p ≥ 1. That is, if u ∈ Ap for
p ≥ 1, then u ∈A∞.

Lemma 3 Let u be a positive weight and p be a nonnegative real number. If u ∈ Ap(A),
then the inequality

M1u ≤ A exp(M1 log u) (10)

holds.

Proof Since u ∈Ap(A), then, for all n ∈ I and A > 1, we have

1
n

n∑

k=1

u(k) ≤ A

(
1
n

n∑

k=1

u
1

1–p (k)

)1–p

.

By taking the limit as p tends to ∞, then the right hand side, after using the properties of
limits and L’Hôpital’s rule, becomes

1
n

n∑

k=1

u ≤ A lim
p→∞

(
1
n

n∑

k=1

u
1

1–p (k)

)1–p

= A exp

(
1
n

n∑

k=1

log u(k)

)
,

which is the desired inequality (10). The proof is complete. �

Theorem 4 Let u be a positive weight and p be a nonnegative real number, and p′ = p/(p –
1) be the conjugate of p. Then u ∈Ap if and only if u1–p′ ∈Ap′ , with

[
u1–p′]

Ap′ = [u]p′–1
Ap .

Proof From the definition of the class Ap, and since 1 – p′ = 1/(1 – p) < 0, we have for A > 1
and all n ∈ I

u ∈Ap ⇔ 1
n

n∑

k=1

u(k) ≤ A

(
1
n

n∑

k=1

u
1

1–p (k)

)1–p

⇔
(

1
n

n∑

k=1

u(k)

) 1
1–p

≥ A
1

1–p
1
n

n∑

k=1

u
1

1–p (k)

⇔ 1
n

n∑

k=1

u1–p′
(k) ≤ Ap′–1

(
1
n

n∑

k=1

(
u1–p′

(k)
) 1

1–p′
)1–p′

⇔ u1–p′ ∈Ap′
.
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Furthermore, since 1
1–p = 1 – p′ and 1

1–p′ = 1 – p, we have

sup
n∈I

(
1
n

n∑

k=1

u1–p′
(k)

)(
1
n

n∑

k=1

(
u1–p′

(k)
) 1

1–p′
)–(1–p′)

= sup
n∈I

(
1
n

n∑

k=1

u1/(1–p)(k)

)(p′–1)(p–1)(
1
n

n∑

k=1

u(k)

)–(1–p′)

= sup
n∈I

[(
1
n

n∑

k=1

u1/(1–p)(k)

)p–1(
1
n

n∑

k=1

u(k)

)]p′–1

.

This is equivalent to

[
u1–p′]

Ap′ = [u]p′–1
Ap ,

which is the desired result. The proof is complete. �

In the next theorem, we prove some basic inclusion properties of Muckenhoupt classes.

Theorem 5 Let u be a positive weight and p, q be nonnegative real numbers. Then the
following inclusion relations hold:

(1) A1 ⊂Ap ⊂A∞, for all 1 < p < ∞,
(2) Ap ⊂Aq for all 1 < p ≤ q,
(3) A∞ =

⋃
1<p Ap with

[u]A∞ = lim
p→∞[u]Ap

and A1 ⊂ ⋂
p>1Ap.

Proof (1) Let u ∈A1, then there exists A > 1 such that, for all n ∈ I, we have

1
n

n∑

k=1

u(k) ≤ A inf
1≤k≤n

u(k),

or equivalently

1
n

n∑

k=1

u(k) ≤ Au(k), (11)

for all 1 ≤ k ≤ n. For p > 1, by using (11) we have, for all n ∈ I,

(
1
n

n∑

k=1

u(k)

)(
1
n

n∑

k=1

u
1

1–p (k)

)p–1

≤
(

1
n

n∑

k=1

u(k)

)(
1
n

n∑

k=1

(
A–1 1

n

n∑

k=1

u(k)

) 1
1–p

)p–1

=

(
1
n

n∑

k=1

u(k)

)(
A–1 1

n

n∑

k=1

u(k)

)–1

= A.
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Hence u ∈ Ap, which implies that A1 ⊂ Ap. Now, assume that u ∈ Ap, then Lemma 3
implies that u ∈A∞. That is Ap ⊂A∞.

(2) Assume that u ∈Ap, then there exists A > 1 such that for all n ∈ I

1
n

n∑

k=1

u(k)

(
1
n

n∑

k=1

u
1

1–p (k)

)p–1

≤ A,

holds. Now, since 1 < p ≤ q, we see that 1
p–1 ≥ 1

q–1 , and then, by using Lemma 1, we have

M 1
p–1

u–1 ≥M 1
q–1

u–1.

Then, for all n ∈ I, we obtain

A ≥ 1
n

n∑

k=1

u(k)

(
1
n

n∑

k=1

u
1

1–p (k)

)p–1

≥ 1
n

n∑

k=1

u(k)

(
1
n

n∑

k=1

u
1

1–q (k)

)q–1

,

which implies that u ∈Aq.
(3) By applying Property (1), for all 1 < p < ∞, Ap ⊂A∞. Then,

⋃

1≤p<∞
Ap ⊆A∞. (12)

Conversely, we shall prove the containment by contradiction. That is, we assume that u ∈
A∞ and assume, on the contrary, that, for all 1 ≤ p < ∞, u /∈ Ap. Then, for all 1 ≤ p < ∞,
we see that

sup
n∈I

(
1
n

n∑

k=1

u(k)

)(
1
n

n∑

k=1

u
1

1–p (k)

)p–1

= ∞,

which, by taking the limit as p tends to ∞ implies that

sup
n∈I

(
1
n

n∑

k=1

u

)(
exp

1
n

n∑

k=1

log
1

u(k)

)
= ∞.

This contradicts the assumption that u ∈A∞, then u ∈A∞ implies that, for some 1 ≤ p <
∞, u ∈Ap and hence

u ∈
⋃

1≤p<∞
Ap.

Thus

A∞ ⊆
⋃

1≤p<∞
Ap. (13)
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From (12) and (13), we obtain A∞ =
⋃

1≤p<∞ Ap. Moreover, by applying L’Hôpital’s rule
and some limit rules, we obtain

lim
p→∞[u]Ap = lim

p→∞ sup
n∈I

(
1
n

n∑

k=1

u(k)

)(
1
n

n∑

k=1

u
1

1–p (k)

)p–1

= sup
n∈I

lim
p→∞

(
1
n

n∑

k=1

u(k)

)(
1
n

n∑

k=1

u
1

1–p (k)

)p–1

= sup
n∈I

(
1
n

n∑

k=1

u(k)

)(
exp

1
n

n∑

k=1

log
1

u(k)

)

= [u]A∞ ,

which is the desired result. Now, assume that u ∈A1. By Property (1), for any p > 1, A1 ⊂
Ap, then

A1 ⊂
⋂

p>1

Ap.

Equality does not hold and to prove it is sufficient to provide an example of a weight u
satisfies u ∈ ⋂

p>1 Ap\A1. For example: for all p > 1, we have u(n) = nα ∈ Ap for α > 1 and
u(n) /∈A1. The proof is complete. �

Remark 2 In Theorem 5, we were able to prove the containment A1 ⊂ ⋂
p>1 Ap. In the

following, we present some weights, which does not only satisfy the containment A1 ⊂
⋂

p>1 Ap but also satisfy the equalities:
(i) u(n) = 1 ∈A1 and hence u(n) ∈Ap,

(ii) u(n) = nα ∈A1 for α ≤ 0 and hence u(n) ∈Ap,
(iii) u(n) = 1

log(n+1) ∈A1 and hence u(n) ∈Ap.

In the following theorem, we discuss the power rule for weights in the Muckenhoupt
class. That is, we discuss the cases for α which satisfies the necessity of the statement:
u ∈Ap implies that uα ∈Ap.

Theorem 6 Let u be a positive weight, p be a nonnegative real number. Then
(1) if u ∈Ap then uα ∈Ap, for 0 ≤ α ≤ 1, with [uα]Ap ≤ [u]αAp ,
(2) if u ∈Ap, then uα ∈Ap for some α > 1.

Proof (1) For 0 ≤ α ≤ 1, and u ∈ Ap, we have 1
p–1 ≥ α

p–1 > 0, and hence by applying
Lemma 1, we have for all n ∈ I

(
1
n

n∑

k=1

uα(k)

)(
1
n

n∑

k=1

(
uα(k)

) 1
1–p

)p–1

≤
(

1
n

n∑

k=1

u(k)

)α(
1
n

n∑

k=1

u
α

1–p (k)

)p–1
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≤
(

1
n

n∑

k=1

u(k)

)α(
1
n

n∑

k=1

u
1

1–p (k)

)α(p–1)

=

[(
1
n

n∑

k=1

u(k)

)(
1
n

n∑

k=1

u
1

1–p (k)

)(p–1)]α

≤ Aα ,

that is, uα ∈Ap, with [uα]Ap ≤ [u]αAp , which is the desired result.
(2) Since u ∈Ap(A),

(
1
n

n∑

k=1

u(k)

)
≤ A

(
1
n

n∑

k=1

u1/(1–p)(k)

)1–p

, A ≥ 1. (14)

Theorem 2 implies that u ∈ Gq(G). That is,

(
1
n

n∑

k=1

uq(k)

)1/q

≤ G

(
1
n

n∑

k=1

u(k)

)
. (15)

Also, Theorem 4 implies that u1/(1–p) ∈ Ap′ , again Theorem 2 implies that u1/(1–p) ∈
Gq1 (G1). That is,

(
1
n

n∑

k=1

uq1/(1–p)(k)

)1/q1

≤ G1

(
1
n

n∑

k=1

u1/(1–p)(k)

)
. (16)

Now, by applying (14), (15), and (16), we have

1
n

n∑

k=1

uq(k) ≤ Gq

(
1
n

n∑

k=1

u(k)

)q

≤ Gq

[
A

(
1
n

n∑

k=1

u1/(1–p)(k)

)1–p]q

= GqAq

(
1
n

n∑

k=1

u1/(1–p)(k)

)q(1–p)

≤ GqAq

[
G–1

1

(
1
n

n∑

k=1

uq1/(1–p)(k)

)1/q1]q(1–p)

= GqAqGq(p–1)
1

(
1
n

n∑

k=1

uq1/(1–p)(k)

)q(1–p)/q1

.

If q < q1, then, by applying Lemma 1, it satisfies

(
1
n

n∑

k=1

uq1/(1–p)(k)

)q(1–p)/q1

≤
(

1
n

n∑

k=1

uq/(1–p)(k)

)(1–p)

,
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which implies that

1
n

n∑

k=1

uq(k) ≤ GqAqGq(p–1)
1

(
1
n

n∑

k=1

uq/(1–p)(k)

)(1–p)

,

or equivalently, uq ∈Ap. If q > q1, then by using Hölder’s inequality we see that the condi-
tion u ∈ Gq implies that

(
1
n

n∑

k=1

uq1 (k)

)1/q1

≤ G2

(
1
n

n∑

k=1

u(k)

)
. (17)

By using (14), (16) and (17), we have

1
n

n∑

k=1

uq1 (k) ≤ Gq1
2

(
1
n

n∑

k=1

u(k)

)q1

≤ Gq1
2

[
A

(
1
n

n∑

k=1

u1/(1–p)(k)

)1–p]q1

= Gq1
2 Aq1

(
1
n

n∑

k=1

u1/(1–p)(k)

)(1–p)q1

≤ Gq1
2 Aq1 Gp–1

1

(
1
n

n∑

k=1

uq1/(1–p)(k)

)(1–p)

,

that is, uq1 ∈Ap. This completes our proof. �

Theorem 7 If u1, u2 ∈Ap, then uα
1 u1–α

2 ∈Ap, 0 ≤ α ≤ 1, with a constant

[
uα

1 u1–α
2

]
Ap ≤ [u1]αAp [u2]1–α

Ap .

Proof Assume that u1, u2 ∈Ap, then

1
n

n∑

k=1

u1(k)

(
1
n

n∑

k=1

u
1

1–p
1 (k)

)p–1

≤ A1 (18)

and

1
n

n∑

k=1

u2(k)

(
1
n

n∑

k=1

u
1

1–p
2 (k)

)p–1

≤ A2 (19)

hold for all n ∈ I, where A1, A2 > 1. By applying Hölder’s inequality (note that 0 ≤ α ≤ 1)
with 1/α and 1/(1 – α) and using (18) and (19), we obtain

1
n

n∑

k=1

uα
1 (k)u1–α

2 (k)

≤
(

1
n

n∑

k=1

u1(k)

)α(
1
n

n∑

k=1

u2(k)

)1–α
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≤
(

A1

(
1
n

n∑

k=1

u
1

1–p
1 (k)

)1–p)α(
A2

(
1
n

n∑

k=1

u
1

1–p
2 (k)

)1–p)1–α

= Aα
1 A1–α

2

[(
1
n

n∑

k=1

u
1

1–p
1 (k)

)α(
1
n

n∑

k=1

u
1

1–p
2 (k)

)1–α]1–p

. (20)

Again, by applying Hölder’s inequality for 1/α and 1/(1 – α) on the term

1
n

n∑

k=1

u
α

1–p
1 (k)u

1–α
1–p
2 (k),

we obtain

1
n

n∑

k=1

u
α

1–p
1 (k)u

1–α
1–p
2 (k) ≤

(
1
n

n∑

k=1

u
1

1–p
1 (k)

)α(
1
n

n∑

k=1

u
1

1–p
2 (k)

)1–α

. (21)

By substituting (21) into (20) and since 1 – p < 0, we have

1
n

n∑

k=1

uα
1 (k)u1–α

2 (k) ≤ Aα
1 A1–α

2

[
1
n

n∑

k=1

u
α

1–p
1 (k)u

1–α
1–p
2 (k)

]1–p

= Aα
1 A1–α

2

[
1
n

n∑

k=1

(
uα

1 (k)u1–α
2 (k)

) 1
1–p

]1–p

.

Hence uα
1 u1–α

2 ∈Ap, for 0 ≤ α ≤ 1, with

[
uα

1 u1–α
2

]
Ap ≤ [u1]αAp [u2]1–α

Ap .

The proof is complete. �

In the next theorem, we discuss the relation between an Ap-weight and the product of
two sequences in the A1-class of weights.

Theorem 8 u ∈Ap if and only if there exist u1, u2 ∈A1 such that u = u1u1–p
2 , 1 < p < ∞.

Proof First, we prove that if u ∈Ap, then u = u1u1–p
2 such that u1, u2 ∈A1, or equivalently

we prove thatAp ⊂A1(A1)1–p. Assume that u /∈A1(A1)1–p, then for all u1 and u2 satisfying
u = u1u1–p

2 , then u1 /∈A1 and u2 /∈A1. Now, since infk u(k) ≤ u(k) for all k. Then

1
n

n∑

k=1

u(k)

(
1
n

n∑

k=1

u
1

1–p (k)

)p–1

=

(
1
n

n∑

k=1

u1(k)u1–p
2 (k)

)(
1
n

n∑

k=1

u
1

1–p
1 (k)u2(k)

)p–1

≤
(

1
n

n∑

k=1

u1(k)

)(
inf

k
u2(k)

)1–p
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×
(

1
n

n∑

k=1

u
1

1–p
1 (k)u2(k)

)p–1(
inf

k
u1(k)

)–1

=

(
1

infk u1(k)
1
n

n∑

k=1

u1(k)

)(
1

infk u2(k)
1
n

n∑

k=1

u2(k)

)p–1

.

By the assumption that u1 /∈A1 and u2 /∈A1, then

sup
n

1
n

n∑

k=1

u(k)

(
1
n

n∑

k=1

u
1

1–p (k)

)p–1

≤ sup
n

(
1

infk u1(k)
1
n

n∑

k=1

u1(k)

)(
1

infk u2(k)
1
n

n∑

k=1

u2(k)

)p–1

= ∞.

That is u /∈ Ap. That is Ap ⊂ A1(A1)1–p. Conversely, assume that u1, u2 ∈ A1, and 1 < p <
∞, then for all n ∈ I, we have

1
n

n∑

k=1

u1(k) ≤ A1u1(k), and
1
n

n∑

k=1

u2(k) ≤ A2u2(k),

holds for all 1 ≤ k ≤ n. Thus, by letting u = u1u1–p
2 , we have for all n ∈ I that

1
n

n∑

k=1

u(k)

(
1
n

n∑

k=1

u
1

1–p (k)

)p–1

=

(
1
n

n∑

k=1

u1(k)u1–p
2 (k)

)(
1
n

n∑

k=1

u
1

1–p
1 (k)u2(k)

)p–1

≤
[

1
n

n∑

k=1

u1(k)

(
1

A2

1
n

n∑

k=1

u2(k)

)1–p]

×
[

1
n

n∑

k=1

(
1

A1

1
n

n∑

k=1

u1(k)

) 1
1–p

u2(k)

]p–1

= A1Ap–1
2

[(
1
n

n∑

k=1

u1(k)

)(
1
n

n∑

k=1

u2(k)

)1–p]

×
[(

1
n

n∑

k=1

u1(k)

)–1(
1
n

n∑

k=1

u2(k)

)p–1]

= A1Ap–1
2 ,

that is u = u1u1–p
2 ∈Ap, with [u]Ap = [u1]A1 [u2]p–1

A1 . The proof is complete. �

Theorem 9 Let u be a positive weight and p be a nonnegative real number. Then following
statement holds: u ∈Ap if and only if u and u

1
1–p are in A∞.
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Proof We prove this property by using by Property (3) in Theorem 5. Since

A∞ =
⋃

1≤p<∞
Ap,

it is clear that u ∈Ap, for any p > 1, if and only if u ∈A∞. Now, we have by Theorem 4 that
u ∈Ap if and only if u1–p′ = u

1
1–p ∈Ap′ . That is, by Property (1) in Theorem 5 (Ap′ ⊂A∞),

u ∈Ap if and only if u
1

1–p ∈A∞. The proof is complete. �

The next theorem is a self-improving property of weights in the Muckenhoupt class.

Theorem 10 Let u be a positive weight, p be a nonnegative number. If u ∈ Ap, p > 1, then
u ∈Ap–ε , for some ε > 0.

Proof Let u ∈Ap, for p > 1, then, for A > 1 and all n ∈ I, we have

1
n

n∑

k=1

u(k) ≤ A

(
1
n

n∑

k=1

u–p′/p(k)

)–p/p′

. (22)

By Theorem 4, u–p′/p = u1–p′ ∈Ap′ . Also, by Theorem 2, u–p′/p ∈ Gq for some q, or equiva-
lently

(
1
n

n∑

k=1

u–p′q/p(k)

)1/q

≤ G
1
n

n∑

k=1

u–p′/p(k). (23)

By using (22) and (23), we have

(
1
n

n∑

k=1

u–p′q/p(k)

)1/q

≤ G

(
A–1 1

n

n∑

k=1

u(k)

)–p′/p

,

and then

1
n

n∑

k=1

u(k) ≤ Gp/p′
A

(
1
n

n∑

k=1

u–p′q/p(k)

)–p/p′q

.

This follows on taking p – ε – 1 = p/(p′q), or equivalently, taking ε = p–1
q′ . Then u ∈ Ap–ε

for p > 1 and some ε > 0. The proof is complete. �

4 Some basic properties of Gehring weights
In this section, we prove some basic properties of Gehring weights. In the next lemma, we
present the inclusion relation of Gehring classes Gq in G1-class of weights for all 1 < q < ∞.

Lemma 11 Let u be a positive weight and q be a nonnegative number. If u ∈ Gq for q > 1,
then

exp

(
1
n

n∑

k=1

u(k)
1
n
∑n

k=1 u(k)
log

(
u(k)

1
n
∑n

k=1 u(k)

))
< ∞,

holds.
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Proof Assume that u ∈ Gq, then there exists G > 1 such that

[(
1
n

n∑

k=1

uq(k)

)1/q(
1
n

n∑

k=1

u(k)

)–1]q/(q–1)

≤ G,

holds for all n ∈ I, or equivalently

(
1
n

n∑

k=1

(
u(k)

1
n
∑n

k=1 u(k)

)q
)1/(q–1)

≤ G,

holds for all n ∈ I. By taking the limit as q tends to 1 and applying L’Hôpital’s rule, we
obtain

G ≥ lim
q→1

(
1
n

n∑

k=1

(
u(k)

1
n
∑n

k=1 u(k)

)q
)1/(q–1)

= exp

(
1
n

n∑

k=1

u(k)
1
n
∑n

k=1 u(k)
log

(
u(k)

1
n
∑n

k=1 u(k)

))
.

The proof is complete. �

In the next theorem, we present some basic inclusion properties of weights in the
Gehring class.

Theorem 12 Let u be a positive weight and p and q be real nonnegative numbers such that
p, q > 1. The following properties hold:

(1) G∞ ⊂ Gq ⊂ G1 for all 1 < q ≤ ∞.
(2) Gq ⊂ Gp for all 1 < p ≤ q.
(3) G1 =

⋃
1<q≤∞ Gq with [u]G1 = limq→1[u]Gq .

Proof (1) Assume that u ∈ G∞, then, by the definition of G∞, there exists 0 < C < ∞ such
that, for all n ∈ I, we have

sup
1≤k≤n

u(k) ≤ C

(
1
n

n∑

k=1

u(k)

)
,

or equivalently

u(k) ≤ C

(
1
n

n∑

k=1

u(k)

)
, (24)

for all 1 ≤ k ≤ n. By applying (24) for all 1 < q < ∞, we have

(
1
n

n∑

k=1

uq(k)

)1/q(
1
n

n∑

k=1

u(k)

)–1

≤
[

1
n

n∑

k=1

(
C

(
1
n

n∑

k=1

u(k)

))q]1/q(
1
n

n∑

k=1

u(k)

)–1
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= C

(
1
n

n∑

k=1

u(k)

)(
1
n

n∑

k=1

u(k)

)–1

= C.

That is, u ∈ Gq and hence G∞ ⊂ Gq. Now, the inclusion Gq ⊂ G1 is proved in Lemma 11.
This is the desired result.

(2) Assume u ∈ Gq. Then there exists G > 1 such that, for all n ∈ I,

(
1
n

n∑

k=1

uq(k)

)1/q

≤ G
1
n

n∑

k=1

u(k). (25)

Lemma 1 implies that Mpu ≤Mqu for all p ≤ q. Then, by substituting in (25), we have

(
1
n

n∑

k=1

up(k)

)1/p

≤
(

1
n

n∑

k=1

uq(k)

)1/q

≤ G
1
n

n∑

k=1

u(k).

That is, u ∈ Gp, which completes the proof of the second case.
(3) Property (1) states that, for all 1 < q ≤ ∞, we have Gq ⊂ G1, and then

⋃

1<q≤∞
Gq ⊆ G1. (26)

Conversely, assume that u ∈ G1 and assume, on the contrary, for all 1 < q ≤ ∞, that u /∈ Gq.
That is, for all n ∈ I,

sup
n∈I

[(
1
n

n∑

k=1

uq(k)

)1/q(
1
n

n∑

k=1

u(k)

)–1]q/(q–1)

= ∞. (27)

By taking the limit of both sides of (27) as q tends to 1, we have

sup
n∈I

[
exp

(
1
n

n∑

k=1

(
u(k)

1
n
∑n

k=1 u(k)

)
log

(
u(k)

1
n
∑n

k=1 u(k)

))]
= ∞.

This contradicts the assumption u ∈ G1, which implies that, for some 1 < q ≤ ∞, u ∈ Gq,
and

G1 ⊆
⋃

1<q≤∞
Gq. (28)

By (26) and (28), we have G1 =
⋃

1<q≤∞ Gq. Furthermore, by applying L’Hôpital’s rule and
limit rules, we have

lim
q→1

[u]Gq = lim
q→1

sup
n∈I

[(
1
n

n∑

k=1

uq(k)

)1/q(
1
n

n∑

k=1

u(k)

)–1]q/(q–1)

= sup
n∈I

lim
q→1

[(
1
n

n∑

k=1

uq(k)

)1/q(
1
n

n∑

k=1

u(k)

)–1]q/(q–1)
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= sup
n∈I

[
exp

(
1
n

n∑

k=1

(
u(k)

1
n
∑n

k=1 u(k)

)
log

(
u(k)

1
n
∑n

k=1 u(k)

))]

= [u]G1 ,

which is the desired result of the case (3). The proof is complete. �

Theorem 13 Let u be a positive weight, p be a nonnegative number. If u ∈ Ap, then u–1 ∈
Gp′–1.

Proof Assume that u ∈Ap, then

1
n

n∑

k=1

u(k) ≤ A

(
1
n

n∑

k=1

u1/(1–p)(k)

)1–p

. (29)

By Lemma 1, we have M–1u ≤M1u, then (29) becomes

(
1
n

n∑

k=1

(
u–1(k)

)1/(p–1)
)p–1

≤ A
1
n

n∑

k=1

u–1(k).

That is, u–1 ∈ Gp′–1. This completes our proof. �

In the next theorem, we prove the self-improving property of Gehring classes.

Theorem 14 Let u be a positive weight, q be a nonnegative number. If u ∈ Gq for q > 1,
then u ∈ Gq+ε , for some ε > 0.

Proof Assume that u ∈ Gq for q > 1, then

(
1
n

n∑

k=1

uq(k)

)1/q

≤ G
1
n

n∑

k=1

u(k).

By applying Theorem 2 we get u ∈Ap for some p, and property (2) in Theorem 6 implies
that uα ∈ Ap for α > 1 the smallest number satisfying u ∈ Gα and u1/(1–p) ∈ Gα (clearly,
q > α). Again, by applying Theorem 2, then uα ∈ Gs for some s. Without loss of generality,
we choose the largest s satisfying uα ∈ Gs(A). Then, by using the condition u ∈ Gα(B), it
satisfies

(
1
n

n∑

k=1

uαs(k)

)1/αs

≤ A1/α

(
1
n

n∑

k=1

uα(k)

)1/α

≤ A1/αB
1
n

n∑

k=1

u(k).

That is, u ∈ Gαs. The cases q < s and (q > s with q < αs) are the only valid cases of s and q
as otherwise there exists q/α > s satisfying the condition uα ∈ Gq/α , which contradicts the
assumption. Then u ∈ Gq+ε for some ε = αs – q > 0. The proof is complete. �

The next theorem presents the relation between the two classes G1 and A∞.
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Theorem 15 The statement

G1 = A∞ =
⋃

1<p≤∞
Ap =

⋃

1<q≤∞
Gq

holds.

Proof Assume that u ∈ G1, then, by Property (3) in Theorem 12, u ∈ Gq for some 1 <
q ≤ ∞. By Theorem 2, this is true if and only if u ∈ Ap for some p, which implies that
u ∈A∞. Hence, it is clear that A∞ = G1. The proof is complete. �

5 Some fundamental relations
In this section, we prove some transition and inclusion relations involving the Mucken-
houpt A∞ and Gehring Gq classes.

Theorem 16 Let u be a positive weight and p0 be a real number. Then u ∈ Gp0 if and only
if up0 ∈A∞.

Proof We start by assuming that up0 ∈ A∞ =
⋃

p<∞ Ap for a fixed 1 < p0 < ∞, then up0 ∈
Ap, for some 1 < p < ∞. That is, for all n ∈ I, there exists 1 < A < ∞, such that

1
n

n∑

k=1

up0 ≤ A

(
1
n

n∑

k=1

u
p0

1–p

)1–p

. (30)

Since p0/(1 – p) < 0 < 1, Lemma 1 implies that

(
1
n

n∑

k=1

u
p0

1–p

) 1–p
p0

≤ 1
n

n∑

k=1

u. (31)

By substituting (31) into (30), we have

1
n

n∑

k=1

up0 ≤ A

(
1
n

n∑

k=1

u

)p0

,

or equivalently

(
1
n

n∑

k=1

up0

)1/p0

≤ A1/p0

(
1
n

n∑

k=1

u

)
.

Hence, u ∈ Gp0 . Conversely, if we assume that u ∈ Gp0 , for a fixed 1 < p0 < ∞. Then there
exists 1 < G < ∞, such that for all n ∈ I

(
1
n

n∑

k=1

up0

)1/p0

≤ G

(
1
n

n∑

k=1

u

)
. (32)
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Theorem 14 implies that u ∈A∞. That is, there exists 1 < A < ∞, such that, for all n ∈ I, u
satisfies

(
1
n

n∑

k=1

u

)(
exp

1
n

n∑

k=1

log
1
u

)
≤ A. (33)

Then, by using (32) and (33), since p0 > 1, we have

(
1
n

n∑

k=1

up0

)(
exp

1
n

n∑

k=1

log
1

up0

)

=

(
1
n

n∑

k=1

up0

)(
exp

1
n

n∑

k=1

log
1
u

)p0

≤ Gp0

(
1
n

n∑

k=1

u

)p0(
exp

1
n

n∑

k=1

log
1
u

)p0

≤ (GA)p0 .

That is, up0 ∈A∞, which completes our proof. �

Now, we give a quantitative version of the above theorem, which gives some relations
between the norms of the classes A∞ and Gp.

Theorem 17 Let u be a positive weight and 1 < p < ∞. Then

[up]1/p
A∞

[u]A∞
≤ [u]1/p′

Gp ≤ [
up]1/p

A∞ . (34)

Proof By the definition of [u]Gp , we have for all n ∈ I

1
n

n∑

k=1

up ≤ [u]p/p′
Gp

[
1
n

n∑

k=1

u

]p

.

By multiplying both sides by ((1/n)
∑n

k=1 up(1–q′))q–1, for q < ∞, we obtain

1
n

n∑

k=1

up

(
1
n

n∑

k=1

up(1–q′)
)q–1

≤ [u]p/p′
Gp

[
1
n

n∑

k=1

u

(
1
n

n∑

k=1

up(1–q′)
) q–1

p
]p

. (35)

By taking the supremum of (35) over all n ∈ I, we have

sup
n∈I

1
n

n∑

k=1

up

(
1
n

n∑

k=1

up(1–q′)
)q–1

≤ [u]p/p′
Gp sup

n∈I

[
1
n

n∑

k=1

u

(
1
n

n∑

k=1

up(1–q′)
) q–1

p
]p

,

that is,

[
up]

Aq ≤ [u]p/p′
Gp

(
A p+q–1

p
(u)

)p. (36)
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By taking the limit as q tends to ∞, we have

[up]1/p
A∞

[u]A∞
≤ [u]1/p′

Gp , (37)

which is the first inequality. For the second inequality, by the definition of [up]1/p
Aq , we have

for all n ∈ I

( 1
n
∑n

k=1 up)1/p

1
n
∑n

k=1 u
=

( 1
n
∑n

k=1 up)1/p( 1
n
∑n

k=1 u
p

1–q )
q–1

p

1
n
∑n

k=1 u( 1
n
∑n

k=1 u
p

1–q )
q–1

p
. (38)

Now, by Jensen’s inequality since p/(1 – q) < 0 < 1, we see that

1
n

n∑

k=1

u
p

1–q ≥
(

1
n

n∑

k=1

u

) p
1–q

,

which implies that

1
1
n
∑n

k=1 u( 1
n
∑n

k=1 u
p

1–q )
q–1

p
≤ 1

1
n
∑n

k=1 u(( 1
n
∑n

k=1 u)
p

1–q )
q–1

p
≤ 1.

By using this in (38), we get

( 1
n
∑n

k=1 up)1/p

1
n
∑n

k=1 u
≤

(
1
n

n∑

k=1

up

(
1
n

n∑

k=1

u
p

1–q

)q–1)1/p

.

Taking the supremum of (38) over all n ∈ I, we have [u]1/p′
Gp ≤ [up]1/p

Aq . By taking the limit
as q tends to ∞, we have

[u]1/p′
Gp ≤ [

up]1/p
A∞ .

The proof is complete. �

Theorem 18 Let u be a positive weight and 1 < p < ∞. Then

max
{

[u]A∞ ,
[
u1–p′]p–1

A∞
} ≤ [u]Ap ≤ [u]A∞

[
u1–p′]p–1

A∞ . (39)

Proof For p ≤ q, we have [u]Ap ≥ [u]Aq , and thus

[u]A∞ ≤ [u]Ap . (40)
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Furthermore, for q < ∞, we have

[
u1–p′]p–1

Aq = sup
n∈I

{
1
n

n∑

k=1

u1–p′
(

1
n

n∑

k=1

u(1–p′)(1–q′)
)q–1}p–1

= sup
n∈I

{ 1
n
∑n

k=1 u( 1
n
∑n

k=1 u1–p′ )p–1

1
n
∑n

k=1 u( 1
n
∑n

k=1 u(1–p′)(1–q′))–(1–p)(1–q)

}

≤ sup
n∈I

1
n

n∑

k=1

u

(
1
n

n∑

k=1

u1–p′
)p–1

= [u]Ap . (41)

By taking the limit of (41) as q tends to ∞, we have

[
u1–p′]p–1

A∞ ≤ [u]Ap . (42)

By (40) and (42), then

max
{

[u]A∞ ,
[
u1–p′]p–1

A∞
} ≤ [u]Ap .

Now, for the second inequality, we have

1
n

n∑

k=1

u

(
1
n

n∑

k=1

u1–p′
)p–1

=
1
n

n∑

k=1

u

(
1
n

n∑

k=1

u1–q′
)q–1

×
(

1
n

n∑

k=1

u1–p′
(

1
n

n∑

k=1

u1–q′
) 1–q

p–1
)p–1

. (43)

Since 1 – q and 1 – q′ < 0, and since (see Lemma 1)

(
1
n

n∑

k=1

u–1

)–1

≤ 1
n

n∑

k=1

u,

we have

1
n

n∑

k=1

u1–p′
(

1
n

n∑

k=1

u1–q′
) 1–q

p–1

≤ 1
n

n∑

k=1

u1–p′
(

1
n

n∑

k=1

uq′–1

) q–1
p–1

=
1
n

n∑

k=1

u1–p′
(

1
n

n∑

k=1

u(1–p′)(q′–1)/(1–p′)
) q–1

p–1

. (44)

By setting r – 1 = (q – 1)/(p – 1), we have

r′ – 1 =
1

r – 1
=

p – 1
q – 1

=
q′ – 1
p′ – 1

.
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Hence, from (43) and (44), we have

1
n

n∑

k=1

u

(
1
n

n∑

k=1

u1–p′
)p–1

≤ 1
n

n∑

k=1

u

(
1
n

n∑

k=1

u1–q′
)q–1

×
[

1
n

n∑

k=1

u1–p′
(

1
n

n∑

k=1

u(1–p′)(1–r′)
)r–1]p–1

.

Thus by taking the supremum over all n ∈ I, we have

[u]Ap ≤ [u]Aq
[
u1–p′]p–1

Ar . (45)

By taking the limit of both sides of (45) as q tends to ∞, we have

[u]Ap ≤ [u]A∞
[
u1–p′]p–1

A∞ .

The proof is complete. �
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