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Abstract
This paper focuses on the stochastically exponential synchronization problem for one
class of neural networks with time-varying delays (TDs) and Markov jump parameters
(MJPs). To derive a tighter bound of reciprocally convex quadratic terms, we provide
an improved reciprocally convex combination inequality (RCCI), which includes some
existing ones as its particular cases. We construct an eligible stochastic
Lyapunov–Krasovskii functional to capture more information about TDs, triggering
signals, and MJPs. Based on a well-designed event-triggered control scheme, we
derive several novel stability criteria for the underlying systems by employing the new
RCCI and other analytical techniques. Finally, we present two numerical examples to
show the validity of our methods.
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1 Introduction
Neural Networks (NNs) have attracted great attention in recent decades owing to their
extensive application in many different fields, such as optimization and signal process-
ing [1–5], pattern recognition [6–10], parallel computing [11–15], and so forth. In the
implementation of such applications, the phenomenon of time-varying delays (TDs) is in-
evitably encountered due to the inherent communication time among neurons, the finite
switching speed of the amplifier [16–19], and other reasons. Furthermore, the structure
and parameters of NNs are often subject to random abrupt variations caused by the exter-
nal environment sudden change, the information latching [20], and so on. Markov jump
neural networks (MJNNs) with TDs, as a special kind of hybrid systems, are very suitable
to describe those complicated dynamic characteristics of NNs [21–24]. The stability is a
well-known important property of systems, but the existence of TDs and random abrupt
variations often lead to chaos, oscillation, and even instability [25]. In addition, fast con-
vergence of the networks is essential for realtime computation, and the exponential con-
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vergence rate is generally used to determine the speed of neural computations [26]. Thus
it is of great theoretical and practical importance to study the exponential stability for
MJNNs with TDs, and many fruitful results have been reported in the literature [27–32].

On the other hand, after the pioneer work [33], the problems of chaos synchronization
for NNs have gained considerable focus in recent decades [34–36], and many effective
control methods are designed to achieve exponential synchronization criteria for MJNNs
with TDs, such as adaptive feedback control [37–40], sampled-data control [41–44], quan-
tized output control [45–47], pinning control [48], impulsive control [49–56], and so on.
However, in these control methods, the data packets are transmitted periodically, which
implies that so many “unnecessary” data are also frequently sent. As a result, network re-
sources may not be effectively and reasonably utilized, which is undesirable in practice,
especially when the networks resources are limited. To reduce the “unnecessary” waste
of network resources, the event-triggered control scheme (ETCS) is proposed [57] and
developed [58–61]. [58] focused on the issue of exponential synchronization for chaotic
delayed NNs by a hybrid ETCS. [59] studied the synchronization problems of coupled
switched delayed NNs with communication delays via a discrete ETCS. By using an ETCS
with discontinuous sign terms, [60] obtained the global synchronization criteria for mem-
ristor NNs. [61] discussed the event-triggered synchronization problem for semi-Markov
NNs with TDs by using a generalized free-weighting-matrix integral inequality. However,
as far as the author knows, the issue about event-triggered exponential synchronization
for MJNNs with TDs has not been fully investigated, and there still remains much room
for improvement.

It is worth mentioning that in the literature [30–32, 34–36, 39, 40, 43, 44, 47, 48, 58–61],
reciprocally convex quadratic terms (RCQTs), that is, Gn(αi) = 1

αi
ζ T

i (t)�iζi(t), αi ∈ (0, 1),
i = 1, 2, 3, . . . , n, are often encountered when processing integral quadratic terms, such as
–
∫ t

t–τ (t) ξ̇ (s)�ξ̇ (s) ds, –
∫ t–τ (t)

t–τ
ξ̇ (s)�ξ̇ (s) ds, which play a crucial role in deriving less con-

servative stability criteria. The reciprocally convex combination inequality (RCCI), as a
powerful tool to estimate the bound of RCQTs, has been widely applied into the stability
analysis and control synthesize for various systems with TDs since it was introduced in
[62]. Then the RCCI in [62] with the case n = 2 was improved in [63–65]. However, as
reported in [65], it is still challenging to derive such an RCCI in [63–65] if Gn(αi) includes
more than three terms, that is, n ≥ 3. Consequently, motivated by the above discussion,
in this paper, we consider the event-triggered exponential synchronization problem for
MJNNs with TDs. First, we provide a more general RCCI, which includes several existing
ones as its particular cases. Then we construct an eligible stochastic Lyapunov–Krasovskii
functional (LKF) to capture more information about TDs and MJPs. Third, based on a
suitable LKF, with the help of a well-designed ETCS, we derive two novel exponential
synchronization criteria for the underlying systems by using the new RCCI and other an-
alytical techniques. Finally, we verify the effectiveness of our methods by two numerical
examples.

Notations: Let Z+ denote the set of nonpositive integers, R the set of real numbers, Rn

the n-dimensional real space equipped with the Euclidean norm ‖ · ‖, Rm×n the set of all
m × n real matrices, and S

n
+ and S

n the sets of symmetric positive definite and symmetric
matrices of Rn×n, respectively. The symbol “∗” in a block matrix signifies the symmetric
terms; col{· · · } and diag{· · · } express a column vector and a diagonal matrix, respectively.
For any matrix X ∈ R

n×n, H{X} means X + XT , and λmax(X) and λmin(X) stand for the



Liu et al. Advances in Difference Equations         (2021) 2021:74 Page 3 of 17

maximum and minimum eigenvalues of X, respectively. The zero and identity matrices of
appropriate dimensions are denoted by 0 and I , respectively; ēi = (0, . . . , 0, I︸︷︷︸

i

, 0, . . . , 0, ),

(i = 1, . . . , n).

2 Problem statement and preliminaries
Consider the following master–slave MJNNs with TDs:

⎧
⎨

⎩

ẋ(t) = –Bσ (t)x(t) + Aσ (t)g(x(t)) + Dσ (t)g(x(t – δ(t)),

φ(θ ) = x(t0 + θ ), θ ∈ [– max(δ,η), 0],
(1)

⎧
⎨

⎩

ẏ(t) = –Bσ (t)y(t) + Aσ (t)g(y(t)) + Dσ (t)g(y(t – δ(t)) + U (t),

ψ(θ ) = y(t0 + θ ), θ ∈ [– max(δ,η), 0],
(2)

where x(t) = col{x1(t), . . . , xn(t)} ∈ R
n and y(t) = col{y1(t), . . . , yn(t)} ∈ R

n are the neuron
state vectors of master system (1) and slave system (2), respectively, φ(θ ) and ψ(θ ) are the
initial values of systems (1) and (2), respectively, and g(·) = col{g1(·), . . . , gn(·)} ∈ R

n is the
nonlinear neuron activation function satisfying

λ–
l ≤ gl(�1) – gl(�2)

�1 – �2
≤ λ+

l , �1 �= �2, l = 1, 2, . . . , n, (3)

where λ–
l , λ+

l are known scalars, which can be positive, negative, and zero; U (t) ∈ R
n is

the control input of the slave system (2), Bσ (t) is a positive diagonal matrix, Aσ (t) and Dσ (t)

are the coefficient matrices of the connection weighted matrix and the time-varying de-
lay connection weight matrix, respectively, and {σ (t), t ≥ 0} is a continuous-time Markov
process taking values in a finite space N = (1, 2, . . . , N) and governed by

Pr
{
σ (t + �) = j | σ (t) = i

}
=

⎧
⎨

⎩

πij� + o(�), i �= j,

1 + πii� + o(�), i = j,
(4)

where � ≥ 0, lim�→0 o(�)/� = 0, πij ≥ 0 for i �= j ∈ N is the transition rate from mode i
at time t to mode j at time t + �, and πii = –

∑N
j=1,j �=i πij; δ(t) represents the time-varying

delay and satisfies

0 ≤ δ(t) ≤ δ, δ̇(t) ≤ μ, (5)

where δ and μ are known constants. To simplify some notations, for each σ (t) = i ∈ N ,
we denote Bσ (t) = Bi, Aσ (t) = Ai, and Dσ (t) = Di. Let r(t) = y(t) – x(t) be the error state. The
error dynamics can be described by

⎧
⎨

⎩

ṙ(t) = –Bir(t) + Aif (r(t)) + Dif (r(t – δ(t))) + U (t),

ϕ(θ ) = r(t0 + θ ), θ ∈ [– max(δ,η), 0],
(6)
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where f (r(·)) = g(y(·)) – g(x(·)) and ϕ(θ ) = φ(θ ) – ψ(θ ). From condition (3) we can readily
obtain that the function gi(·) satisfies

λ–
l ≤ fi(�))

�
≤ λ+

l , � �= 0, l = 1, 2, . . . , n. (7)

To mitigate unnecessary waste of network resources, in the following subsection, we
will introduce a discrete ETCS. Assume that the system state is sampled periodically and
that the sampling sequence is depicted by the set �s = {0, h, 2h, . . . , kh} with k ∈ Z+, where
h is a constant sampling period, and the event-triggered sequence is described by the
set �e = {0, b1h, b2h, . . . , bkh} ⊆ �s with bk ∈ Z+. To decide whether the current sam-
pling state is sent out to the controller, we adopt the following event-triggered condi-
tion:

bk+1h = bkh + lmh, (8)

where lm = min{l|eT (bkh + lh)�e(bkh + lh) ≥ λrT (bkh)�r(bkh)} with l ∈ Z+, λ ∈ [0, 1) is
the threshold, � ∈ S

n
+ is an unknown weighting matrix, and e(bkh + lh) = r(bkh + lh) –

r(bkh) expresses the error between the two states at the latest transmitted instant and
the current sampling one. We define the following event-triggered state-feedback con-
troller:

U (t) = Kir(bkh), ∀t ∈ Ik = [bkh, bk+1h). (9)

Similarly with [66], to depict clearly the ETCS, the triggering interval Ik can be decom-
posed as

⋃lm–1
l=0 [(bk + l)h, (bk + l + 1)h). Define the function

η(t) = t – (bk + l)h, t ∈ [(bk + l)h, (bk + l + 1)h). (10)

It is easy to see that η(t) is a linear piecewise function and satisfies 0 ≤ η(t) ≤ η, η̇(t) = 1.
By combining with (6), (9), and (10), for all t ∈ Ik , we have

⎧
⎨

⎩

ṙ(t) = –Bir(t) + Aif (r(t)) + Dif (r(t – δ(t))) + Ki[r(t – η(t)) – e(t – η(t))],

ϕ(θ ) = r(t0 + θ ), θ ∈ [– max(δ,η), 0].
(11)

We recall the following definition and lemmas, which play a key role in obtaining our
main results.

Definition 2.1 ([43]) System (2) is said to be stochastically exponentially synchronized in
the mean square sense with system (1) if system (11) is stochastically exponentially stable
in the mean square sense with convergence rate α > 0, that is, there exists M > 0 such that
for all t ≥ t0,

E
{∥
∥r(t)

∥
∥2} ≤ Me–α(t–t0)

E

{
sup

θ∈[– max{δ,η},0]

{∥
∥ϕ(θ )

∥
∥2,

∥
∥ϕ̇(θ )

∥
∥2}}. (12)
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Lemma 2.1 ([67]) For a matrix � ∈ S
n
+, scalars a < b, and a differentiable vector function

� (s) : [a, b] →R
n, we have the following inequality:

–(b – a)
∫ b

a
� T (s)�� (s) ds ≤ –

(∫ b

a
� (s) ds

)T

�

(∫ b

a
� (s) ds

)

– 3ϒT�ϒ , (13)

where ϒ =
∫ b

a � (s) ds – 2
b–a

∫ b
a
∫ b
θ

� (s) ds dθ .

Lemma 2.2 ([62]) For scalars α1,α2 ∈ (0, 1) satisfying α1 + α2 = 1 and matrices R1, R2 ∈ S
n
+

and Y ∈R
n×n, we have the following inequality:

diag
{

1
α1

R1,
1
α2

R2

}

≥
(

R1 Y
∗ R2

)

if

(
R1 Y
∗ R2

)

> 0. (14)

Lemma 2.3 For given matrices Wi ∈ S
n
+ and scales αi ∈ (0, 1) with

∑n
i=1 αi = 1, if there exist

matrices Yi ∈ S
n and Yij ∈R

n×n (i, j = 1, 2, . . . , n, i < j) such that

(
W̄i Yij

∗ Wj

)

≥ 0,

(
Wi Yij

∗ W̄j

)

≥ 0,

(
Wi Yij

∗ Wj

)

≥ 0, (15)

then we have the following inequality for any vectors ζi(t) ∈R
n:

n∑

i=1

1
αi

ζ T
i (t)Wiζi(t) ≥

n∑

i=1

ζ T
i (t)Ŵiζi(t) +

n∑

j>i=1

H
{
ζ T

i (t)Yijζj(t)
}

, (16)

where W̄i = Wi – 2Yi, W̄j = Wj – 2Yj, and Ŵi = Wi + (1 – αi)Yi.

Proof Let Gn(αi) =
∑n

i=1
1
αi

ζ T
i (t)Wiζi(t). We can obtain

Gn(αi) =
n∑

i=1

ζ T
i (t)Wiζi(t) +

n∑

j>i=1

Gw, (17)

where Gw = αj
αi

ζ T
i (t)Wiζi(t) + αi

αj
ζ T

j (t)Wjζj(t).
For αi ∈ (0, 1), it follows from (15) that

(
Wi – 2αiYi Yij

∗ Wj

)

≥ 0,

(
Wi Yij

∗ Wj – 2αjYj

)

≥ 0. (18)

By employing the Schur complement to (18) we have

0 ≤ diag
{
Wi – 2αiYi – YijW–1

j YT
ij ,Wj – 2αjYj – YT

ij W–1
i Yij

}

= diag{Wi – 2αiYi,Wj – 2αjYj} – diag
{
Yij,YT

ij
}

× diag
{
W–1

j ,W–1
i

} × diag
{
YT

ij ,Yij
}

. (19)
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Using the Schur complement again, from (19) it follows that

⎛

⎜
⎜
⎜
⎝

Wi – 2αiYi 0 Yij 0
∗ Wj – 2αjYj 0 YT

ij

∗ ∗ Wj 0
∗ ∗ ∗ Wi

⎞

⎟
⎟
⎟
⎠

≥ 0. (20)

Pre- and postmultiplying inequality (20) by col{√αj/αiζi(t),
√

αi/αjζj(t), –
√

αi/αjζj(t),
–
√

αj/αiζi(t)}, we have

Gw ≥
(

ζi(t)
ζj(t)

)T (
αjYi Yij

∗ αiYj

)(
ζi(t)
ζj(t)

)

. (21)

Combining (17)–(21), we can derive (16). The proof is completed. �

Remark 2.1 It is well known that the RCCI in [62] with n = 2 has been improved by the one
in [63–65], because the RCCI in [63–65] could derive much tighter upper bound of RCQTs
G2(αi). However, as reported in [65], it is still challenging to derive such an RCCI in [63–
65] if Gn(αi) includes more than three terms, that is, n ≥ 3. We clearly see that the RCCI
in Lemma 2.3 is becoming degenerate into the one in [62] if Yi = 0, Yij = Xij, which implies
that the RCCI in [62] can be seen as a case of Lemma 2.3. In other words, Lemma 2.3
improves the RCCI in [62] to some extent. Furthermore, when n = 2, Lemma 2.3 reduces
to the RCCI in [63–65], which implies that Lemma 2.3 extends that in [63–65]. Thus we
can say that an important issue mentioned in Remark 2.1 has been tackled. Moreover, by
comparing (16) and the RCCI in [62] we can easily find that Lemma 2.3 has more flexibility
than that in [62] due to the existence of the free matrices Yi. Besides, we clearly see that the
RCCI in Lemma 2.3 encompasses both merits of those in [62] and [63–65], simultaneously.
Thus the RCCI in Lemma 2.3 can estimate the bound of RCQTs Gn(αi) much tighter than
the those in [62] and [63–65].

3 Main result
Before describing the main results, for simplification, we define some vectors and matri-
ces:

ξ (t) = col
{

r(t), f
(
r(t)

)
, r
(
t – δ(t)

)
, f

(
r
(
t – δ(t)

))
, r(t – δ),

r
(
t – η(t)

)
, r(t – η), e

(
t – η(t)

)
,
∫ t

t–δ(t)

x(s)
δ(t)

ds,

∫ t–δ(t)

t–δ

r(s)
δ – δ(t)

ds,
∫ t

t–η(t)

r(s)
η(t)

ds,
∫ t–η(t)

t–η

r(s)
η – η(t)

ds, ṙ(t)
}

,

ζ11 = col{ē1 – ē3, ē1 + ē3 – ē9}, ζ12 = col{ē3 – ē5, ē3 + ē5 – ē10},
ζ21 = col{ē1 – ē6, ē1 + ē6 – ē11}, ζ22 = col{ē6 – ē7, ē6 + ē7 – ē12}.

Theorem 3.1 For given positive scalars δ, μ, η, α, and ω, system (11) is said to be stochasti-
cally exponentially stable in the mean square sens, if there exist matrices Pi, Si, Q1, Q2, Q3,
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Q4, Rν ∈ S
n
+, Xν , Yν ∈ S

2n (ν = 1, 2), X12, Y12 ∈ R
2n×2n, Ji, Gi ∈ R

n×n and diagonal matrices
M1, M2 ∈ S

n
+ such that

(
R1 – 2X1 X12

∗ R1

)

≥ 0,

(
R1 X12

∗ R1 – 2X2

)

≥ 0,

(
R1 X12

∗ R1

)

≥ 0, (22)

(
R2 – 2Y1 Y12

∗ R2

)

≥ 0,

(
R2 Y12

∗ R2 – 2Y2

)

≥ 0,

(
R2 Y12

∗ R2

)

≥ 0, (23)

�i|δ(t)∈[0,δ],η(t)∈[0,η] < 0, (24)

where �i = �1i + �2i + �3i + �4i + �5i, and

�1i = H
{

ēT
1 Piē13

}
+ ēT

1
(
αPi + �(Pj)

)
ē1 + (ē6 – ē8)T(

αSi + �(Sj)
)
(ē6 – ē8),

�2i = ēT
1 (Q1 + Q3 + Q4)ē1 + ēT

2 Q2ē2 – e–αδ(1 – μ)ēT
3 Q1ē3

– e–αδ(1 – μ)ēT
4 Q2ē4 – e–αδ ēT

5 Q3ē5 – e–αη ēT
7 Q4ē7,

�3i = δ2ēT
13R1ē13 – e–αδ

(
ζ11

ζ12

)T (
R1 + (1 – β1)Y1 X12

∗ R1 + (1 – β2)Y2

)(
ζ11

ζ12

)

+ η2ēT
13R2ē13 – e–αη

(
ζ21

ζ22

)T (
R2 + (1 – γ1)Y1 Y12

∗ R2 + (1 – γ2)Y2

)(
ζ21

ζ22

)

,

�4i = ω(ē6 – ē8)T�(ē6 – ē8) – ēT
8 �ē8 + H

{
(ē13 + ē1)T Gi(ē6 – ē8)

}

+ H
{

(ē13 + ē1)T Ji(–ē13 – Biē1 + Aiē2 + Diē4)
}

,

�5i = –H
{

(ē2 – �1ē1)T M1(ē2 – �2ē1) + (ē4 – �1ē3)T M2(ē4 – �2ē3)
}

,

�(Pj) =
N∑

j=1

πijPj, �(Sj) =
N∑

j=1

πijSj, Rν = diag{Rν , 3Rν} (ν = 1, 2, 3, 4).

In addition, the control gain is designed as Ki = J–1
i Gi, i ∈N .

Proof Consider the following stochastic Lyapunov–Krasovskii functional (LKF):

V
(
r(t),σ (t)

)
= V1

(
r(t),σ (t)

)
+ V2

(
r(t),σ (t)

)
+ V3

(
r(t),σ (t)

)
, (25)

where

V1
(
r(t),σ (t)

)
= rT (t)P

(
σ (t)

)
r(t) + rT (bkh)S

(
σ (t)

)
r(bkh), (26)

V2
(
r(t),σ (t)

)
=

∫ t

t–δ(t)
eα(s–t)[rT (s)Q1r(s) + f T(

r(s)
)
Q2f

(
r(s)

)]
ds

+
∫ t

t–δ

eα(s–t)rT (s)Q3r(s) ds +
∫ t

t–η

eα(s–t)rT (s)Q4r(s) ds, (27)

V3
(
r(t),σ (t)

)
= δ

∫ 0

–δ

∫ t

t+u
eα(s–t)ṙT (s)R1ṙ(s) ds du

+ η

∫ 0

–η

∫ t

t+u
eα(s–t)ẋT (s)R2ẋ(s) ds du. (28)
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Let L be the week infinitesimal operator acting on LKF (25):

LV
(
r(t),σ (t)

)
= lim

�→0

E{V (r(t + �),σ (t + �) = j) | r(t),σ (t) = i} – V (r(t), i)
�

.

Then along with the solution of system (11), we have

LV1
(
r(t), i

)
= 2ẋT (t)Pix(t) + xT (t)�(Pj)x(t) + xT (bkh)�(Sj)x(bkh)

= ξT (t)�1iξ (t) – αV1
(
r(t), i

)
, (29)

LV2
(
r(t), i

) ≤ rT (t)(Q1 + Q3 + Q4)r(t) + f T(
r(t)

)
Q2f

(
r(t)

)

– (1 – μ)e–αδrT(
t – δ(t)

)
Q1r

(
t – δ(t)

)

– (1 – μ)e–αδf T(
r
(
t – δ(t)

))
Q2f

(
r
(
t – δ(t)

))

– e–αδrT (t – δ)Q3r(t – δ)

– e–αηrT (t – η)Q4r(t – η) – αV2
(
r(t), i

)

= ξT (t)�2iξ (t) – αV2
(
r(t), i

)
, (30)

LV3
(
r(t), i

) ≤ ṙT (t)
[
δ2R1 + η2R2

]
ṙ(t) – αV3

(
r(t), i

)

– δ

∫ t

t–δ

eα(s–t)ṙT (s)R1ṙ(s) ds

– η

∫ t

t–η

eα(s–t)ṙT (s)R2ṙ(s) ds. (31)

For the last four integral quadratic terms, by utilizing Lemma 2.1, we obtain that

–δ

∫ t

t–δ

eα(s–t)ṙT (s)R1ṙ(s) ds ≤ –ξT (t)
{

e–αδ

β1
ζ T

11R1ζ11 +
e–αδ

β2
ζ T

12R1ζ12

}

ξ (t), (32)

–η

∫ t

t–η

eα(s–t)ṙT (s)R2ṙ(s) ds ≤ –ξT (t)
{

e–αη

γ1
ζ T

21R2ζ21 +
e–αη

γ2
ζ T

22R2ζ22

}

ξ (t), (33)

where β1 = δ(t)
δ

, β2 = δ–δ(t)
δ

, γ1 = η(t)
η

, and γ2 = η–η(t)
η

.
Applying Lemma 2.3, from (32)–(33), together with (22)–(23), it follows that

–δ

∫ t

t–δ

eα(s–t)ẋT (s)R2ẋ(s) ds

≤ ξT (t)

⎧
⎨

⎩
–e–αδ

(
ζ11

ζ12

)T (
R1 + (1 – β1)X1 X12

∗ R1 + (1 – β2)X2

)(
ζ11

ζ12

)⎫
⎬

⎭
ξ (t), (34)

–η

∫ t

t–η

eα(s–t)ẋT (s)R3ẋ(s) ds

≤ ξT (t)

⎧
⎨

⎩
–e–αη

(
ζ21

ζ22

)T (
R2 + (1 – γ1)Y 1 Y12

∗ R2 + (1 – γ2)Y 2

)(
ζ21

ζ22

)⎫
⎬

⎭
ξ (t). (35)
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Combining (31)–(35), we have

LV3
(
x(t), i

) ≤ ξT (t)�3iξ (t) – αV3
(
x(t), i

)
. (36)

In addition, when the current data need not be sent out, from the ETCS (8) we easily get
that

0 <

[
x(t – η(t))
e(t – η(t))

]T [
ω� –ω�

∗ (ω – 1)�

][
x(t – η(t))
e(t – η(t))

]

= ξT (t)
{
ω(ē6 – ē8)T�(ē6 – ē8) – ēT

8 �ē8
}
ξ (t). (37)

Furthermore, from (11), for any matrices Ji, Ki ∈R
n×n, we have

0 = 2
[
ẋ(t) + x(t)

]T Ji
[
–Bix(t) + Aif

(
x(t)

)
+ Dif

(
x
(
t – d(t)

))]

+ 2
[
ẋ(t) + x(t)

]T Gi
[
x
(
t – η(t)

)
– e

(
t – η(t)

)]

= ξT (t)
{
H
{

(ē13 + ē1)T Gi(ē6 – ē8)
}

+ H
{

(ē13 + ē1)T Ji(–ē13 – Biē1 + Aiē2 + Diē4)
}}

ξ (t). (38)

According to (7), there exist diagonal matrices M1, M2 ∈ S
n
+ such that

0 ≤ –2
[
f
(
r(t)

)
– �1r(t)

]T M1
[
f
(
r(t)

)
– �2r(t)

]

= ξT (t)
{

–H
{

(ē2 – �1ē1)T M1(ē2 – �2ē1)
}}

ξ (t), (39)

0 ≤ –2
[
f
(
r
(
t – δ(t)

))
– �1r

(
t – δ(t)

)]T M2
[
f
(
r
(
t – δ(t)

))
– �2r

(
t – δ(t)

)]

= ξT (t)
{

–H
{

(ē4 – �1ē3)T M2(ē4 – �2ē3)
}}

ξ (t), (40)

where �1 = diag{λ–
1 , . . . ,λ–

n} and �2 = diag{λ+
1 , . . . ,λ+

n}.
Therefore, combining (29)–(40) and (24), we obtain

E
{
LV

(
r(t), i

)} ≤ ξT (t)�iξ (t) – αE
{

V
(
r(t), i

)} ≤ –αE
{

V
(
r(t), i

)}
, (41)

which implies that

E
{

V
(
r(t), i

)} ≤ e–α(t–t0)
E
{

V
(
r(t0),σ0

)}
. (42)

From (25) we easily get that

E
{

V
(
r(t), i

)} ≥ λmin(Pi)E
{∥
∥r(t)

∥
∥2}, (43)

E
{

V
(
r(t0),σ0

)} ≤ (�1 + �2 + �3) sup
{∥∥ϕ(θ )

∥
∥2,

∥
∥ϕ̇(θ )

∥
∥2}, (44)

where

�1 = λmax(Pi + Si), � = diag{λ1, . . . ,λn},
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λν̃ = max
{∣∣λ–

ν̃

∣
∣,
∣
∣λ+

ν̃

∣
∣}, ν̃ = 1, 2, . . . , n,

�2 =
1 – e–αδ

α

[
λmax(Q1) + λmax(Q2)‖�‖2 + λmax(Q3)

]
+

1 – e–αη

α

[
λmax(Q4)

]
,

�3 =
(e–αδ + αδ – 1)

α2

[
δλmax(R1) + (δ + η)eαδλmax(R3)

]

+
(e–αη + αη – 1)

α2

[
ηλmax(R2) + (δ + η)eαηλmax(R4)

]
.

From (42)–(44) we have

E
{∥∥r(t)

∥
∥2} ≤ Me–α(t–t0)

E
{
sup

{∥∥φ(θ )
∥
∥2,

∥
∥φ̇(θ )

∥
∥2}}, (45)

where M = �1+�2+�3
λmin(Pi)

.
Therefore, according to the Definition 2.1, system (11) is stochastically exponentially

stable in the mean square sense with convergence rate α > 0. In addition, the control gain
is designed as Ki = J–1

i Gi, i ∈N . This completes the proof. �

Remark 3.1 It is found that LMI (24) in Theorem 3.1 depends on the TDs δ(t) and
η(t), which cannot be solved directly by Matlab LMI toolbox. Note that �i is an affine
function of variables δ(t) and η(t). We can deduce that condition (24) is satisfied for
all δ(t) ∈ [0, δ] and η(t) ∈ [0,η] if �i|δ(t)=0,η(t)=0, < 0, �i|δ(t)=0,η(t)=η, < 0, �i|δ(t)=δ,η(t)=0, < 0,
and �i|δ(t)=δ,η(t)=η < 0. On the other hand, the constructed LKF V (x(t), i) plays a key role
in deriving the event-triggered exponential synchronization result. Specifically, the trig-
gering signal state related to Markov jump parameters is considered in V1(r(t), i), and
the information about the TDs, neuron activation function, and the Virtual delay η are
taken into account in V2(x(t), i) and V3(x(t), i), which is more general than those given
in [39, 40, 43, 44, 47, 48, 58–61] and is helpful to obtain less conservative stability crite-
rion. Besides, in the proof of Theorem 3.1, we utilize a new RCCI to estimate the bound
of RCQTs, which was shown to be more tighter than those based on other RCCIs [62].
Meanwhile, the new RCCI contains more coupled information between δ(t) ∈ [0, δ] and
η(t) ∈ [0,η], which is effective in reducing the conservatism.

In what follows, as a particular case, when Markov jump parameters are not considered,
system (11) will be reduced to the following equation:

⎧
⎨

⎩

ṙ(t) = –Br(t) + Af (r(t)) + Df (r(t – δ(t))) + K[r(t – η(t)) – e(t – η(t))],

ϕ(θ ) = r(t0 + θ ), θ ∈ [– max(δ,η), 0].
(46)

Based on Theorem 3.1, we can readily derive the following criterion.

Theorem 3.2 For given positive scalars δ, μ, η, α, and ω, system (46) is exponentially stable
in the mean square sense if there exist matrices P, S, Q1, Q2, Q3, Q4, Rν ∈ S

n
+, Xν , Yν ∈ S

2n

(ν = 1, 2), X12, Y12 ∈R
2n×2n, J , G ∈ R

n×n and diagonal matrices M1, M2 ∈ S
n
+ such that

(
R1 – 2X1 X12

∗ R1

)

≥ 0,

(
R1 X12

∗ R1 – 2X2

)

≥ 0,

(
R1 X12

∗ R1

)

≥ 0, (47)
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(
R2 – 2Y1 Y12

∗ R2

)

≥ 0,

(
R2 Y12

∗ R2 – 2Y2

)

≥ 0,

(
R2 Y12

∗ R2

)

≥ 0, (48)

�|δ(t)∈[0,δ],η(t)∈[0,η] < 0, (49)

where � = �1 + �2 + �3 + �4 + �5, and

�1 = H
{

ēT
1 Pē13

}
+ ēT

1 (αP)ē1 + (ē6 – ē8)T (αS)(ē6 – ē8),

�2 = ēT
1 (Q1 + Q3 + Q4)ē1 + ēT

2 Q2ē2 – e–αδ(1 – μ)ēT
3 Q1ē3

– e–αδ(1 – μ)ēT
4 Q2ē4 – e–αδ ēT

5 Q3ē5 – e–αη ēT
7 Q4ē7,

�3 = δ2ēT
13R1ē13 – e–αδ

(
ζ11

ζ12

)T (
R1 + (1 – β1)Y1 X12

∗ R1 + (1 – β2)Y2

)(
ζ11

ζ12

)

+ η2ēT
13R2ē13 – e–αη

(
ζ21

ζ22

)T (
R2 + (1 – γ1)Y1 Y12

∗ R2 + (1 – γ2)Y2

)(
ζ21

ζ22

)

,

�4 = ω(ē6 – ē8)T�(ē6 – ē8) – ēT
8 �ē8 + H

{
(ē13 + ē1)T G(ē6 – ē8)

}

+ H
{

(ē13 + ē1)T J(–ē13 – Bē1 + Aē2 + Dē4)
}

,

�5i = –H
{

(ē2 – �1ē1)T M1(ē2 – �2ē1) + (ē4 – �1ē3)T M2(ē4 – �2ē3)
}

.

In addition, the control gain is designed as K = J–1G.

4 Numerical examples
In this section, we give two examples to demonstrate the effectiveness of our proposed
methods.

Example 4.1 Consider system (11) with the following parameters:

A1 =

(
2 –0.1

–5 3

)

, D1 =

(
–1.5 –0.1
–0.2 –2.5

)

, (50)

A2 =

(
2 –0.11

–5 3.2

)

, D2 =

(
–1.6 –0.1

–0.18 –2.4

)

, (51)

B1 = diag{1, 1}, B2 = diag{0.8, 1}, (52)

�– = diag{0, 0}, �+ = diag{0.5, 0.5},
δ = 0.2, μ = 0.2, η = 0.2, ω = 0.1, α = 0.15.

In this example, the generator matrix is taken as � =
( –3 3

5 –5

)
. Under these parame-

ters, by applying the LMI toolbox in MATLAB soft to solve LMIs (22)–(24) in The-
orem 3.1, the weighted matrix in ETCS and the control gain matrices are derived as
� = 1.0e + 04 × ( 7.2775 –0.1589

–0.1589 0.2102

)
, K1 =

( –0.7997 0.0642
2.1540 –1.4280

)
, and K2 =

( –0.7166 0.0637
2.1816 –1.3329

)
. Meanwhile,

the feasible solution matrices in Theorem 3.1 can be obtained:

P1 = 1.0e + 04 ×
(

2.7340 0.0260
0.0260 0.0556

)

, P2 = 1.0e + 04 ×
(

2.9535 0.0261
0.0261 0.0587

)

,
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Figure 1 Curve of x(t) without control for
Example 4.1 under r(0) = [–0.2; 0.3]

Figure 2 Release instants and intervals for
Example 4.1 under r(0) = [–0.2; 0.3]

S1 = 1.0e + 03 ×
(

4.9634 0.2343
0.2343 0.0426

)

, S2 = 1.0e + 03 ×
(

4.4595 0.2900
0.2900 0.0212

)

,

R1 = 1.0e + 04 ×
(

3.9397 –0.4725
–0.4725 0.2396

)

, R2 = 1.0e + 04 ×
(

3.7446 0.2189
0.2189 0.0150

)

,

to list a few. Clearly, the effectiveness of our method is illustrated here.
To reflect intuitively the feasibility and validity of the obtained result, when the neu-

ron activation function fi(x) = 0.5(|x + 1| – |x – 1|) and the time-varying delay δ(t) =
0.2 + 0.2 sin(t), we present Figs. 1–3, which show the state response of systems (11) with
parameters (50)–(51) under no any control and the well-designed ETCS (8), respectively.
Clearly, ETCS (8) is effective. Furthermore, it is not hard to see from Fig. 2 that the fre-
quency of control is reduced to large extent, which means that more network resources
are saved by using the ETCS.

Example 4.2 Consider system (46) with the following parameters:

A =

(
1 0.5

0.5 –1

)

, D =

(
–0.5 –0.1
0.6 0.8

)

, (53)

B = diag{0.3, 0.3}, �– = diag{0, 0}, �+ = diag{0.4, 0.8}, (54)

δ = 0.6, μ = 0.2, η = 0.5, ω = 0.2, α = 0.3.
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Figure 3 Curve of x(t) with ETCS for Example 4.1
under r(0) = [–0.2; 0.3]

Figure 4 Curve of x(t) without control for
Example 4.2 under r(0) = [–0.2; 0.3]

Under these parameters, by applying the LMI toolbox in MATLAB soft to solve LMIs
(47)–(49) in Theorem 3.2 the weighted matrix in ETCS and the control gain matrix are de-
rived as � =

( 731.9461 233.9629
233.9629 268.2341

)
and K =

( –0.6750 –0.1402
–0.0566 –0.3810

)
, respectively. Meanwhile, the feasible

solution matrices in Theorem 3.2 are obtained:

P =

(
443.1346 103.5289
103.5289 255.6189

)

, S =

(
3.1639 0.0759
0.0759 1.5234

)

,

R1 =

(
802.7726 256.7196
256.7196 311.9576

)

, R2 =

(
71.8761 2.5943
2.5943 14.0628

)

,

to list a few. Clearly, the effectiveness of our method provided in this paper is illustrated
here.

To reflect intuitively the feasibility and validity of the obtained result in this paper, when
the neuron activation function is fi(x) = 0.5(|x + 1| – |x – 1|) and the time-varying delay is
δ(t) = 0.4 + 0.2 cos(t), we present Figs. 4–6, which show the state response of systems (46)
with parameters (53)–(54) under no any control and the well-designed ETCS (8), respec-
tively. Clearly, ETCS (8) is effective. Furthermore, it is not hard to see from Fig. 5 that the
frequency of control is reduced to large extent, which means that more network resources
are saved by using the ETCS.

5 Conclusions
In this paper, we studied an event-triggered exponential synchronization problem for a
class of Markov jump neural networks with time-varying delay. To obtain a more tighter
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Figure 5 Release instants and intervals for
Example 4.2 under r(0) = [–0.2; 0.3]

Figure 6 Curve of x(t) with ETCS for Example 4.2
under r(0) = [–0.2; 0.3]

bound of reciprocally convex quadratic terms, we provided a general reciprocally con-
vex combination inequality, which included several existing ones as its particular cases.
Then we constructed a suitable Lyapunov–Krasovsikii functional by fully considering the
information about time-varying delay, triggering signals, and Markov jump parameters.
Based on a well-designed event-triggered control scheme, were presented two kinds of
novel exponential synchronization criteria for the studied systems by employing the new
reciprocally convex combination inequality and other analytical approaches. Finally, we
gave two numerical examples to show the effectiveness of our results. By the way, we ex-
pect that the methods proposed in this paper can be used in the future to investigate other
stability and control problems for various systems with mixed time-varying delays.
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