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Abstract
In this paper, we establish a new estimate for the degree of approximation of
functions f (x, y) belonging to the generalized Lipschitz class Lip((ξ1,ξ2); r), r ≥ 1, by
double Hausdorff matrix summability means of double Fourier series. We also deduce
the degree of approximation of functions from Lip((α,β); r) and Lip(α,β) in the form
of corollary. We establish some auxiliary results on trigonometric approximation for
almost Euler means and (C,γ ,δ) means.
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1 Introduction
The study of various summability means of double Fourier series have been done by several
authors, for example, Chow [2], Sharma [11], Łenski [6], and Ustina [15]. Dealing with the
first arithmetic means of double Fourier series, Hasegawa [4] obtained the following:

Theorem A If a continuous function f (x, y) of period 2π with respect to both x and y be-
longs to Lip(α,β), where 0 < α < l and 0 < β < 1, then

∣
∣σm,n(x, y) – f (x, y)

∣
∣ = O

(

m–α + n–β
)

uniformly in (x, y) as m and n independently tend to infinity.

If α = β = 1, then

∣
∣σm,n(x, y) – f (x, y)

∣
∣ = O

(

m–1 log m + n–1 log n
)

uniformly in (x, y) as m and n independently tend to infinity.
Siddiqui and Mohammadzadeh [12] investigated the approximation by Cesàro and B

means of double Fourier series. Stepanets [13, 14] has established estimates of approxima-
tion for certain classes of periodic functions and differentiable periodic functions of two
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variables by linear methods of summation of their Fourier sums. Móricz and Shi [8] proved
the following result for the approximation to continuous functions by Cesàro means of
double Fourier series.

Theorem B If f ∈ E(α,β), 0 < α, β ≤ 1, γ , δ ≥ 0, then

∥
∥σγ δ

mn(f , x, y) – f (x, y
∥
∥ = O

(
1

(m + 1)α
+

1
(n + 1)β

)

if 0 < α,β ≤ 1,

= O
(

1
(m + 1)α

+
log(n + 2)

(n + 1)

)

if 0 < α < β = 1,

= O
(

log(m + 2)
(m + 1)

+
log(n + 2)

(n + 1)

)

if α = β = 1.

The degree of approximation using Gauss–Weierstrass integrals was also investigated
by Khan and Ram [5]. Recently, error and bounds of certain bivariate functions by al-
most Euler means of double Fourier series for the functions of Lipschitz and Zygmund
classes was estimated by Rathor and Singh [9]. To find the approximation of functions
of two-dimensional torus, in this paper, we obtain a new estimate for trigonometric ap-
proximation of functions f (x, y) of generalized Lipschitz class by double Hausdorff matrix
summability method of double Fourier series. For other summability methods of approx-
imation, see [1] and [7].

2 Definitions and preliminaries
Let

∑∞
m=0

∑∞
n=0 gm,n be double series with the sequence of (m, n)th partial sums

sm,n =
m

∑

j=0

n
∑

k=0

gj,k .

A double Hausdorff matrix has the entries

hj,k
m,n =

(
m
j

)(
n
k

)

	
m–j
1 	n–k

2 μj,k ,

where {μj,k} is any real or complex sequence, and

	
m–j
1 	n–k

2 μj,k =
m–j
∑

w=0

n–k
∑

z=0

(–1)j+k
(

m – j
w

)(
n – k

z

)

μj+w,k+z.

If tH
m,n =

∑m
j=0

∑n
k=0 hj,k

m,nsj,k → g as m → ∞ and n → ∞, then
∑∞

m=0
∑∞

n=0 gm,n is said to be
summable to the sum g by the double Hausdorff matrix summability method [15].

A necessary and sufficient condition for double Hausdorff matrix summability method
to be regular is there exists a function χ (s, t) ∈ BV [0, 1] × [0, 1] such that

∫ 1

0

∫ 1

0

∣
∣dχ (s, t)

∣
∣ < ∞

and

μm,n =
∫ 1

0

∫ 1

0
smtn dχ (s, t),
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where χ (s, 0) = χ (s, 0+) = χ (0+, t) = χ (0, t) = 0, 0 ≤ s, t ≤ 1, and χ (1, 1) – χ (1, 0) – χ (0, 1) +
χ (0, 0) = 1 [10].

It is easy to see that the absolute value of the measure dχ (s, t) can me majorized by
K1K2 ds dt for some constants K1 and K2 (see [16]).

The important particular cases of double Hausdorff matrix summability means are as
follows:

1 Almost Euler summability means ((E, q1, q2) means) if μm,n = 1
(1+q1)m

1
(1+q2)n .

2 (E, 1, 1) means if q1 = 1 and q2 = 1 in (E, q1, q2) means.
3 (C,γ , δ) means if μm,n = 1

Aγ
m

1
Aδ

n
, where γ , δ ≥ –1 and Aγ

m =
(
γ +m

m
)

, Aδ
n =

(
δ+n

n
)

.
4 (C, 1, 1) means if γ = δ = 1 in (C,γ , δ) means.
Let f (x, y) be a Lebesgue-integrable function of period 2π with respect to both variables

x and y and summable in the fundamental square Q : (–π ,π )× (–π ,π ). The double Fourier
series of f (x, y) is given by

f (x, y) =
∞

∑

m=0

∞
∑

n=0

λm,n[am,n cos mx cos ny + bm,n sin mx cos ny

+ cm,n cos mx sin ny + dm,n sin mx cos ny]

(1)

with (m, n)th partial sums sm,n(f ; (x, y)), where

λm,n =

⎧

⎪⎪⎨

⎪⎪⎩

1/4 for m = n = 0,

1/2 for m > 0, n = 0 and m = 0, n > 0,

1 for m > 0, n > 0,

am,n = π–2
∫∫

Q
f (x, y) cos mx cos ny dx dy,

and similar expressions for bm,n, cm,n, and dm,n [3].
We define the Lr norm by

‖f ‖r =

⎧

⎨

⎩

{ 1
4π

∫ 2π

0
∫ 2π

0 |f (x, y)|r dx dy}1/r , r ≥ 1,

ess sup0≤x,y≤2π |f (x, y)|, r = ∞.

The degree of approximation of a function f : R2 → R by a trigonometric polynomial
[17]

tm,n(x, y) =
m

∑

j=0

n
∑

k=0

λm,n[aj,k cos mx cos ny + bj,k sin mx cos ny

+ cj,k cos mx sin ny + dj,k sin mx cos ny]

of order (m + n) is defined by

Em,n
(

f , Lr) = min
0≤x,y≤2π

‖tm,n – f ‖r .
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A function f : R2 →R of two variables x and y is said to belong to the class Lip(α,β) [4]
if

∣
∣f (x + u, y + v) – f (x, y)

∣
∣ = O

(|u|α + |v|β)

, 0 < α ≤ 1, 0 < β ≤ 1,

to the class Lip((α,β); r) if

{
1

4π

∫ 2π

0

∫ 2π

0

∣
∣f (x + u, y + v) – f (x, y)

∣
∣
r dx dy

}1/r

= O
(|u|α + |v|β)

, r ≥ 1,

and to the class Lip((ξ1, ξ2); r) if

{
1

4π

∫ 2π

0

∫ 2π

0

∣
∣f (x + u, y + v) – f (x, y)

∣
∣
r dx dy

}1/r

= O
(

ξ1(u) + ξ2(v)
)

, r ≥ 1,

where ξ1 and ξ2 are moduli of continuity, that is, nonnegative nondecreasing continuous
functions such that ξ1(0) = ξ2(0) = 0, ξ1(u1 + u2) ≤ ξ1(u1) + ξ1(u2), and ξ2(v1 + v2) ≤ ξ2(v1) +
ξ2(v2).

If ξ1(u) = uα and ξ2(v) = vβ , 0 < α ≤ 1, 0 < β ≤ 1, then the class Lip((ξ1, ξ2); r) coin-
cides with Lip((α,β); r). As r → ∞, Lip((α,β); r) reduces to Lip(α,β). Clearly, Lip(α,β) ⊆
Lip((α,β); r) ⊆ Lip((ξ1, ξ2); r).

We define the forward difference operator 	 as 	μk = μk – μk+1; also, 	n+1μk =
	(	nμk), k ≥ 0. We denote

φ(u, v) = (1/4)
[

f (x + u, y + v) + f (x + u, y – v) + f (x – u, y + v) + f (x – u, y – v)

– 4f (x, y)
]

,

MH
m(u) =

K1

2π

m
∑

j=0

∫ 1

0

(
m
j

)

sj(1 – s)m–j ds
sin(j + 1

2 )u
sin u

2
,

KH
n (v) =

K2

2π

n
∑

k=0

∫ 1

0

(
N
K

)

tk(1 – t)n–k dt
sin(k + 1

2 )v
sin v

2
.

3 Result
The object of this paper is obtaining the degree of approximation of functions f (x, y) of
generalized Lipschitz class by double Hausdorff matrix summability means of its double
Fourier series:

Theorem 1 If f (x, y) is a 2π periodic function with respect to both variables x and y,
Lebesgue integrable in (–π ,π ) × (–π ,π ) and belonging to the class Lip((ξ1, ξ2); r) (r ≥ 1),
then the degree of approximation of f (x, y) by double Hausdorff matrix summability means

tH
m,n =

m
∑

j=0

n
∑

k=0

∫ 1

0

∫ 1

0

(
m
j

)(
n
k

)

sj(1 – s)m–jtk(1 – t)n–k dχ (s, t)sj,k
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of double Fourier series (1) satisfies

∥
∥tH

m,n – f
∥
∥

r = O
(

1
(m + 1)

∫ π

1
m+1

ξ1(u)
u2 du +

1
(n + 1)

∫ π

1
n+1

ξ2(v)
v2 dv

)

for m, n = 0, 1, 2, . . . .

(2)

4 Lemmas
For the proof of our theorems, we need the following lemmas.

Lemma 1 |MH
m(u)| = O(m + 1) for 0 < u ≤ 1

m+1 , and |KH
n (v)| = O(n + 1) for 0 < v ≤ 1

n+1 .

Proof Since | sin mu| ≤ mu for 0 < u ≤ 1
m+1 and sin(u/2) ≥ (u/π ), we have

∣
∣MH

m(u)
∣
∣ =

∣
∣
∣
∣
∣

K1

2π

m
∑

j=0

∫ 1

0

(
m
j

)

sj(1 – s)m–j ds
sin(j + 1

2 )u
sin u

2

∣
∣
∣
∣
∣

=
K1

2π

m
∑

j=0

∫ 1

0

(
m
j

)

sj(1 – s)m–j ds
| sin(j + 1

2 )u|
| sin u

2 |

≤ K1

2π

m
∑

j=0

∫ 1

0

(
m
j

)

sj(1 – s)m–j ds
(j + 1

2 )u
| u
π
|

= K1π

(

m +
1
2

)∫ 1

0

m
∑

j=0

(
m
j

)

sj(1 – s)m–j ds

= K1π

(

m +
1
2

)∫ 1

0
(s + 1 – s)m ds

= O(m + 1).

Similarly, for 0 < v ≤ 1
n+1 ,

∣
∣KH

n (v)
∣
∣ = O(n + 1).

�

Lemma 2 |MH
m(u)| = O( 1

(j+1)u2 ) for 1
m+1 < u ≤ π , and |KH

n (v)| = O( 1
(k+1)v2 ) for 1

n+1 < v ≤ π .

Proof Since sin(m + 1)u ≤ 1 for 1
m+1 < u ≤ π and sin(u/2) ≥ (u/π ), we get

∣
∣
∣
∣
∣

m
∑

j=0

∫ 1

0

(
m
j

)

sj(1 – s)m–jei(j+ 1
2 )u ds

∣
∣
∣
∣
∣

=
∫ 1

0
eiu/2

m
∑

j=0

(
m
j

)

sj(1 – s)m–jeiju ds

=
∫ 1

0
eiu/2(1 – s + seiu)m ds

= O
(

1
(m + 1)

)(
eiu/2(ei(m+1)u – 1)

eiu – 1

)

.

Equating the imaginary parts of both sides, we get

∣
∣
∣
∣
∣

m
∑

j=0

∫ 1

0

(
m
j

)

sk(1 – s)m–j sin

(

k +
1
2

)

ds

∣
∣
∣
∣
∣

= O
(

1
(m + 1)u

)

.
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Therefore

∣
∣MH

m(u)
∣
∣ =

∣
∣
∣
∣
∣

K1

2π

m
∑

j=0

∫ 1

0

(
m
j

)

sj(1 – s)m–j sin(j + 1
2 )u

sin u
2

ds

∣
∣
∣
∣
∣

≤ K1

2u

∣
∣
∣
∣
∣

m
∑

j=0

∫ 1

0

(
m
j

)

sj(1 – s)m–j sin

(

j +
1
2

)

u ds

∣
∣
∣
∣
∣

= O
(

1
(m + 1)u2

)

.

Similarly, for 1
n+1 < v ≤ π ,

∣
∣KH

n (v)
∣
∣ = O

(
1

(n + 1)v2

)

. �

Lemma 3 If f (x, y) ∈ Lip((ξ1, ξ2); r) (r ≥ 1), then ‖φ(u, v))‖r = O(ξ1(u) + ξ2(v)).

Proof Clearly,

∣
∣φ(u, v)

∣
∣ =

1
4
∣
∣f (x + u, y + v) + f (x + u, y – v) + f (x – u, y + v) + f (x – u, y – v) – 4f (x, y)

∣
∣

≤ 1
4
[∣
∣f (x + u, y + v) – f (x, y)

∣
∣ +

∣
∣f (x + u, y – v) – f (x, y)

∣
∣

+
∣
∣f (x – u, y + v) – f (x, y)

∣
∣ +

∣
∣f (x – u, y – v) – f (x, y)

∣
∣
]

,
∥
∥φ(u, v)

∥
∥

r ≤ 1
4
[∥
∥f (x + u, y + v) – f (x, y)

∥
∥

r +
∥
∥f (x + u, y – v) – f (x, y)

∥
∥

r

+
∥
∥f (x – u, y + v) – f (x, y)

∥
∥

r +
∥
∥f (x – u, y – v) – f (x, y)

∥
∥

r

]

= O
(

ξ1(u) + ξ2(v)
)

. �

5 Proof of Theorem 1
The (m, n)th partial sum of the double Fourier series (1) is given by

sm,n
(

f ; (x, y)
)

– f (x, y) =
1

4π2

∫ π

0

∫ π

0
φ(u, v)

sin(m + 1
2 )u sin(n + 1

2 )v
sin u

2 sin v
2

du dv.

Denoting the double Hausdorff matrix sums of sm,n by tH
m,n, we have

tH
m,n(x, y) – f (x, y) =

m
∑

j=0

n
∑

k=0

hj,k
m,n

{

sj,k
(

f ; (x, y)
)

– f (x, y)
}

=
∫ π

0

∫ π

0
φ(u, v)

m
∑

j=0

n
∑

k=0

hj,k
m,n

sin(j + 1
2 )u sin(k + 1

2 )v
sin u

2 sin v
2

du dv

=
∫ π

0

∫ π

0
φ(u, v)MH

m(u)KH
n (v) du dv, (3)
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∥
∥tH

m,n – f
∥
∥

r =
∫ π

0

∫ π

0

∥
∥φ(u, v)

∥
∥

rMH
m(u)KH

n (v) du dv

=
(∫ 1

m+1

0

∫ 1
n+1

0
+

∫ 1
m+1

0

∫ π

1
n+1

+
∫ π

1
m+1

∫ 1
n+1

0
+

∫ π

1
m+1

∫ π

1
n+1

)

(4)

∥
∥φ(u, v)

∥
∥

rMH
m(u)KH

n (v) du dv

= I1 + I2 + I3 + I4, say. (5)

Using Lemmas 1 and 3, we obtain

|I1| =
∫ 1

m+1

0

∫ 1
n+1

0

∥
∥φ(u, v)

∥
∥

rMH
m(u)KH

n (v) du dv

= O
(∫ 1

m+1

0

∫ 1
n+1

0

(

ξ1(u) + ξ2(v)
)

(m + 1)(n + 1) du dv
)

= O
(

(m + 1)(n + 1)
∫ 1

m+1

0

∫ 1
n+1

0

(

ξ1(u) + ξ2(v)
)

du dv
)

= O
[

(m + 1)(n + 1)
(∫ 1

m+1

0

∫ 1
n+1

0
ξ1(u) du dv +

∫ 1
m+1

0

∫ 1
n+1

0
ξ2(v) du dv

)]

= O
[

(m + 1)(n + 1)
(∫ 1

m+1

0

ξ1(u)
n + 1

du +
∫ 1

m+1

0

ξ2( 1
(n+1) )

n + 1
dv

)]

= O
[

(m + 1)(n + 1)
(

ξ1( 1
(m+1) )

(m + 1)(n + 1)
+

ξ2( 1
(n+1) )

(m + 1)(n + 1)

)]

= O
(

ξ1

(
1

m + 1

)

+ ξ2

(
1

n + 1

))

.

Again by Lemmas 1–3, we have

|I2| = O
[∫ 1

m+1

0

∫ π

1
n+1

(

ξ1(u) + ξ2(v)
) (m + 1)

(n + 1)v2 du dv
]

= O
[

(m + 1)
(n + 1)

(∫ 1
m+1

0
ξ1(u) du

∫ π

1
n+1

dv
v2 +

∫ 1
m+1

0
du

∫ π

1
n+1

ξ2(v)
v2 dv

)]

= O
[

(m + 1)
(n + 1)

(

ξ1

(
1

m + 1

)
1

(m + 1)

(

(n + 1) –
1
π

)

+
1

(m + 1)

∫ π

1
n+1

ξ2(v)
v2 dv

)]

= O
(

ξ1

(
1

m + 1

)

+
1

(n + 1)

∫ π

1
n+1

ξ2(v)
v2 dv

)

. (6)

Similarly,

|I3| = O
[∫ π

1
m+1

∫ 1
n+1

0

(

ξ1(u) + ξ2(v)
) (n + 1)

(m + 1)u2 du dv
]

= O
[

(n + 1)
(m + 1)

(∫ π

1
m+1

ξ1(u)
u2 du

∫ 1
n+1

0
dv +

∫ π

1
m+1

du
u2

∫ 1
n+1

0
ξ2(v) dv

)]

= O
(

1
(m + 1)

∫ π

1
m+1

ξ1(u)
u2 du + ξ2

(
1

n + 1

))

. (7)
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Also, using Lemmas 2 and 3, we get

|I4| = O
[∫ π

1
m+1

∫ π

1
n+1

(

ξ1(u) + ξ2(v)
) 1

(m + 1)u2
1

(n + 1)v2 du dv
]

= O
[

1
(m + 1)(n + 1)

(∫ π

1
m+1

ξ1

u2 du
∫ π

1
n+1

1
v2 dv +

∫ π

1
m+1

1
u2 du

∫ π

1
n+1

ξ2

v2 dv
)]

= O
(

1
(m + 1)

∫ π

1
m+1

ξ1(u)
u2 du +

1
(n + 1)

∫ π

1
n+1

ξ2(v)
v2 dv

)

. (8)

Next,

1
(m + 1)

∫ π

1
m+1

ξ1(u)
u2 du ≥ 1

(m + 1)
ξ1

(
1

m + 1

)∫ π

1
m+1

1
u2 dt

=
1

(m + 1)
ξ1

(
1

m + 1

){

–
1
u

}π

1
m+1

= ξ1

(
1

m + 1

){

1 –
1

(m + 1)π

}

≥ 1
2
ξ1

(
1

m + 1

)

,

or ξ1

(
1

m + 1

)

= O
(

1
(m + 1)

∫ π

1
m+1

ξ1(u)
u2 dt

)

. (9)

Similarly,

ξ2

(
1

(n + 1)

)

= O
(

1
(n + 1)

∫ π

1
n+1

ξ2(v)
v2 dt

)

. (10)

Combining equations (5)–(10), we have

∥
∥tH

m,n – f
∥
∥

r = O
(

1
(m + 1)

∫ π

1
m+1

ξ1(u)
u2 du +

1
(n + 1)

∫ π

1
n+1

ξ2(v)
v2 dv

)

.

This completes the proof of Theorem 1.

6 Corollaries
From the main theorem we derive the following corollaries.

Corollary 1 If f (x, y) is a 2π periodic function with respect to both variables x and y,
Lebesgue integrable in (–π ,π ) × (–π ,π ) and belonging to the class Lip((α,β); r) (r ≥ 1),
then the degree of approximation of f (x, y) by means tH

m,n of double Fourier series (1) satisfies

∥
∥tH

m,n – f
∥
∥

r =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

O((m + 1)–α + (n + 1)–β ), 0 < α < 1, 0 < β < 1,

O((m + 1)–α + log(n+1)π
(n+1) ), 0 < α < 1,β = 1,

O( log(m+1)π
(m+1) + (n + 1)–β ), α = 1, 0 < β < 1,

O( log(m+1)π
(m+1) + log(n+1)π

(n+1) ), α = β = 1,

for m, n = 0, 1, 2, . . . .
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Corollary 2 If f (x, y) is a 2π periodic function with respect to both variables x and y,
Lebesgue integrable in (–π ,π )×(–π ,π ) and belonging to the class Lip(α,β), then the degree
of approximation of f (x, y) by double Hausdorff matrix summability means tH

m,n of double
Fourier series (1) satisfies

∥
∥tH

m,n – f
∥
∥∞ =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

O((m + 1)–α + (n + 1)–β ), 0 < α < 1, 0 < β < 1,

O((m + 1)–α + log(n+1)π
(n+1) ), 0 < α < 1,β = 1,

O( log(m+1)π
(m+1) + (n + 1)–β ), α = 1, 0 < β < 1,

O( log(m+1)π
(m+1) + log(n+1)π

(n+1) ), α = β = 1,

for m, n = 0, 1, 2, . . . .

Corollary 3 If f (x, y) is a 2π periodic function with respect to both variables x and y,
Lebesgue integrable in (–π ,π ) × (–π ,π ) and belonging to the class Lip((ξ1, ξ2); r), then the
degree of approximation of f (x, y) by almost Euler summability means

tE
m,n =

1
(1 + q1)m

1
(1 + q2)n

m
∑

j=0

n
∑

k=0

(
m
j

)(
n
k

)

qm–j
1 qn–k

2 sj,k

of double Fourier series (1) satisfies

∥
∥tE

m,n – f
∥
∥

r = O
(

1
(m + 1)

∫ π

1
m+1

ξ1(u)
u2 du +

1
(n + 1)

∫ π

1
n+1

ξ2(v)
v2 dv

)

for m, n = 0, 1, 2, . . . .

Corollary 4 For γ , δ ≥ –1, the Cesàro means σ
γ ,δ
m,n of order γ and δ, that is, (C,γ , δ) means

of double Fourier series, are given by

σγ ,δ
m,n =

1
Aγ

m

1
Aδ

n

m
∑

j=0

n
∑

k=0

Aγ –1
m–j A

δ–1
n–ksj,k ,

where Aγ
m =

(
γ +m

m
)

and Aδ
n =

(
δ+n

n
)

.
If f (x, y) is a 2π periodic function with respect to both variables x and y, Lebesgue in-

tegrable in (–π ,π ) × (–π ,π ) and belonging to the class Lip((ξ1, ξ2); r), then the degree of
approximation of f (x, y) by (C,γ , δ) means of double Fourier series (1), satisfies

∥
∥σγ ,δ

m,n – f
∥
∥

r = O
(

1
(m + 1)

∫ π

1
m+1

ξ1(u)
u2 du +

1
(n + 1)

∫ π

1
n+1

ξ2(v)
v2 dv

)

for m, n = 0, 1, 2, . . . .

7 Conclusion
We established the degree of approximation of a function f (x, y) belonging to the general-
ized Lipschitz class by double Hausdorff matrix summability means of its double Fourier
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series in the form of equation (2). If ξ1 = uα and ξ2 = vβ , then Theorem 1 reduces to Corol-
lary 1, and as r → ∞, Corollary 1 reduces to Corollary 2. Independent proofs of Corol-
laries 1–4 can be developed along the same lines as that of Theorem 1. Results similar
to Corollaries 3 and 4 can be derived for (E, 1, 1) means and (C, 1, 1) means of its dou-
ble Fourier series. In this way, we can obtain some more different results by changing
ξ1, ξ2, and μm,n under given conditions. For functions f (x, y) belonging to the Zygmund
classes Zyg(α,β) and Zyg(α,β ; p) discussed in [9], the degree of approximation using dou-
ble Hausdorff matrix summability means and hence almost Euler means of its double
Fourier series can be obtained similarly to Theorem 1.
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