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Abstract
In this paper an SIR deterministic mathematical model for co-infection of dengue and
leptospirosis is proposed. We use a compartment model by using ordinary differential
equations. The positivity of future solution of the model, the invariant region, and the
stability of disease-free equilibrium point as well as endemic equilibrium point are
studied. To study the stability of the equilibria, a basic reproduction number is
obtained by using the next generation matrix. The robustness of the model is also
investigated. To identify the effect of each parameter on the expansion or control of
the diseases, sensitivity analysis is performed. The effects of treating dengue infected
only, leptospirosis infected only, and co-infected individuals have been identified by
using the numerical simulation. Therefore, increasing the rate of recovery and
decreasing the contact rate of dengue, leptospirosis, and their co-infection have a
great influence in fighting dengue, leptospirosis, and their co-infection in the
community.

Keywords: Confection; Dengue fever; Leptospirosis; Stability analysis; Numerical
simulation

1 Introduction
Dengue is the world’s fastest spreading mosquito transmitted infectious disease. An es-
timated 50 million dengue infections occur annually, and nearly 2.5 billion people live in
regions with potential risk of dengue transmission [1–3]. Roughly half of the world’s pop-
ulation probably lives in regions ecologically suitable for dengue transmission [3]. Dengue
is transmitted to humans by mosquitoes of Aedes species, which thrive around the globe
in tropical and subtropical urban centers [1, 2]. The virus is transmitted by the infected fe-
male mosquito called Aedes aegypti [3]. There are four serotypes, DENV1–DENV4 [2, 3].
On the other hand, a zoonotic bacterial disease leptospirosis is one of the most significant
neglected tropical bacterial diseases and one of the leading zoonotic causes of morbidity in
the world [1, 4]. The most important reservoirs are small mammals, with large herbivores
as additional important sources of infection. Pathogenic species of Leptospira were iso-
lated from hundreds of mammalian species including bats and pinnipeds [5]. Leptospiro-
sis is a global occurrence particularly in tropical and subtropical countries [5, 6]. It mainly
affects vulnerable populations, with an estimated global annual incidence of 1.03 million
people and 58.900 deaths [4, 6]. It is transmitted by contact with infected animal prod-
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ucts and with water, wet surfaces contaminated with animal urine [6]. Leptospirosis and
dengue co-infections (LDCI) have been reported in many countries [7–10]. Co-infections
occur due to simultaneous transmission of both these infections during the rainy season,
and both of these infections are characterized by fever with myalgia.

Mathematical modeling has a great role in describing the dynamics of infectious dis-
eases in a community. Several scholars have developed different models for dengue, lep-
tospirosis, and their co-infection with other diseases to study their dynamics. For example,
many mathematical models have been developed to understand dengue [11–16] and lep-
tospirosis [17–20]. Also some co-infection models for dengue and chikungunya [21, 22]
and for dengue–Zika [23, 24] have been proposed and analyzed. However, to the best of
our knowledge, no one has investigated co-infection of dengue and leptospirosis. There-
fore, in this paper we are interested in filling this gap.

The paper is organized as follows: Sect. 2 is devoted to the description and formulation
of the model. In Sect. 3, the analysis of dengue only model, leptospirosis only model, and
the co-infection model is performed. In Sect. 4 numerical simulations to give a better
interpretation of the analytical results are reported. Our discussion and conclusion are
presented in Sect. 5.

2 Model description and formulation
In this paper, we consider a deterministic mathematical model for co-infection of dengue
and leptospirosis in a human population. The total population is divided into seven sub-
classes, which are susceptible population (S), dengue infectious (Id), leptospirosis infec-
tious (Il), dengue and leptospirosis co-infectious (Idl), dengue recovered (Rd), leptospirosis
recovered (Rl), and dengue leptospirosis co-infectious recovered (Rdl). Each vector popu-
lation of both diseases is also divided into two susceptible vectors of dengue (Svd), infected
vector of dengue (Ivd), susceptible vector of leptospirosis (Svl), and infected vector of lep-
tospirosis (Ivl).

Susceptible are recruited with the rate of � through birth or immigration, and their
number increases from individuals that come from sub-classes of dengue recovered, lep-
tospirosis recovered, and co-infectious recovered by losing their temporary immunity at
a rate of σ1, σ2, and σ3, respectively.

The entire susceptible population join Id compartment, when individuals can get dengue
with contact rate of β1 from a dengue only infected vectors. In a similar way, individuals
can get leptospirosis by the contact rate of α1 from a leptospirosis only infected or co-
infected person with force of infection of leptospirosis α1(Il + Idl) or by the contact rate α2

from the infected vector of leptospirosis (Ivl) and join Il compartment.
Dengue only infected individuals also get an additional leptospirosis infection by the

contact rate α1 from a leptospirosis only infected and co-infected person with force of
infection of leptospirosis α1(Il + Idl) or by the contact rate α2 from the infected vector of
leptospirosis (Ivl) and join co-infected compartment (Idl). On the other hand, leptospirosis
only infected individuals get an additional dengue infection by the contact rate β1 from
the infected vector of dengue (Ivd) and join co-infected compartment (Idl).

Dengue only infected individuals recover with the rate of γ1 and join dengue only re-
covered compartment (Rd). In a similar way, leptospirosis only infected individuals also
recover with the rate of γ2 and join leptospirosis only recovered compartment (Rl). The
co-infected compartment also recovers with ε rate, but those individuals either recover
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Table 1 Description of parameters of co-infection model (1)

Parameter Description

� Human recruitment rate
� Dengue vector recruitment rate
	 Leptospirosis vector recruitment rate
β1 Rate of transmissibility of leptospirosis b/n dengue infected human and leptospirosis vector contact
α1 Transmission rate from leptospirosis only infected to the susceptible human population
α2 Transmission rate from leptospirosis vector to susceptible human population
δ1 Disease induced death rate of human due to leptospirosis only
δ2 Disease induced death rate of animal due to leptospirosis only
σ1 Dengue disease waning immunity
σ2 Leptospirosis disease waning immunity
σ3 Dengue–leptospirosis disease waning immunity
μ Natural death rate of human population
μvd Natural death rate of dengue vector
μvl Natural death rate of leptospirosis vector
ρ1 Transmission rate from dengue only infected human to susceptible dengue vector population
ρ2 Transmission rate from leptospirosis only infected human to susceptible leptospirosis vector population
γ1 Rate of recovery from dengue disease
γ2 Rate of recovery from dengue disease
ε Rate of recovery from dengue–leptospirosis co-infection diseases
� Mortality rate related to leptospirosis vector due to the disease

only from dengue disease and join dengue only recovered compartment with probability
of εη, or recover only from leptospirosis only disease and join leptospirosis only recov-
ered compartment with probability of εk(1 – η), or recover from both diseases and join
co-infected recover compartment with probability of g = ε(1 – k)(1 – η). In all compart-
ments μ is a natural death rate of human population. Moreover, δ1 is a dengue only caused
death rate, and δ2 is a leptospirosis caused death rate. � and 	 are the recruitment rates for
vector population of dengue and leptospirosis, respectively. The leptospirosis and dengue
vector populations have the natural death rate μvl and μvd , respectively. The description
of parameters of the model are found in Table 1.

With regards to the above considerations, we have the compartmental flow diagram
shown in Fig. 1. From the flow chart, the model will be governed by the following system
of differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = � + σ1Rd + σ2RL + σ3Rdl – (cβ1Ivd + α1(Il + Idl) + α2Ivl + μ)S,
dId
dt = cβ1IvdS – (α1(Il + Idl) + α2Ivl + μ + δ1 + γ1)Id,

dIl
dt = (α1(Il + Idl) + α2Ivl)S – (cβ1Ivd + μ + δ2 + γ2)Il,
dIdl
dt = (α1(Il + Idl) + α2Ivl)Id + cβ1IvdIl – (ε + μ + δ1 + δ2)Idl,

dRd
dt = γ1Id + εηIdl – (μ + σ1)Rd,

dRl
dt = γ2Il + εk(1 – η)Idl – (μ + σ2)Rl,

dRdl
dt = gIdl – (μ + σ3)Rdl,

dSvd
dt = � – cρ1IdSvd – μvdSvd,

dIvd
dt = cρ1IdSvd – μvdIvd,

dSvl
dt = 	 – ρ2IlSvl – μvlSvl,

dIvl
dt = ρ2IlSvl – μvlIvl

(1)
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Figure 1 Flow chart for the transmission dynamics of the co-infection of dengue and leptospirosis

with the initial condition S(0) = S0 ≥ 0, Id(0) = Id,0 ≥ 0, Il(0) = Il,0 ≥ 0, Idl(0) = Idl,0 ≥ 0,
Rd(0) = Rd,0 ≥ 0, Rl(0) = Rl,0 ≥ 0, Rdl(0) = Rdl,0 ≥ 0, Svd(0) = Svd,0 ≥ 0, Ivd(0) = Ivd,0 ≥ 0,
Svl(0) = Svl,0 ≥ 0, Ivl(0) = Ivl,0 ≥ 0.

3 Qualitative analysis
In this section, for simplification of the work, we split the full model into sub-models,
which are dengue and leptospirosis only models. The qualitative behavior of the sub-
model is studied first and the full model follows.

3.1 Dengue fever only model
To get this model from equation (1), we set Il = Idl = Rl = Rdl = 0, σ2 = σ3 = 0, Il + Idl = 0,
and then we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = � + σ1Rd – cβ1IvdS – μS,
dId
dt = cβ1IvdS – (μ + δ1 + γ1)Id,

dRd
dt = γ1Id – (μ + σ1)Rd,

dSvd
dt = � – cρ1IdSvd – μvdSvd,

dIvd
dt = cρ1IdSvd – μvdIvd.

(2)

3.1.1 Invariant region
To get an invariant region, which shows as the solution is bounded, the total human pop-
ulation of the model is Nh = S + Id + Rd . Differentiating Nh both sides and substituting
respective expressions of dS

dt , dId
dt , and dRd

dt from equation (2), we get

dNh

dt
= � – μNh – δ1Id. (3)
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If we are not considering death from dengue fever, then equation (3) becomes

dNh

dt
≤ � – μN . (4)

Solving equation (4), we get

Dh =
{

(S, Id, Rd) ∈R3
+ : 0 ≤ Nh ≤ �

μ

}

. (5)

Similarly, for the vector population Nvd = Svl + Ivl , we have

Dvd =
{

(Svd, Ivd) ∈R2
+ : 0 ≤ Nvd ≤ �

μvd

}

.

Therefore, all the solution set of (2) is bounded in D = Dhd ×Dvd .

3.1.2 Positivity of solutions
Theorem 3.1 If the initial value S0 ≥ 0, Id0 ≥ 0, Idl0 ≥ 0, Rd0 ≥ 0, Svd0 ≥ 0, Ivd0 ≥ 0, then
the solutions of the dengue only infected model are nonnegative.

Proof From the first equation of the system in equation (2)

dS
dt

= � + σ1Rd – cβ1IvdS – μS,

which can be taken as

dS
dt

≥ –μS, (6)

after evaluating equation (6), we obtain

S ≥ S(0)e–μt .

Similarly, we obtain

Id ≥ Id(0)e–(μ+δ1+γ1)t , Rd ≥ Rd(0)e–(μ+σ1)t ,

Svd ≥ Svd(0)e–μvdt , Ivd ≥ Ivd(0)e–μvdt .

Therefore, all the solution sets are nonnegative for t ≥ 0. �

3.1.3 Disease-free equilibrium (DFEP)
By equating equation (2) to zero and substituting Id = Rd = Ivd = 0, we obtain DFEP E0d =
( �

μ
, 0, 0, �

μvd
, 0).

3.1.4 Basic reproduction number
The basic reproduction number is an average number of secondary cases of infection when
a single infectious individual is introduced into the total susceptible population. To obtain
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(R0d), the next generation matrix method that was formulated by [25] is used, and it is
given by

R0d =

√
c2ρ1β1��

μμ2
vd(μ + δ1 + γ1)

. (7)

3.1.5 Local stability of DFEP
Theorem 3.2 DFEP is locally asymptotically stable if R0d < 1 and unstable if R0d > 1.

Proof The Jacobian matrix of the dengue only model at DFEP is given by

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–μ 0 σ1 0 – cβ1�

μ

0 –δ1 – γ1 – μ 0 0 cβ1�

μ

0 γ1 –σ1 – μ 0 0
0 – cρ1�

μvd
0 –μvd 0

0 cρ1�

μvd
0 0 –μvd

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (8)

The eigenvalues of the matrix in (8), –μ, –(σ1 +μ) and –μvd are clearly negative. The other
two eigenvalues can be obtained from the quadratic equation given by

p(λ) = λ2 + ψ1λ + ψ2, (9)

where

ψ1 = δ1 + γ1 + μ + μvd > 0,

ψ2 =
–c2ρ1�β1� + μ2μvd

2 + δ1μvd
2μ + γ1μvd

2μ

μμvd

= μvd(δ1 + γ1 + μ)
(
1 – R2

0d
)
.

Here, it follows from Routh–Hurwitz criteria ψ1 > 0 and ψ2 > 0. Thus, all the eigenvalues
of the matrix in equation (9) have negative real parts if R0d < 1. Hence DFEP is locally
asymptotically stable. �

3.1.6 Existence of endemic equilibrium point (EEP)
The endemic equilibrium point is denoted by E∗ = (S∗, I∗

d , R∗
d, S∗

vd, I∗
vd) and it occurs when

the disease persists in the community.

Lemma 3.3 For R0d > 1 a unique EEP E∗ exists and no EEP otherwise.
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Proof To obtain it, we equate all the model equations in equation (2) to zero. Then we
obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗ = μvd(δ1+γ1+μ)ϕ1
ρ1ϕ2

,

I∗
d = (σ1+μ)(R2

0d–1)
μμ2

vd(δ1+γ1+μ)ρ1ϕ2
,

R∗
d = γ1(R2

0d–1)
μμ2

vd(δ1+γ1+μ)ρ1ϕ2
,

S∗
vd = ϕ2

βϕ1
,

I∗
vd = (σ1+μ)(R2

0d–1)
μμ2

vd(δ1+γ1+μ)ϕ1
,

(10)

where

ϕ1 = �ρ1(μ + σ1) + μμvd(μ + δ1 + γ1 + σ1) + δ1σ1μvd),

ϕ2 = �β1δ1σ1 + �μβ1(μ + δ1 + γ1 + σ1) + μ2μvd(μ + δ1 + γ1 + σ1) + μμvdσ1(δ1 + γ1). �

3.1.7 Existence of backward bifurcation of dengue only model
We investigated the nature of the bifurcation by using the method introduced in [26],
which is based on center manifold theory [26]. In order to apply theory, the following
rearrangement and modification of variables are done on the submodel in equation (2).
We let S = z1, Id = z2, Rd = z3, Svd = z4, and Ivd = z5. In addition, using vector notation z =
(z1, z2, z3, z4, z5)T , formulated as dz

dt = F(z), with F = (f1, f2, f3, f4, f5)T given in the following,
we chose β1 as a bifurcation parameter and solve R0d = 1, which leads to

dz1

dt
= f1 = � + σ1z3 – cβ1z5z1 – μz1,

dz2

dt
= f2 = cβ1z5z1 – (μ + δ1 + γ1)z2,

dz3

dt
= f3 = γ1z2 – (μ + σ1)z3,

dz4

dt
= f4 = � – cρ1z2z4 – μvdz4,

dz5

dt
= f5 = cρ1z2z4 – μvdz5,

(11)

where

β1 = β∗
1 =

μμ2
vd(μ + δ1 + γ1)

c2ρ1��
.

The Jacobian matrix evaluated at DFEP is given by (z1 = �
μ

, z2 = 0; z3 = 0, z4 = �
μvd

, z5 = 0):

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–μ 0 σ1 0 – cβ∗
1 �

μ

0 –(μ + δ1 + γ2) 0 0 cβ∗
1 �

μ

0 γ1 –(μ + σ1) 0 0
0 – cρ1�

μvd
0 –μvd 0

0 cρ1�

μvd
0 0 –μvd

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12)
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The right eigenvector u = (u1, u2, u3, u4, u5)T associated with the simple zero eigenvalue
can be obtained as follows:

u1 =
σ1γ1 – (μ + σ1)(μ + δ1 + γ1)

μ(μ + σ1)
u2,

u2 = u2 > 0,

u3 =
γ1

μ + σ1
u2,

u4 = –
cρ1�

μ2
vd

u2,

u5 =
cρ1�

μ2
vd

u2.

Similarly, we obtain the left eigenvector v = (v1, v2, v3, v4, v5) associated with the simple
zero eigenvalue and given by

v1 = v3 = v4 = 0, v2 = v2 > 0, v5 =
μvd(μ + δ1 + γ1)

cρ1�
v2.

Since the first, third, and fourth components of v are zero, we do not need the derivatives
of f1, f3, and f4. From the derivatives of f2 and f5, the only ones that are nonzero are the
following:

∂2f2

∂z1 ∂z5
=

∂2f2

∂z5 ∂z1
= cβ∗

1 ,
∂2f5

∂z2 ∂z4
=

∂2f5

∂z4 ∂z2
= cρ1,

∂2f2

∂z5 ∂β1
= cz∗

1

and all the other partial derivatives are zero. The direction of the bifurcation at R0d = 1 is
determined by the signs of the bifurcation coefficients a and b, obtained from the above
partial derivatives, given respectively by

a = 2v2u1u5
∂2f2

∂z1 ∂z5
+ 2v5u2u4

∂2f5

∂z4 ∂z2

= –2u2

(
μ + δ1 + γ1

μvd�(μ + σ1)

)
[
(μ + σ1)(μ + δ1 + γ1) + ρ1�(μ + σ1) – σ1γ1μvd

]

and

b = v2u5
∂2f2

∂z5 ∂β∗
1

= v2u5cz∗
1 =

c�ρ1β�

μμ2
vd

> 0. (13)

By the fact that coefficient b is positive, it shows that the sign of coefficient a determines
the local dynamics around DFEP for β1. It is clearly seen that system (11) undergoes back-
ward bifurcation, and therefore we propose the following theorem.

Theorem 3.4 The model in system (1) exhibits backward bifurcation at R0d = 1 and the
disease-free equilibrium may not be globally stable.
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3.2 Leptospirosis only model
To get this model from equation (1), we set Id = Idl = Rd = Rdl = 0, σ1 = σ3 = 0, and then we
get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = � + σ2Rl – (α1Il + α2Ivl + μ)S,
dIl
dt = (α1Il + α2Ivl)S – (μ + δ2 + γ2)Il,
dRl
dt = γ2Il – (μ + σ2)Rl,

dSvl
dt = 	 – ρ2IlSvl – μvlSvl,

dIvl
dt = ρ2IlSvl – μvlIvl

(14)

3.2.1 Invariant region
To get an invariant region, the total population of the model is Nhl = S + Il + Rl . Then the
derivative of Nhl with respect to time gives

dNhl

dt
= � – μNhl – δ2Il. (15)

If we are not considering death from leptospirosis, then equation (15) becomes

dNhl

dt
≤ � – μNhl. (16)

After solving equation (16), we get

Dl =
{

(S, Il, Rl) ∈ �3
+ : 0 ≤ Nhl ≤ �

μ

}

. (17)

Similarly, for the vector population Nvl = Svl + Ivl , we have

Dvl =
{

(Svl, Ivl) ∈ �2
+ : 0 ≤ Nvl ≤ 	

μvl

}

.

Therefore, all the solution set of the model in equation (14) is bounded in D2 = Dl ×Dvl .

3.2.2 Positivity of solutions
Theorem 3.5 If the initial value S0 ≥ 0, Il0 ≥ 0, Rl0 ≥ 0, Svl0 ≥ 0, Ivl0 ≥ 0 and the solutions
of the leptospirosis only infected model are nonnegative.

Proof To show solutions of the model are positive, first we take dS
dt from equation (14):

dS
dt

= � + σ2Rl – (α1Il + α2Ivl + μ)S,

which can be rewritten as

dS
dt

≥ –μS. (18)

Solving equation (18), we get

S ≥ S(0)e–μt .
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Similarly, we obtain

Il ≥ Il(0)e–(μ+δ2+γ2)t , Rl ≥ Rl(0)e–(μ+σ2)t ,

Svl ≥ Svl(0)e–μvlt , Ivl ≥ Ivl(0)e–μvlt .

Therefore, all the solution sets are positive for t ≥ 0. �

3.2.3 Disease-free equilibrium (DFEP)
Equating equation (14) to zero and substituting Il = 0, Rl = 0, Ivl = 0, we obtain the DFEP
E0l = ( �

μ
, 0, 0, 	

μvd
, 0).

3.2.4 Basic reproduction number
The basic reproduction number (R0l) is obtained using the next generation matrix method
that was formulated by [25], and it is given by

R0l =
α1�μ2

vl + α2ρ2�	

μμ2
vl(μ + δ2 + γ2)

= R0hl + R0vl, (19)

where R0hl = α1�

μ(μ+δ2+γ2) and R0vl = α2ρ2�	

μμ2
vl(μ+δ2+γ2) .

3.2.5 Local stability of DFEP
Theorem 3.6 DFEP is locally asymptotically stable if R0l < 1 and unstable if R0l > 1.

Proof The Jacobian matrix at DFEP is given by

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–μ – α1�

μ
σ2 0 – α2�

μ

0 α1�

μ
– (μ + δ2 + γ2) 0 0 α2�

μ

0 γ2 –(σ2 + μ) 0 0
0 – ρ2	

μvl
0 –μvl 0

0 ρ2	

μvl
0 0 –μvl

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (20)

The eigenvalues –μ, –(σ2 + μ) and –μvl are clearly negative. The other two eigenvalues
can be obtained from the quadratic equation given by

p(λ) = λ2 + ψ1λ + ψ2,

where

ψ1 =
–α1� + μ2 + δ2μ + γ2μ + μvlμ

μ
,

ψ2 =
ρ2	α2� + �α1μ

2
vl – μ2μ2

vl – μδ2μ
2
vl – μγ2μ

2
vl

μvl
.

We applied Routh–Hurwitz criteria, and by the principle, the quadratic equation has a
strictly negative real root iff ψ1 > 0, ψ2 > 0, and ψ1ψ2 > 0.

ψ1 =
–α1� + μ2 + δ2μ + γ2μ + μvlμ

μ
= (μ + δ2 + γ2)

[

1 +
μvl

μ(μ + δ2 + γ2)
– R0hl

]

> 0,
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ψ2 =
ρ2	α2� + �α1μ

2
vl – μ2μ2

vl – μδ2μ
2
vl – μγ2μ

2
vl

μvl
= μvl(μ + δ2 + γ2)(1 – R0l) > 0.

Hence DFEP is locally asymptotically stable if �0l < 1. �

3.2.6 Global stability of DFEP
Theorem 3.7 The equilibrium point E0 = (X∗, 0) of system (14) is globally asymptotically
stable if Rl0 < 1 and conditions (i) and (ii) from the theorem in [26] are satisfied.

Proof To investigate the global stability of DFEP, we use the technique implemented by
Castillo-Chavez and Song [26]. From equation (14), we can get F(X, Z) and G(X, Z), where
X = (S, Rl, Svl) ∈R3 denotes uninfected populations and Z = (Il, Ivl) ∈R2 denotes infected
populations:

F(X, Z) =

⎛

⎜
⎝

� + σ2Rl – (α1Il + α2Ivl + μ)S
γ2Il – (μ + σ2)Rl

	 – ρ2IlSvl – μvlSvl

⎞

⎟
⎠

and

G(X, Z) =

(
(α1Il + α2Ivl)S – (μ + δ2 + γ2)Il

ρ2IlSvl – μvlIvl

)

.

Now consider the reduced system dX
dt = F(X, 0):

dX
dt

=

⎧
⎨

⎩

dS
dt = � – μS,
dSvl
dt = 	 – μvlSvl.

(21)

X∗ = ( �
μ

, 0, 	
μvl

) is a globally asymptotically stable equilibrium point for the reduced system
dX
dt = F(X, 0). This can be verified. From the solution of the first equation in equation (21)

we obtain S(t) = �
μ

+ (S(0) – �
μ

)e–μt , which approaches �
μ

as t −→ ∞; and from the second
equation of equation (21) we get Svl = 	

μvl
+ (Svl(0) – 	

μvl
)e–μvlt , which approaches �

μvd
and

	
μvl

as t −→ ∞. We note that this asymptomatic dynamics is independent of the initial
conditions in �, therefore the convergence of the solutions of the reduced system (21) is
global in �. Now we compute

DZG
(
X∗, 0

)
=

(
α1�

μ
– (δ2 + γ2 + μ) α2�

μ
ρ2	

μvl
–μvl

)

.

Then G(X, Z) can be written as

G(X, Z) = DZG
(
X∗, 0

)
Z – Ĝ(X, Z),

and we want to show Ĝ(X; Z) ≥ 0, which is obtained as follows:

Ĝ(X, Z) =

(
α1( �

μ
– S)Il + α2( �

μ
– S)Ivl

ρ2( 	
μvl

– Svl)Il

)

. (22)



Alemneh Advances in Difference Equations        (2020) 2020:664 Page 12 of 23

Here, �
μ

≥ S and 	
μvl

≥ Svl . Hence it is clear that equation Ĝ(X, Z) ≥ 0 for all (X, Z) ∈ �.
Therefore, this proves that DFEP is globally asymptotically stable when �0l < 1. Hence the
endemic equilibrium point does not coexist with the disease-free equilibrium point when
R0l < 1. This implies that the model exhibits forward bifurcation at R0l = 1. From this we
can say that the disease can be eliminated from the population irrespective of the initial
infectious population. �

3.2.7 Endemic equilibrium (EEP)
The endemic equilibrium is denoted by E∗

p = (S∗, I∗
l , R∗

l , S∗
vl, I∗

vl), and it occurs when the
disease persists in the community.

Lemma 3.8 A unique endemic equilibrium exists if one of the following holds true:
(i) if C < 0 ⇐⇒R0l > 1;

(ii) if B < 0 and C = 0 or B2 – 4AC = 0.

Proof To obtain it, we equate all the model equations (14) to zero. Then we obtain

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S∗ = μvl(μ+δ2+γ2)(ρ2I∗l +μvl)
α2ρ2	+α1μvl(ρ2I∗l +μvl)

,

R∗
l = γ2I∗l

μ+σ2
,

S∗
vl = 	

ρ2I∗l +μvl
,

I∗
vl = ρ2	I∗l

μvl(ρ2I∗l +μvl)
.

(23)

When we substitute S∗ in the first equation of the model in (14), we get

AI∗2
l + BI∗

l + C = 0, (24)

where

A = α1ρ2
[
(μ + δ2 + γ2)(σ2 + μ) – σ2γ2

]
,

B = (σ2 + μ)(μ + δ2 + γ2)[α1μvl + α2ρ2	 + μρ2] –
[
(σ2 + μ)α1�ρ1 + σ2γ2α1ρ2

]
,

C = μμvl(σ2 + μ)(μ + δ2 + γ2)[1 – R0l].

It is important to note that the coefficient A is positive with B and C having different signs.
There is unique EE whenever condition (i) or (ii) holds true. Also the other condition we
did not mention is that there are two endemic equilibria if C > 0, B < 0, and B2 – 4AC > 0.
However, this does not happen because we proved that DEFP of leptospirosis only model
is globally asymptotically stable, which means that there is no way that the endemic equi-
librium point co-exists with DFEP when R0l < 1. �

3.3 Dengue–leptospirosis co-infection model
The model in equation (1) is dengue and leptospirosis co-infection equation with S(0) =
S0, Id(0) = Id0, Il(0) = Il0, Idl(0) = Idl0, Rd(0) = Rd0, Rl(0) = Rl0, Rdl(0) = Rdl0, Svd(0) = Svd0,
Ivd(0) = Ivd0, Svl(0) = Svl0, Ivl(0) = Ivl0 being nonnegative initial values.
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3.3.1 Invariant region
In this section, we obtain a region in which the solution of (1) is bounded. For this model
the total human population is N = S + Id + Il + Idl + Rd + Rl + Rdl . Then, after differentiating
N with respect to time and substituting each equation from equation (1) to the respective
place, we get

dN
dt

= � – μN – δ1(Id + Idl) + δ2(Il + Idl). (25)

If we do not consider death from leptospirosis, dengue, and the co-infection, then equation
(25) becomes

dN
dt

≤ � – μN . (26)

After solving equation (26) and evaluating it as time tends to infinity, we get

Dh =
{

(S, Id, Id, Idl, Rd, Rd, Rdl) ∈R7 : 0 ≤ N ≤ �

μ

}

.

Similarly, for vector population of dengue, if there is no discharge of virus from the infec-
tious, then

dNvd

dt
= � – μvdNvd, (27)

Dvd =
{

(Svd, Ivd) ∈R2
+ : Nvd(t) ≤ �

μvd

}

.

Also, for vector population of leptospirosis, if there is no discharge of bacteria from the
infectious, then

dNvl

dt
= � – μvlNvl, (28)

Dvl =
{

(Svl, Ivl) ∈R2
+ : Nvl(t) ≤ 	

μvl

}

.

Therefore, the feasible solution set for the dengue–leptospirosis co-infection model is
given by

D = Dh ×Dvd ×Dvl =
{

(S, Id, Il, Idl, Rd, Rl, Rdl, Svd, Ivd, Svl, Ivl) ∈R11
+

}
. (29)

Therefore, all the solution set of equation (1) is bounded in D = Dh ×Dvl ×Dvl .

3.3.2 Positivity of solutions
Theorem 3.9 If S0 > 0, Id0 > 0, Il0 > 0, Idl0 > 0, Rd0 > 0, Rl0 > 0, Rdl0 > 0, Svd0 > 0, Ivd0 >
0, Svl0 > 0, Ivl0 > 0, then the future time solutions of the dengue–leptospirosis co-infection
population are positive.

Proof We let τ = sup{t > 0 : S0(t1) > 0, Id0(t1) > 0, Il0(t1) > 0, Idl0(t1) > 0, Rd0(t1) > 0, Rl0(t1) >
0, Rdl0(t1) > 0, Svd0(t1) > 0, Ivd0(t1) > 0, Svl0(t1) > 0, Ivl0(t1) > 0 for all t1 ∈ [0, t]}. Since S0 ≥ 0,
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Id0 ≥ 0, Il0 ≥ 0, Idl0 ≥ 0, Rd0 ≥ 0, Rl0 ≥ 0, Rdl0 ≥ 0, Svd0 ≥ 0, Ivd0 ≥ 0, Svl0 ≥ 0, and Ivl0 ≥ 0,
hence τ > 0. If τ < ∞, then S0(t), Id0(t), Il0(t), Idl0(t), Rd0(t), Rl0(t), Rdl0(t), Svd0(t), Ivd0(t),
Svl0(t), Ivl0(t) are zero at t1. To show that solution of the model is positive, first we take dS

dt
from Eq. (1).

dS
dt

= � + σ1Rd + σ2RL + σ3Rdl –
(
cβ1Ivd + α1(Il + Idl) + α2Ivl + μ

)
S. (30)

Using the variation of constants formula, the solution of equation (30) at τ is given by

S(τ ) = S(0) exp

[

–
∫ τ

0
(
(
cβ1Ivd + α1(Il + Idl) + α2Ivl + μ

)
S(dS)

]

+
∫ τ

0
(� + σ1Rd + σ2RL + σ3Rdl)

× exp

[

–
∫ τ

S
(
(
cβ1Ivd + α1(Il + Idl) + α2Ivl + μ

)
(t1) dt1

]

.

Moreover, since all the variables are positive in [0, τ ], then S(τ ) > 0.
It can be shown in a similar way that Id(τ ) > 0, Il(τ ) > 0, Idl(τ ) > 0, Rd(τ ) > 0, Rl(τ ) > 0,

Rdl(τ ) > 0, Svd(τ ) > 0, Ivd(τ ) > 0, Svl(τ ) > 0, and Ivl(τ ) > 0, which is a contradiction. Hence
τ = ∞. �

3.3.3 Disease-free equilibrium (DFEP)
Equating equation (1) to zero and substituting Id = 0, Il = 0, Idl = 0, Rd = 0, Rl = 0, Rdl = 0,
Ivd = 0, Ivl = 0, we obtain the DFEP E0 = ( �

μ
, 0, 0, 0, 0, 0, 0, �

μvd
, 0, 	

μvl
, 0).

3.3.4 Basic reproduction number
To obtain (R0), we use the next generation matrix method [25]. Let us consider the infec-
tive compartments of the model

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dId
dt = cβ1IvdS – (α1(Il + Idl) + α2Ivl + μ + δ1 + γ1)Id,

dIl
dt = (α1(Il + Idl) + α2Ivl)S – (cβ1Ivd + μ + δ2 + γ2)Il,
dIdl
dt = (α1(Il + Idl) + α2Ivl)Id + cβ1IvdIl – (ε + μ + δ1 + δ2)Idl,

dIvd
dt = cρ1IdSvd – μvdIvd,

dIvl
dt = ρ2IlSvl – μvlIvl.

(31)

Then, by the principle of next-generation matrix, we obtain F and V , and evaluating the
Jacobians at DFEP, we get

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 cβ1�

μ
0

0 α1�

μ

α1�

μ
0 α2�

μ

0 0 0 0 0
cρ1�

μvd
0 0 0 0

0 ρ2	

μvl
0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ς1 0 0 0 0
0 ς2 0 0 0
0 0 ς3 0 0
0 0 0 μvd 0
0 0 0 0 μvl

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (32)

where

ς1 = δ1 + γ1 + μ, ς2 = δ2 + γ2 + μ, ς3 = ε + δ1 + δ2 + μ,
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ς4 = μ + σ1, ς5 = μ + σ2, ς6 = μ + σ3.

Then the basic reproduction number from the product matrix FV–1 is the maximum of
the eigenvalues listed as follows:

λ1,2 = ±
√

c2ρ1β1��

μμ2
vd(μ + δ1 + γ1)

,

λ3,4 = ±α1�μ2
vl + α2ρ2�	

μμ2
vl(μ + δ2 + γ2)

,

λ5 = 0.

Therefore, the basic reproduction number of the co-infection is given by

R0 = max{R0d,R0l}. (33)

3.3.5 Local stability of DFEP
Theorem 3.10 DFEP is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof The Jacobian matrix of the model at DFEP is obtained as follows:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–μ 0 – α1�

μ
– α1�

μ
σ1 σ2 σ3 0 – cβ1�

μ
0 – α2�

μ

0 –ς1 0 0 0 0 0 0 cβ1�

μ
0 0

0 0 α1�

μ
– ς2

α1�

μ
0 0 0 0 0 0 α2�

μ

0 0 0 –ς3 0 0 0 0 0 0 0
0 γ1 0 εη –ς4 0 0 0 0 0 0
0 0 γ2 εk(1 – η) 0 –ς5 0 0 0 0 0
0 0 0 g 0 0 –ς6 0 0 0 0
0 – cρ1�

μvd
0 0 0 0 0 –μvd 0 0 0

0 cρ1�

μvd
0 0 0 0 0 0 –μvd 0 0

0 0 – ρ2	

μvl
0 0 0 0 0 0 –μvl 0

0 0 ρ2	

μvl
0 0 0 0 0 0 0 –μvl

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(34)

From equation (34), we can get the following characteristic polynomial:

p(λ) =
[
λ2 + (μvd + ς1)λ + μvd(1 – R0d)

]
(

λ2 + ς2

[

1 +
μvl

μς2
– R0hl

])

λ

+ μvlς2(1 – R0l)(λ + ς4)(λ + ς5)(λ + ς6)(λ + μ)(λ + μvd)(λ + μvl)(λ + ς3).

Therefore, DFEP is locally asymptotically stable iff R0 = max{R0d,R0l} < 1. �

3.3.6 Global stability of DFE
Theorem 3.11 The equilibrium point E0 = (X∗, 0) of system (1) is globally asymptotically
stable if R0 ≤ 1 and conditions (i) and (ii) in the theorem [26] are satisfied.

Proof We use the technique implemented by Castillo-Chavez and Song [26]. From equa-
tion (1), we can get F(X, Z) and G(X, Z), where X = (S, Rd, Rl, Rdl, Svd, Svl) ∈ R6 denotes
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uninfected populations and Z = (Id, Il, Idl, Ivd, Ivl) ∈R5 denotes infected populations.

F(X, Z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

� + σ1Rd + σ2RL + σ3Rdl – [cβ1Ivd + α1(Il + Idl) + α2Ivl + μ]S
γ1Id + εcIdl – (μ + σ1)Rd

γ2Il + εk(1 – c)Idl – (μ + σ2)Rl

gIdl – (μ + σ3)Rdl

� – cρ1IdSvd – μvdSvd

	 – ρ2IlSvl – μvlSvl

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

G(X, Z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

cβ1IvdS – [α1(Il + Idl) + α2Ivl + μ + δ1 + γ1]Id

[α1(Il + Idl) + α2Ivl]S – [cβ1Ivd + μ + δ2 + γ2]Il

[α1(Il + Idl) + α2Ivl]Id + β1IvdIl – (ε + μ + δ1 + δ2)Idl

cρ1IdSvd – μvdIvd

ρ2IlSvl – μvlIvl

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Now consider the reduced system dX
dt = F(X, 0):

dX
dt

=

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = � – μS,
dSvd

dt = � – μvdSvd,
dSvl
dt = 	 – μvlSvl.

(35)

X∗ = ( �
μ

, �
μvd

, 	
μvl

) is a globally asymptotically stable equilibrium point for the reduced sys-
tem dX

dt = F(X, 0). This can be verified. From the solution of the first equation in equa-
tion (35) we obtain S(t) = �

μ
+ (S(0) – �

μ
)e–μt , which approaches �

μ
as t −→ ∞; and from

the second and third equation of equation (35) we get Svd = �
μvd

+ (Svd(0) – �
μvd

)e–μvdt and
Svl = 	

μvl
+ (Svl(0) – 	

μvl
)e–μvlt , which approaches �

μvd
and 	

μvl
as t −→ ∞. We note that this

asymptomatic dynamics is independent of the initial conditions in �, therefore the con-
vergence of the solutions of the reduced system (35) is global in �. Now we compute

DZG
(
X∗, 0

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–ς1 0 0 cβ1�

μ
0

0 α1�

μ
– ς2

α1�

μ
0 α2�

μ

0 0 –ς3 0 0
cρ1�

μvd
0 0 –μvd 0

0 ρ2	

μvl
0 0 –μvl

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then G(X, Z) can be written as

G(X, Z) = DZG
(
X∗, 0

)
Z – Ĝ(X, Z),
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and we want to show Ĝ(X; Z) ≥ 0, which is obtained as follows:

Ĝ(X, Z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ĝ1(X, Z)
Ĝ2(X, Z)
Ĝ3(X, Z)
Ĝ4(X, Z)
Ĝ5(X, Z)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

cβ1( �
μ

– S)Ivd + [α1(Il + Idl) + α2Ivl]Id

α1( �
μ

– S)Il + α1( �
μ

– S)Idl + α2( �
μ

– S)Ivl + β1IvdIl

–(α1(Il + Idl)Id + α2IvlId + β1IvdIl)
cρ1( �

μvd
– Svd)Id

ρ2( 	
μvl

– Svl)Il

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (36)

In equation (36), Ĝ3(X, Z) < 0, which leads to Ĝ(X, Z) < 0 for all (X, Z) ∈ �. Therefore,
this proves that DFEP may not be globally asymptotically stable when R0 < 1. Hence the
endemic equilibrium point coexists with DFEP when R0 < 1. This implies that the model
exhibits backward bifurcation at R0 = 1. �

3.4 Sensitivity analysis
Sensitivity is performed to identify the most dominant parameters for the spreading out as
well as control of infection in the community. To go through sensitivity analysis, we follow
the technique described in [27]. The sensitivity index of R0 with respect to a parameter,
say y, is given by

ΛR0
y =

∂R0

∂y
× y

R0
.

Since R0 = max{R0d,R0l}, we obtain the sensitivity analysis of R0d and R0l separately in
the following way:

Λ
�0d
β =

∂�0d

∂β
× β

�0d
=

ρ1��

2�0μvd2(δ1 + γ1 + μ)μ
β

�0
=

1
2

≥ 0,

Λ�0d
ρ1 =

∂�0d

∂ρ1
× ρ1

�0d
=

β��

2�0μvd2(δ1 + γ1 + μ)μ
ρ1

�0
=

1
2

≥ 0,

Λ�0d
c =

∂�0d

∂c
× c

�0d
= 1 > 0,

Λ
�0d
δ1

=
∂�0d

∂δ1
× δ1

�0d
= –

δ1

2(δ1 + γ1 + μ)
< 0,

Λ�0d
γ1 =

∂�0d

∂γ1
× γ1

�0d
= –

γ1

2(δ1 + γ1 + μ)
< 0,

Λ�0d
μ =

∂�0d

∂μ
× μ

�0d
= –

δ1 + γ1 + 2μ

2(δ1 + γ1 + μ)
< 0,

Λ�0d
μvd

=
∂�0d

∂μvd
× μvd

�0d
= –1 < 0,

Λ�0l
α1 =

∂�0l

∂α1
× α1

�0l
=

α1μ
2
vl�

α2ρ2�	 + α1�μ2
vl

> 0,

Λ�0l
α2 =

∂�0l

∂α2
× α2

�0l
=

	�ρ2α2

α2ρ2�	 + α1�μ2
vl

> 0,

Λ�0l
ρ2 =

∂�0l

∂ρ2
× ρ2

�0l
=

	�ρ2α2

α2ρ2�	 + α1�μ2
vl

> 0,

Λ
�0l
δ2

=
∂�0l

∂δ2
× δ2

�0l
= –

δ2

δ2 + γ2 + μ
< 0,
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Table 2 Sensitivity indices table

Parameter symbol Sensitivity indices

�0d Basic reproduction number of dengue
β +ve
ρ1 +ve
c +ve
δ1 -ve
γ1 -ve
μ -ve
μvd -ve
�0l Basic reproduction number of leptospirosis
α1 +ve
α2 +ve
ρ2 +ve
δ2 -ve
γ2 -ve
μ -ve
μvl -ve

Λ�0l
γ2 =

∂�0l

∂γ2
× γ2

�0l
= –

γ2

δ2 + γ2 + μ
< 0,

Λ�0l
μ =

∂�0l

∂μ
× μ

�0l
= –

2μ + δ2 + γ2

δ2 + γ2 + μ
< 0,

Λ�0l
μvd

=
∂�0l

∂μvd
× μvd

�0l
= –

2α2ρ2�	

α2ρ2�	 + α1μ
2
vl

< 0.

The above computation of sensitivity analysis is summarized in Table 2.
From Table 2, we understand that the parameters with positive sensitivity indices, par-

ticularly β1, ρ1, c, α1, α2, and ρ2, have great potential in expanding dengue, leptospirosis,
and their co-infection in the community. However, the parameters with negative indices,
particularly δ1, γ1, δ2, γ2, μ, μvd , and μvl , have a great contribution in controlling the ex-
pansion of dengue, leptospirosis, and their co-infection in the community if their values
are increased. From this policy makers and stakeholders are expected to act accordingly
in combating dengue,leptospirosis, and their co-infection in the community.

4 Numerical simulations
Analytical results cannot be complete without numerical result verification. In this sec-
tion, the full dengue–leptospirosis co-infection model numerical simulation is performed
using Maple 18. The simulation is used for checking the effect of some parameters in the
expansion as well as the control of dengue only, leptospirosis only, and co-infection of
dengue and leptospirosis. For simulation purpose the parameter values in Table 3 are used.

4.1 Effect of recovery rate (γ1) on dengue infectious population
In Fig. 2, we experimented with the effect of γ1 in reducing dengue-only infectious popula-
tion by maintaining the contact rate (β1) constant. The figure reflects that when the values
of γ1 increase, the number of dengue only infectious population is going down. From this
we should concentrate on improving recovery rates either by treating infected populations
or by raising individuals’ immunity levels to dengue disease in the population. It should
be viewed by policy makers as a mitigation strategy.
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Table 3 Parameter values for the dengue leptospirosis co-infection model

Parameter symbol Value day–1 Source

� 2.0 Assumed
β1 0.75 [11, 12]
α1 0.04 [19, 28]
α2 0.04 [19, 28]
δ1 0.0015 [12]
δ2 0.003 [19, 28]
σ1 0.0027 Assumed
σ2 0.00285 [19, 28]
σ3 0.002 Assumed
ρ1 0.75 [11, 12]
ρ2 0.04 [19, 28]
γ1 0.1428 [12]
γ2 0.0027 [19, 28]
μ 0.0000128 [11, 12]
	 2.3 Assumed
� 2.5 Assumed
μvd 0.071 [11, 12]
μvl 0.0018 [19, 28]
c 0.5 [12]

Figure 2 Effect of recovery rate on dengue
infectious population

4.2 Effect of recovery rate (γ2) on leptospirosis infectious population
In Fig. 3, it is shown that γ2 plays a significant role in bringing down the leptospirosis
infection. When the value of γ2 increased from 0.017 to 0.087, the amount of infectious
population due to leptospirosis decreased, where the contact rate is kept constant, which
is α1 = α2. It can also be used by policy makers as a tool for mitigation.

4.3 Effect of dengue contact rate (β1) on co-infectious population
As it is shown in Fig. 4, the contact rate of leptospirosis (α1 = α2) and the recovery rate
of co-infectious population (ε) are kept constant. The figure reflects that as the value of
contact rate of dengue increased, the co-infectious population increased, which means
increased expansion of co-infection. From this we can see that decreasing of the dengue
contact rate is significant in the controlling of co-infection transmission. Therefore, stake-
holders are expected to work on decreasing the contact rate of susceptible humans and
dengue vector by using either bednet or chemical or using an appropriate method of pre-
vention mechanism to bring down the expansion of co-infection in the community.
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Figure 3 Effect of recovery rate on leptospirosis
infectious population

Figure 4 Effect of dengue contact rate on
co-infectious population

4.4 Effect of leptospirosis contact rate (α1 and α2) on co-infectious population
Similarly, we investigated the effect of leptospirosis contact rate (α1 = α2) in the expansion
of dengue–leptospirosis co-infection while keeping the recovery rate of co-infection (ε)
constant. Figure 5 shows that co-infectious population decreases as the leptospirosis con-
tact rate is decreasing, by keeping dengue contact rate (β1) and (ε) constant. This implies
that, in order to mitigate the co-infection, it is advisable to reduce the rate of contact with
infectious humans, and that the host vector of leptospirosis is crucial.

4.5 Effect of recovery rate of dengue–leptospirosis (ε) on co-infectious
population

Here, we experimented on the effect of recovery rate of dengue and leptospirosis (ε) on
the co-infectious population. As we explained in the model description, due to treatment
or other mechanisms, co-infectious population either recover from dengue only or from
leptospirosis only or from both diseases with their own probability and join their respec-
tive recovered compartment. Therefore, Fig. 6 shows that increasing the rate of recovery
of the co-infectious population has a great advantage in reducing both diseases in the pop-
ulation.
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Figure 5 Effect of leptospirosis contact rate on
co-infectious population

Figure 6 Effect of recovery rate of
dengue–leptospirosis on co-infectious population

5 Conclusions
The deterministic co-infection model for dengue-leptospirosis disease was developed us-
ing ordinary differential equations, and the population is subdivided into eleven compart-
ments. The qualitative analysis of the model was done by splitting the full model into two,
which are dengue only and leptospirosis only models. The analysis of the model shows that
there exists a region where the model is mathematically and epidemiologically well posed.
Basic reproduction numbers, disease-free equilibrium, endemic equilibria, stability anal-
ysis of equilibrium points, and sensitivity analysis of basic reproduction of dengue only,
leptospirosis only, and the full model were analyzed in their respective order. Numerically,
we experimented on the effect of basic parameters in the expansion or control of dengue
only, leptospirosis only, and co-infectious diseases. From the result, we conclude that an
increase in the rate of dengue recovery contributes greatly to reducing dengue infection
in the community. Similarly, increasing the recovery rate for leptospirosis also contributes
to the reduction of leptospirosis. The rate of recovery for co-infection also has an effect
on reducing co-infectious population if its value has been increased. The other finding
obtained in this section is that decreasing either dengue or leptospirosis contact rate has a
great influence on controlling co-infection of dengue and leptospirosis in the population.
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