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Abstract
In this paper, a random coupled Ginzburg–Landau equation driven by colored noise
on unbounded domains is considered, in which the nonlinear term satisfies a local
Lipschitz condition. It is shown that the random attractor of such a coupled
Ginzburg–Landau equation is a singleton set, and the components of solutions are
very close when the coupling parameter becomes large enough.
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1 Introduction
Synchronization phenomenon, which was discovered in physics, biology, and social sci-
ence areas [1–3], has been paid more attention due to its extensive applications in secure
communications, modeling brain activity, and optimization of nonlinear system perfor-
mance [4, 5]. Synchronization of deterministic coupled dissipative systems has been in-
vestigated [6–9].

Since noise is omnipresent in the real world, random perturbation is an important fac-
tor worthy of being considered in synchronization. In 2005, Caraballo and Kloeden [10]
investigated the persistence of synchronization under additive noise and the asymptotic
behavior of the coupled systems as the coupling parameter becomes arbitrarily large. In
[11], the convergence rate of synchronization for stochastic ordinary differential equations
with the vector-valued additive noise was obtained. Moreover, it is investigated for syn-
chronization of a coupled sine-Gordon wave model on bounded domains with Neumann
boundary conditions perturbed by additive white noise by the quasi-stability method [12].

For the case of linear multiplicative noises, the synchronization of Stratonovich stochas-
tic differential equations was investigated in [13] by transforming it to random ordinary
differential equations. Recently, synchronization for stochastic differential equations with
additive noise and linear multiplicative noise was investigated in [14] by transforming it
to random ordinary differential equations using the theory of Imkeller and Schmalfuss.
However, the methods in the above references cannot deal with synchronization for sys-
tems with nonlinear noise. Li and Liu [15] proved the synchronization result for stochas-
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tic differential equations with general nonlinear multiplicative noise in the mean square
sense.

It is worth mentioning that the nonlinear terms in the above literature are satisfied with
one-sided dissipative Lipschitz conditions or global Lipschitz conditions. When the non-
linear term is satisfied with local Lipschitz condition, Caraballo, Chueshov, and Kloeden
[16] studied random attractor and synchronization for a stochastic reaction-diffusion sys-
tem with additive space-time noise on a thin bounded domain.

Motivated by the above literature, in this paper, we consider the random coupled com-
plex Ginzburg–Landau equations driven by multiplicative colored noise on unbounded
domains:

⎧
⎪⎪⎨

⎪⎪⎩

∂uε

∂t – (1 + iλ)�uε = –ρ1uε + f (uε) + ε(vε – uε) + uεGδ(θtω),
∂vε

∂t – (1 + iλ)�vε = –ρ2vε + f (vε) + ε(uε – vε) + vεGδ(θtω),

uε(τ , x) = uτ (x), vε(τ , x) = vτ (x),

(1)

where uε(t, x), vε(t, x) are unknown complex-valued functions, t ≥ τ , x ∈ R, i is the imag-
inary unit, λ,μ ∈ R, ρ1,ρ2 > 0, the nonlinear term f (u) = –(1 + iμ)|u|2u is a complex-
valued function, ε > 0 is a coupling parameter, and Gδ(θtω) is the colored noise intro-
duced in [17, 18] and the unique stationary solution of the stochastic differential equation
dGδ + 1

δ
Gδ dt = 1

δ
dW . It is worth noting that the nonlinear term f in (1) does not satisfy

global Lipschitz conditions such as [12] or one-sided Lipschitz conditions such as [13, 14].
Moreover, different from the case of bounded domains in [12, 16], Sobolev embedding on
unbounded domains is noncompact. In [19], the authors investigated random attractor for
nonautonomous random Ginzburg–Landau equation driven by nonlinear colored noise
on unbounded domains by the tail-estimates method and the properties of the colored
noise. In this paper, we further prove that the solutions of (1) converge pathwise to each
other and the random attractor set is a singleton set in Sect. 3. Moreover, it is also proved
that the solution (uε , vε) of coupled system (1) satisfies limε→+∞ ‖uε(t) – vε(t)‖2 = 0 uni-
formly on any bounded time-interval. In addition, one can refer to [20] for random attrac-
tor of fractional Ginzburg–Landau equation driven by colored noise on bounded domains
and to [21] for random attractor of coupled fractional Ginzburg–Landau equation.

Throughout this paper, let ‖ · ‖ and (·, ·) denote the norm and the inner product of
L2(R), respectively. The Sobolev space Hk(R) (k ∈N) consists of all u ∈ L2(R) whose weak
derivatives up to order k belong to L2(R) as well, which is a separable Banach space with
the norm ‖u‖Hk (R) := (

∑
|α|≤k

∫

R
|Dαu(x)|2 dx) 1

2 . Denote |ξ |2Hk (R) := ‖u‖2
Hk (R) + ‖v‖2

Hk (R),
|ξ |kLk (R) := ‖u‖k

Lk (R) + ‖v‖k
Lk (R), where ξ = (u, v)T .

2 Preliminaries
In this section, we recall some properties about the colored noise, which are useful for
the proof of the main results. There exists a θt-invariant subset of full measure (see [22]),
which is still denoted by , such that, for all ω ∈ ,

lim
t→±∞

ω(t)
t

= 0.
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For every ω ∈  and δ ∈ (0, 1], we write

Gδ(ω) =
1
δ

∫ 0

–∞
e

s
δ dW = –

1
δ2

∫ 0

–∞
e

s
δ ω(s) ds.

Then Gδ(θtω) is the so-called Ornstein–Uhlenbeck process.

Lemma 2.1 ([23]) (1) For every ω ∈ , the mapping t �→ Gδ(θtω) is continuous, and for
every 0 < δ ≤ 1,

lim
t→±∞

|Gδ(θtω)|
t

= 0.

(2) For every ω ∈ ,

lim
t→±∞

1
t

∫ t

0
Gδ(θsω) ds = 0 uniformly for 0 < δ ≤ 1.

Lemma 2.2 ([24]) Let τ ∈ R, ω ∈  and T > 0. Then there exist δ0 = δ0(τ ,ω, T) > 0 and
M = M(τ ,ω, T) > 0 such that, for all 0 < δ < δ0 and t ∈ [τ , τ + T],

∣
∣
∣
∣

∫ t

0
Gδ(θsω) ds

∣
∣
∣
∣ ≤ M.

3 The asymptotic behavior of the coupled system
In this section, we consider the random coupled Ginzburg–Landau equation driven by
multiplicative colored noise (1). Our goal is to prove that the random attractor set of cou-
pled system (1) is a singleton set for any fixed ε > 0. Moreover, the solution uε(t) → vε(t)
uniformly for t on any bounded time-interval as the coupling parameter ε tends to infinity.

Set

ξε =

[
uε

vε

]

, F
(
ξε

)
=

[
–ρ1uε + f (uε)
–ρ2vε + f (vε)

]

, B =

[
–1 1
1 –1

]

.

Then (1) is rewritten as

∂ξε

∂t
– (1 + iλ)�ξε = F

(
ξε

)
+ εBξε + ξεGδ(θtω) (2)

with the initial datum (uτ , vτ )T .
Similar to the discussion in [19], we can obtain that system (2) has a unique solution

ξε ∈ C([τ ,∞); L2(R) × L2(R)) ∩ L2
loc([τ ,∞); H1(R) × H1(R)), and ξε ∈ L4

loc([τ ,∞); L4(R) ×
L4(R)). What is more, system (2) has a unique random attractor. In what follows, we show
that the random attractor set is a singleton set.

Theorem 3.1 For any ρ1,ρ2 > 0, the random attractor sets of coupled system (2) are sin-
gleton sets for any given ε > 0.
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Proof Let ξε = (uε
1, vε

1)T and ηε = (uε
2, vε

2)T be the solutions of (2) with the initial data ξτ =
(u1,τ , v1,τ )T and ητ = (u2,τ , v2,τ )T , respectively. Then we have

d
dt

∣
∣ξε – ηε

∣
∣2 + 2

∣
∣∇(

ξε – ηε
)∣
∣2

= 2 Re
〈
F
(
ξε

)
– F

(
ηε

)
, ξε – ηε

〉
+ 2 Re

〈
εB

(
ξε – ηε

)
, ξε – ηε

〉

+ 2Gδ(θtω)
∣
∣ξε – ηε

∣
∣2.

(3)

For the first term on the right-hand side of (3), it follows from the Hölder inequality and
the Young inequality that

Re
〈
F
(
ξε

)
– F

(
ηε

)
, ξε – ηε

〉

≤ –ρ1
∥
∥uε

1 – uε
2
∥
∥2 – ρ2

∥
∥vε

1 – vε
2
∥
∥2 + min

{
ρ1

2
,
ρ2

2
, 1

}
∥
∥uε

1 – uε
2
∥
∥2

H1(R)

+ min

{
ρ1

2
,
ρ2

2
, 1

}
∥
∥vε

1 – vε
2
∥
∥2

H1(R)

+
3

2 4
3

(
1 + 2

√
2
√

1 + μ2
) 4

3

(

min

{
ρ1

2
,
ρ2

2
, 1

})– 1
3

· [(∥∥uε
1
∥
∥

8
3
L4(R) +

∥
∥uε

2
∥
∥

8
3
L4(R)

)∥
∥uε

1 – uε
2
∥
∥2

+
(∥
∥vε

1
∥
∥

8
3
L4(R) +

∥
∥vε

2
∥
∥

8
3
L4(R)

)∥
∥vε

1 – vε
2
∥
∥2]

≤ – min{ρ1,ρ2}
∣
∣ξε – ηε

∣
∣2 + min

{
ρ1

2
,
ρ2

2
, 1

}
∣
∣ξε – ηε

∣
∣2
H1(R)

+ C
(
ξε ,ηε

)∣
∣ξε – ηε

∣
∣2,

where

C
(
ξε ,ηε

)
= a

[∣
∣ξε

∣
∣

8
3
L4(R) +

∣
∣ηε

∣
∣

8
3
L4(R)

]
,

a =
3

2 4
3

(
1 + 2

√
2
√

1 + μ2
) 4

3

(

min

{
ρ1

2
,
ρ2

2
, 1

})– 1
3

.

Then, together with (3), we have

d
dt

∣
∣ξε – ηε

∣
∣2

≤ – min{ρ1,ρ2}
∣
∣ξε – ηε

∣
∣2 + 2C

(
ξε ,ηε

)∣
∣ξε – ηε

∣
∣2 + 2Gδ(θtω)

∣
∣ξε – ηε

∣
∣2.

From the Gronwall inequality, we can obtain

∣
∣ξε – ηε

∣
∣2 ≤ e– min{ρ1,ρ2}(t–τ )+2

∫ t
τ Gδ (θsω) ds+2

∫ t
τ C(ξε ,ηε) ds|ξτ – ητ |2. (4)
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Since

d
dt

∣
∣ξε

∣
∣2 + 2

∣
∣∇(

ξε
)∣
∣2

= 2 Re
〈
F
(
ξε

)
, ξε

〉
+ 2 Re

〈
εBξε , ξε

〉
+ 2Gδ(θtω)

∣
∣ξε

∣
∣2

≤ –2ρ1
∥
∥uε

1
∥
∥2 – 2ρ2

∥
∥vε

1
∥
∥2 – 2

∥
∥uε

1
∥
∥4

L4(R) – 2
∥
∥vε

1
∥
∥4

L4(R) + 2Gδ(θtω)
∣
∣ξε

∣
∣2

≤ –2 min{ρ1,ρ2}
∣
∣ξε

∣
∣2 – 2

∥
∥uε

1
∥
∥4

L4(R) – 2
∥
∥vε

1
∥
∥4

L4(R) + 2Gδ(θtω)
∣
∣ξε

∣
∣2,

we have

d
dt

∣
∣ξε

∣
∣2 + 2

∣
∣∇(

ξε
)∣
∣2 + 2

∥
∥uε

1
∥
∥4

L4(R) + 2
∥
∥vε

1
∥
∥4

L4(R)

≤ –2 min{ρ1,ρ2}
∣
∣ξε

∣
∣2 + 2Gδ(θtω)

∣
∣ξε

∣
∣2.

(5)

By the Gronwall inequality, one can obtain

∣
∣ξε

∣
∣2 ≤ e2

∫ t
τ [– min{ρ1,ρ2}+Gδ (θsω)] ds|ξτ |2. (6)

From (5) and (6), it follows that

∫ t

τ

∥
∥uε

1
∥
∥4

L4(R) ds +
∫ t

τ

∥
∥vε

1
∥
∥4

L4(R) ds

≤ 1
2
|ξτ |2 +

∫ t

τ

Gδ(θsω)
∣
∣ξε

∣
∣2 ds

≤ 1
2
|ξτ |2 +

∫ t

τ

∣
∣Gδ(θsω)

∣
∣e2

∫ s
τ [– min{ρ1,ρ2}+Gδ (θrω)] dr|ξτ |2 ds.

(7)

By Lemma 2.1, there exists T(ω) such that, for all t > T(ω),
∫ t
τ
Gδ(θsω) ds ≤ min{ρ1,ρ2}

4 (t – τ )
and |Gδ(θtω)| ≤ t. In addition, by Lemma 2.2, there exists M(ω) such that
∫ T(ω)
τ

|Gδ(θtω)|dt ≤ M(ω). Then, together with (7), we obtain

∫ t

τ

∥
∥uε

1
∥
∥4

L4(R) ds +
∫ t

τ

∥
∥vε

1
∥
∥4

L4(R) ds

≤ 1
2
|ξτ |2 + |ξτ |2

[∫ T(ω)

τ

∣
∣Gδ(θsω)

∣
∣e2

∫ s
τ [– min{ρ1,ρ2}+Gδ (θrω)] dr ds

+
∫ t

T(ω)

∣
∣Gδ(θsω)

∣
∣e2

∫ s
τ [– min{ρ1,ρ2}+Gδ (θrω)] dr ds

]

≤ M′(ω)|ξτ |2 + |ξτ |2
∫ t

T(ω)
se– 3

2 min{ρ1,ρ2}(s–τ ) ds,

(8)

where M′(ω) =
∫ T(ω)
τ

|Gδ(θsω)|e2
∫ s
τ [– min{ρ1,ρ2}+Gδ (θrω)] dr ds + 1

2 .
Similarly, we have

∫ t

τ

∥
∥uε

2
∥
∥4

L4(R) ds +
∫ t

τ

∥
∥vε

2
∥
∥4

L4(R) ds

≤ M′(ω)|ητ |2 + |ητ |2
∫ t

T(ω)
se– 3

2 min{ρ1,ρ2}(s–τ ) ds.
(9)
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From (8), (9), and the Hölder inequality, it follows that

∫ t

τ

C
(
ξε ,ηε

)
ds

≤ a
[(∫ t

τ

∣
∣ξε

∣
∣4
L4(R) ds

) 2
3

+
(∫ t

τ

∣
∣ηε

∣
∣4
L4(R) ds

) 2
3
]

(t – τ )
1
3

≤ a
[(

M′(ω)|ξτ |2 + |ξτ |2
∫ t

T(ω)
se– 3

2 min{ρ1,ρ2}(s–τ ) ds
) 2

3

+
(

M′(ω)|ητ |2 + |ητ |2
∫ t

T(ω)
se– 3

2 min{ρ1,ρ2}(s–τ ) ds
) 2

3
]

(t – τ )
1
3

≤ a
[(

M′(ω)|ξτ |2 + |ξτ |2
∫ +∞

T(ω)
se– 3

2 min{ρ1,ρ2}(s–τ ) ds
) 2

3

+
(

M′(ω)|ητ |2 + |ητ |2
∫ +∞

T(ω)
se– 3

2 min{ρ1,ρ2}(s–τ ) ds
) 2

3
]

(t – τ )
1
3

:= C(ω, ξτ ,ητ )(t – τ )
1
3 ,

(10)

which together with (4) implies that

∣
∣ξε – ηε

∣
∣2 ≤ e– min{ρ1,ρ2}(t–τ )+2

∫ t
τ Gδ (θsω) ds+C(ω,ξτ ,ητ )(t–τ )

1
3 |ξτ – ητ |2.

Noticing that ρ1,ρ2 > 0, thus we can obtain

lim
t→+∞

∣
∣ξε(t) – ηε(t)

∣
∣2 = 0,

which implies that the random attractor sets of coupled system (2) are singleton sets. �

Remark 3.1 Since (0, 0) is the solution of (2), it follows by Theorem 3.1 that the random
attractor is actually a singleton set {(0, 0)}. Thus, (0, 0) is a globally asymptotically stable
equilibrium point.

Theorem 3.2 The solution (uε , vε) of coupled system (1) satisfies

lim
ε→+∞

∥
∥uε(t) – vε(t)

∥
∥2 = 0

uniformly on any bounded time-interval [T1, T2] of R.

Proof Let ξε = (uε , vε)T be the solution of (1) with the initial datum ξτ = (uτ , vτ )T , then we
have

d
dt

∥
∥uε – vε

∥
∥2 + 2

∥
∥∇(

uε – vε
)∥
∥2

≤ –2ρ1
∥
∥uε – vε

∥
∥2 + 2|ρ2 – ρ1|

∥
∥uε – vε

∥
∥2 + 2|ρ2 – ρ1|

∥
∥vε

∥
∥2

– 2 Re(1 + iμ)
〈∣
∣uε

∣
∣2uε –

∣
∣vε

∣
∣2vε , uε – uε

〉
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– 4ε
∥
∥uε – vε

∥
∥2 + 2Gδ(θtω)

∥
∥uε – vε

∥
∥2

≤ [
–2ρ1 + 2|ρ2 – ρ1| – 4ε + 2Gδ(θtω)

]∥
∥uε – vε

∥
∥2

+ min

{
ρ1

2
, 1

}
∥
∥uε – vε

∥
∥2

H1(R)

+ C
(
uε , vε

)∥
∥uε – vε

∥
∥2 + 2|ρ2 – ρ1|

∥
∥vε

∥
∥2,

where

C
(
uε , vε

)
= b

(∥
∥uε

∥
∥

8
3
L4(R) +

∥
∥vε

∥
∥

8
3
L4(R)

)
,

b =
3

2 1
3

(
1 + 2

√
2
√

1 + μ2
) 4

3

(

min

{
ρ1

2
, 1

})– 1
3

.

Therefore, we have

d
dt

∥
∥uε – vε

∥
∥2

≤ [
–ρ1 + 2|ρ2 – ρ1| – 4ε + C

(
uε , vε

)
+ 2Gδ(θtω)

]∥
∥uε – vε

∥
∥2

+ 2|ρ2 – ρ1|
∥
∥vε

∥
∥2.

By the Gronwall inequality, one can obtain

∥
∥uε(t) – vε(t)

∥
∥2

≤ e
∫ t
τ [–ρ1+2|ρ2–ρ1|–4ε+C(uε ,vε )+2Gδ (θsω)] ds‖uτ – vτ‖2

+ 2|ρ2 – ρ1|
∫ t

τ

∥
∥vε

∥
∥2e

∫ t
s [–ρ1+2|ρ2–ρ1|–4ε+C(uε ,vε )+2Gδ (θrω)] dr ds.

(11)

Similar to (6) and (10) in the proof of Theorem 3.1, we have

∥
∥vε(t)

∥
∥2 ≤ ∣

∣ξε(t)
∣
∣2 ≤ e2

∫ t
τ [– min{ρ1,ρ2}+Gδ (θsω)] ds|ξτ |2

≤ C(T1, T2,ω, ξτ ),
(12)

∫ t

τ

C
(
uε , vε

)
ds ≤ 2bM′′ 2

3 (ω)|ξτ | 4
3 (T2 – τ )

1
3 (13)

for t on any bounded time-interval [T1, T2], where

M′′(ω) =
∫ T2

τ

∣
∣Gδ(θsω)

∣
∣e2

∫ s
τ [– min{ρ1,ρ2}+Gδ (θrω)] dr ds +

1
2

.

By (11)–(13) and Lemma 2.2, we obtain

∥
∥uε(t) – vε(t)

∥
∥2

≤ e2bM′′ 2
3 (ω)|ξτ | 4

3 (T2–τ )
1
3 e

∫ t
τ [–ρ1+2|ρ2–ρ1|–4ε+2Gδ (θsω)] ds‖uτ – vτ‖2

+ 2|ρ2 – ρ1|
∫ t

τ

C(T1, T2,ω, ξτ )e2bM′′ 2
3 (ω)|ξτ | 4

3 (T2–τ )
1
3
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· e
∫ t

s [–ρ1+2|ρ2–ρ1|–4ε+2Gδ (θrω)] dr ds

≤ M(T1, T2,ω, ξτ )e–4ε(T2–τ ).

Then we conclude that

∥
∥uε(t) – vε(t)

∥
∥2 → 0, ε → +∞

uniformly for t on any bounded time-interval [T1, T2]. �

Remark 3.2 Theorem 3.2 shows that, for any finite time-interval, the interaction between
the equations about uε and vε will make them behave very much alike when the coupling
parameter ε becomes very large, to some extent which is associated with finite-time syn-
chronization [25, 26].
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