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Abstract
This paper is concerned with the existence of chaos for a type of partial difference
equations. We establish four chaotification schemes for partial difference equations
with tangent and cotangent functions, in which the systems are shown to be chaotic
in the sense of Li–Yorke or of both Li–Yorke and Devaney. For illustration, we provide
three examples are provided.
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1 Introduction
In this paper, we focus on the existence of chaos in the following partial difference equa-
tion:

x(n + 1, m) = f
(
x(n, m), x(n, m + 1)

)
, (1)

where n ≥ 0 is the time step, m is the lattice point with 0 ≤ m ≤ k < +∞, f : D ⊂ R2 → R
is a map, and k + 1 is the system size. In many engineering applications, such as imaging,
digital filter, and spatial dynamical system, Eq. (1) plays an important role [1, 2].

In the past years, with the development of chaos theory, chaos has been applied in many
fields, such as physics, chemistry, engineering, and mathematics. In mathematics, chaos
has become a significant branch of dynamical systems [3]. Furthermore, anticontrol of
chaos (chaotification) is an important branch of chaos, and many researchers devoted
much effort to chaotification. The first important result was obtained by Chen and Liu
[4] proved that Eq. (1) in R3 is chaotic in the Li–Yorke sense by constructing spatial peri-
odic orbits of specified period. Later, Eq. (1) was reformulated into a discrete system [5].
By applying this method Shi [6] established some criteria of chaos by applying chaos in
scalar ordinary difference equations and snap-back repeller theory. Recently, chaotifica-
tion problems for Eq. (1) with general controllers, sawtooth functions, and mod operations
were studied, respectively, and all the controlled systems were proved to be chaotic in the
sense of both Devaney and Li–Yorke [7–9]. In [10], two chaotification schemes of Eq. (1)
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via sine functions,

x(n + 1, m) = f
(
x(n, m), x(n, m + 1)

)
+ ε sin

(
μx(n, m)

)
,

were established for μ > 1. Furthermore, we proved that not only the above controlled
system but also Eq. (1) with cosine functions are chaotic in the sense of both Li–Yorke and
Devaney for μ = 1 [11].

As one of the main elements of basic elementary functions, trigonometric functions
are of great importance. Sine, cosine, tangent, and cotangent functions are basic ones.
It is known that sine and cosine are continuous and have a similar geometric shape with
sawtooth functions and mod operations [6–8, 12, 13]. However, tangent and cotangent are
piecewise continuous, and their geometric shapes are different from those of sine, cosine,
sawtooth, and mod. Can tangent and cotangent functions be viewed as controllers to make
the controlled Eq. (1) to be chaotic? In this paper, we attempt to address such an interesting
question and try to establish chaotification schemes for the following controlled systems:

x(n + 1, m) = f
(
x(n, m), x(n, m + 1)

)
+ ε tan

(
x(n, m)

)
, (2)

x(n + 1, m) = f
(
x(n, m), x(n, m + 1)

)
+ ε cot

(
x(n, m)

)
, (3)

x(n + 1, m) = f
(
x(n, m), x(n, m + 1)

)
+ ε tan

(
x(n, m + 1)

)
, (4)

x(n + 1, m) = f
(
x(n, m), x(n, m + 1)

)
+ ε cot

(
x(n, m + 1)

)
. (5)

The rest of this paper is organized as follows. In Sect. 2, we list some basic concepts and
lemmas about chaos. In Sects. 3, we consider anticontrol of chaos of Eq. (1) with tangent
and cotangent functions, give four theorems, and prove that all the controlled systems
are chaotic in the sense of Li–Yorke or of both Li–Yorke and Devaney by the coupled-
expansion theory. Finally, in Sect. 4, we provide three illustrative examples.

2 Preliminaries
Now we introduce some basic concepts and lemmas.

Definition 1 ([14]) Let (X, d) be a metric space, and let F : X → X be a map. A subset S
of X is called a scrambled set of F if for any two different points x, y ∈ S,

lim inf
n→∞ d

(
Fn(x), Fn(y)

)
= 0, lim sup

n→∞
d
(
Fn(x), Fn(y)

)
> 0.

The map F is said to be chaotic in the Li–Yorke sense if there exists an uncountable scram-
bled set S of F .

Definition 2 ([15]) A map F : V ⊂ X → V is said to be chaotic on V in the sense of
Devaney if

(i) F is topologically transitive in V ;
(ii) the periodic points of F in V are dense in V ;

(iii) F has sensitive dependence on initial conditions in V .
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By the result of [16], conditions (i) and (ii) imply (iii) if F is continuous in V that contains
infinitely many points. Under some conditions, chaos in the sense of Devaney is stronger
than that of Li–Yorke [17].

A nonperiodic boundary condition is given for Eq. (1) as

x(n, k + 1) = ϕ
(
x(n, p)

)
, n ≥ 0, 0 ≤ p ≤ k, (6)

where p is an integer, and ϕ : I ⊂ R → R is a map. For any given initial condition x(0, m) =
φ(m), 0 ≤ m ≤ k + 1, where φ satisfies (6), Eq. (1) obviously has a unique solution satisfying
this condition. By setting

xn =
(
x(n, 0), x(n, 1), . . . , x(n, k)

)T ∈ Rk+1, n ≥ 0,

Equation (1) with (6) can be written as

xn+1 = F(xn), n ≥ 0, (7)

where

F(xn) =
(
f
(
x(n, 0), x(n, 1)

)
, f

(
x(n, 1), x(n, 2)

)
, . . . , f

(
x(n, k),ϕ

(
x(n, p)

)))T . (8)

System (7) is called the system induced by Eq. (1) with (6).

Definition 3 ([8]) Equation (1) with (6) is said to be chaotic in the sense of Devaney (or
Li–Yorke) on V ⊂ Rk+1 if its induced system (7) is chaotic in the sense of Devaney (or
Li–Yorke) on V .

Definition 4 ([18]) Let (X, d) be a metric space, and let f : D ⊂ X → X be a map. If there
exist m (≥ 2) subsets Vi (1 ≤ i ≤ m) of D with Vi ∩ Vj = ∂DVi ∩ ∂DVj for each pair of (i, j),
1 ≤ i 	= j ≤ m, such that

f (Vi) ⊃
m⋃

j=1

Vj, 1 ≤ i ≤ m,

where ∂DVi is the relative boundary of Vi with respect to D, then f is said to be a coupled-
expanding map in Vi, 1 ≤ i ≤ m. Further, the map f is said to be a strictly coupled-
expanding map in Vi, 1 ≤ i ≤ m, if d(Vi, Vj) > 0 for all 1 ≤ i 	= j ≤ m.

Lemma 5 ([19]) Let (X, d) be a metric space, and let Vj (1 ≤ j ≤ m) be disjoint compact
sets of X. If f : D ≡ ⋃m

j=1 Vj → X is a strictly coupled-expanding continuous map in Vj,
1 ≤ j ≤ m, then f is chaotic in the sense of Li–Yorke.

Lemma 6 ([20, 21]) Let (X, d) be a complete metric space, and let f : D ⊂ X → X be a map.
Assume that there exist k disjoint bounded closed subsets Vi of D, 1 ≤ i ≤ k, such that f is
continuous in

⋃k
i=1 Vi and satisfies

(i) f is strictly coupled-expanding in Vi, 1 ≤ i ≤ k;
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(ii) there exists a constant λ > 1 such that

d
(
f (x), f (y)

) ≥ λd(x, y), ∀x, y ∈ Vi, 1 ≤ i ≤ k.

Then f has an invariant Cantor set V ⊂ ⋃k
i=1 Vi such that f : V → V is topologically conju-

gate to the subshift �+
k → �+

k . Consequently, f is chaotic on V in the Devaney and Li–Yorke
senses.

3 Main results
In this section, we establish four chaotification schemes for Eq. (1) with tangent and cotan-
gent functions.

Theorem 1 Consider the controlled system (2), that is,

x(n + 1, m) = f
(
x(n, m), x(n, m + 1)

)
+ ε tan

(
x(n, m)

)
, n ≥ 0, 0 ≤ m ≤ k < +∞

with (6). Suppose that
(i) there exist positive constants r and L such that

∣∣f (x1, y1) – f (x2, y2)
∣∣ ≤ L max

{|x1 – x2|, |y1 – y2|
}

, ∀x1, x2, y1, y2 ∈ [–r, r]; (9)

(ii) ϕ : [–r, r] → [–r, r] is a map with ϕ(0) = 0, and there exists a constant λ > 0 such that

∣
∣ϕ(x) – ϕ(y)

∣
∣ ≤ λ|x – y|, ∀x, y ∈ [–r, r]. (10)

If r > 5π/4, then for each constant ε satisfying

ε > ε0 := max

{
5π

4
(
1 + L max{1,λ}) – f (0, 0),

π

4
(
1 + 5L max{1,λ}) + f (0, 0)

}
,

there exists a Cantor set 	1 ⊂ [– π
4 , π

4 ]k+1 ∪ [ 3π
4 , 5π

4 ]k+1 such that system (2) with (6) is
chaotic on 	1 in the Li–Yorke sense. Further, for each constant ε satisfying

ε > max
{
ε0, 1 + L max{1,λ}},

there exists a Cantor set 	2 ⊂ [– π
4 , π

4 ]k+1 ∪ [ 3π
4 , 5π

4 ]k+1 such that system (2) with (6) is
chaotic on 	2 in the Li–Yorke and Devaney senses.

Proof We use Lemmas 5 and 6. Let

xn+1 = F(xn) + ε Tan(xn) := Gε(xn), n ≥ 0,

be the induced system of the controlled system (2) with (6), where F(xn) is (8), and

Tan(xn) =
(

tan
(
x(n, 0)

)
, tan

(
x(n, 1)

)
, . . . , tan

(
x(n, k)

))T .
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Let

V1 =
[

–
π

4
,
π

4

]k+1

, V2 =
[

3π

4
,

5π

4

]k+1

.

Then V1, V2 ⊂ [–r, r]k+1 are nonempty, closed, and bounded, and

d(V1, V2) = inf
{‖x – y‖ : x ∈ V1, y ∈ V2

}
=

π

2
> 0.

The whole proof is divided into two parts.
Step 1. System (2) with (6) is chaotic in the Li–Yorke sense.
By Lemma 5 we will show that Gε is a strictly coupled-expanding map in V1 and V2.
For each x = (x(0), x(1), . . . , x(k))T ∈ V1 with x(j) = –π/4, from (9) it follows that, for 0 ≤

j ≤ k – 1,

Gε,j(x) = f
(
x(j), x(j + 1)

)
+ ε tan

(
x(j)

)

= f
(

–
π

4
, x(j + 1)

)
+ ε tan

(
–

π

4

)

≤ L max

{
π

4
,
∣
∣x(j + 1)

∣
∣
}

– ε + f (0, 0)

=
π

4
L – ε + f (0, 0) ≤ –

π

4
,

(11)

and for j = k, from (6), (9), and (10) it follows that

Gε,k(x) = f
(
x(k),ϕ

(
x(p)

))
+ ε tan

(
x(k)

)

= f
(

–
π

4
,ϕ

(
x(p)

)
)

+ ε tan

(
–

π

4

)

≤ L max

{
π

4
,
∣
∣ϕ

(
x(p)

)∣∣
}

– ε + f (0, 0)

≤ L max

{
π

4
,λ

∣
∣x(p)

∣
∣
}

– ε + f (0, 0)

≤ π

4
L max{1,λ} – ε + f (0, 0) ≤ –

π

4
.

(12)

For each x ∈ V1 with x(j) = π/4, it follows from (6), (9), and (10) that, for 0 ≤ j ≤ k – 1,

Gε,j(x) = f
(

π

4
, x(j + 1)

)
+ ε tan

(
π

4

)

≥ –L max

{
π

4
,
∣∣x(j + 1)

∣∣
}

+ ε + f (0, 0)

= –
π

4
L + ε + f (0, 0) ≥ 5π

4
,

(13)



Guo and Liang Advances in Difference Equations          (2021) 2021:1 Page 6 of 15

and for j = k,

Gε,k(x) = f
(

π

4
,ϕ

(
x(p)

))
+ ε tan

(
π

4

)

≥ –L max

{
π

4
,λ

∣∣x(p)
∣∣
}

+ ε + f (0, 0)

≥ –
π

4
L max{1,λ} + ε + f (0, 0) ≥ 5π

4
.

(14)

By (9) and (10) Gε is continuous in [–r, r]k+1. By the intermediate value theorem and (11)–
(14) we have Gε(V1) ⊃ V1 ∪ V2.

For each x ∈ V2 with x(j) = 3π/4, we have that for 0 ≤ j ≤ k – 1,

Gε,j(x) = f
(

3π

4
, x(j + 1)

)
+ ε tan

(
3π

4

)

≤ L max

{
3π

4
,
∣
∣x(j + 1)

∣
∣
}

– ε + f (0, 0)

≤ 5π

4
L – ε + f (0, 0) ≤ –

π

4
,

(15)

and for j = k,

Gε,k(x) = f
(

3π

4
,ϕ

(
x(p)

)
)

+ ε tan

(
3π

4

)

≤ L max

{
3π

4
,λ

∣∣x(p)
∣∣
}

– ε + f (0, 0)

≤ 5π

4
L max{1,λ} – ε + f (0, 0) ≤ –

π

4
.

(16)

For each x ∈ V2 with x(j) = 5π/4, we have that for 0 ≤ j ≤ k – 1,

Gε,j(x) = f
(

5π

4
, x(j + 1)

)
+ ε tan

(
5π

4

)

≥ –L max

{
5π

4
,
∣∣x(j + 1)

∣∣
}

+ ε + f (0, 0)

= –
5π

4
L + ε + f (0, 0) ≥ 5π

4

(17)

and for j = k,

Gε,k(x) = f
(

5π

4
,ϕ

(
x(p)

))
+ ε tan

(
5π

4

)

≥ –L max

{
5π

4
,λ

∣
∣x(p)

∣
∣
}

+ ε + f (0, 0)

≥ –
5π

4
L max{1,λ} + ε + f (0, 0) ≥ 5π

4
.

(18)

By the intermediate value theorem and (15)–(18) we have Gε(V2) ⊃ V1 ∪ V2.
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By the above discussion, Gε is a strictly coupled-expanding map in V1 and V2. Therefore
by Lemma 5 system (2) with (6) is chaotic in the Li-Yorke sense.

Step 2. System (2) with (6) is chaotic in both Li–Yorke and Devaney senses.
Since V1, V2 ⊂ [–r, r]k+1, from (6), (9), and (10) it follows that for all x, y ∈ V1 and x, y ∈

V2,

∥∥F(x) – F(y)
∥∥ = max

{∣∣f
(
x(j), x(j + 1)

)
– f

(
y(j), y(j + 1)

)∣∣, 0 ≤ j ≤ k
}

≤ L max
{∣∣x(j) – y(j)

∣∣,
∣∣ϕ

(
x(p)

)
– ϕ

(
y(p)

)∣∣, 0 ≤ j, p ≤ k
}

≤ L max
{∣∣x(j) – y(j)

∣∣,λ
∣∣x(p) – y(p)

∣∣, 0 ≤ j, p ≤ k
}

≤ L max{1,λ}‖x – y‖.

(19)

On the other hand, by Lagrange’s mean value theorem, for all x, y ∈ V1 and x, y ∈ V2,

∥
∥Tan(x) – Tan(y)

∥
∥ = max

{∣∣tan
(
x(j)

)
– tan

(
y(j)

)∣∣, 0 ≤ j ≤ k
}

= max
{∣∣sec2 ξ

(
x(j) – y(j)

)∣∣, 0 ≤ j ≤ k
}

≥ ‖x – y‖,

(20)

where ξ ∈ (– π
4 , π

4 ) ∪ ( 3π
4 , 5π

4 ). Hence from (19) and (20) it follows that for all x, y ∈ V1 and
x, y ∈ V2,

∥
∥Gε(x) – Gε(y)

∥
∥ ≥ (

ε – L max{1,λ})‖x – y‖.

Since ε – L max{1,λ} > 1, Gε satisfies assumption (ii) of Lemma 6. Together with the result
obtained in step 1, by Lemma 6 system (2) with (6) is chaotic in both Li–Yorke and Devaney
senses. The proof is complete. �

Theorem 2 Consider the controlled system (3), that is,

x(n + 1, m) = f
(
x(n, m), x(n, m + 1)

)
+ ε cot

(
x(n, m)

)
, n ≥ 0, 0 ≤ m ≤ k < +∞

with (6). Suppose that all the conditions in Theorem 1 hold. Then for all constants ε, r
satisfying

ε > max

{
3π

4
(
1 + L max{1,λ}) – f (0, 0),

3π

4
(
1 + L max{1,λ}) + f (0, 0)

}

and r > 3π/4, there exists a Cantor set 	 ⊂ [– 3π
4 , – π

4 ]k+1 ∪ [ π
4 , 3π

4 ]k+1 such that system (3)
with (6) is chaotic on 	 in both Li–Yorke and Devaney senses.

Proof We use Lemmas 5 and 6. The induced system of (3) with (6) is

xn+1 = F(xn) + ε Cot(xn) := Hε(xn), n ≥ 0,

where F is defined in (8), and

Cot(xn) =
(

cot
(
x(n, 0)

)
, cot

(
x(n, 1)

)
, . . . , cot

(
x(n, k)

))T .
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Let

Ṽ1 =
[

–
3π

4
, –

π

4

]k+1

, Ṽ2 =
[

π

4
,

3π

4

]k+1

.

Obviously, Ṽ1, Ṽ2 ⊂ [–r, r]k+1 are nonempty, closed, and bounded sets, and d(Ṽ1, Ṽ2) =
π/2 > 0.

First, we show that Hε(Ṽi) ⊃ Ṽ1 ∪ Ṽ2 for i = 1, 2.
For each x ∈ Ṽ1 with x(j) = –3π/4, from (6), (9), and (10) it follows that for 0 ≤ j ≤ k – 1,

Hε,j(x) = f
(

–
3π

4
, x(j + 1)

)
+ ε cot

(
–

3π

4

)

≥ –L max

{
3π

4
,
∣
∣x(j + 1)

∣
∣
}

+ ε + f (0, 0)

= –
3π

4
L + ε + f (0, 0) ≥ 3π

4
,

(21)

and for j = k,

Hε,k(x) = f
(

–
3π

4
,ϕ

(
x(p)

))
+ ε cot

(
–

3π

4

)

≥ –L max

{
3π

4
,λ

∣
∣x(p)

∣
∣
}

+ ε + f (0, 0)

= –
3π

4
L max{1,λ} + ε + f (0, 0) ≥ 3π

4
.

(22)

For each x ∈ Ṽ1 with x(j) = –π/4, from (6), (9), and (10) it follows that for 0 ≤ j ≤ k – 1,

Hε,j(x) = f
(

–
π

4
, x(j + 1)

)
+ ε cot

(
–

π

4

)

≤ L max

{
π

4
,
∣∣x(j + 1)

∣∣
}

– ε + f (0, 0)

≤ 3π

4
L – ε + f (0, 0) ≤ –

3π

4
,

(23)

and for j = k,

Hε,k(x) = f
(

–
π

4
,ϕ

(
x(p)

)
)

+ ε cot

(
–

π

4

)

≤ L max

{
π

4
,λ

∣
∣x(p)

∣
∣
}

– ε + f (0, 0)

≤ 3π

4
L max{1,λ} – ε + f (0, 0) ≤ –

3π

4
.

(24)
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For each x ∈ Ṽ2 with x(j) = π/4, for 0 ≤ j ≤ k – 1,

Hε,j(x) = f
(

π

4
, x(j + 1)

)
+ ε cot

(
π

4

)

≥ –L max

{
π

4
,
∣∣x(j + 1)

∣∣
}

+ ε + f (0, 0)

≥ –
3π

4
L + ε + f (0, 0) ≥ 3π

4
,

(25)

and for j = k,

Hε,k(x) = f
(

π

4
,ϕ

(
x(p)

))
+ ε cot

(
π

4

)

≥ –L max

{
π

4
,λ

∣∣x(p)
∣∣
}

+ ε + f (0, 0)

≥ –
3π

4
L max{1,λ} + ε + f (0, 0) ≥ 3π

4
.

(26)

For each x ∈ Ṽ2 with x(j) = 3π/4, for 0 ≤ j ≤ k – 1,

Hε,j(x) = f
(

3π

4
, x(j + 1)

)
+ ε cot

(
3π

4

)

≤ L max

{
3π

4
,
∣
∣x(j + 1)

∣
∣
}

– ε + f (0, 0)

=
3π

4
L – ε + f (0, 0) ≤ –

3π

4
,

(27)

and for j = k,

Hε,k(x) = f
(

3π

4
,ϕ

(
x(p)

)
)

+ ε cot

(
3π

4

)

≤ L max

{
3π

4
,λ

∣
∣x(p)

∣
∣
}

– ε + f (0, 0)

≤ 3π

4
L max{1,λ} – ε + f (0, 0) ≤ –

3π

4
.

(28)

By the intermediate value theorem and (21)–(28), we have Hε(Ṽi) ⊃ Ṽ1 ∪ Ṽ2, i = 1, 2. So
by Lemma 5 system (3) with (6) is chaotic in the Li–Yorke sense.

Next, we show that Hε satisfies assumption (ii) in Lemma 6.
By Lagrange’s mean value theorem we can verify that for all x, y ∈ Ṽ1 and x, y ∈ Ṽ2,

∥
∥Cot(x) – Cot(y)

∥
∥ = max

{∣∣cot
(
x(j)

)
– cot

(
y(j)

)∣∣, 0 ≤ j ≤ k
}

= max
{∣∣– csc2 θ

(
x(j) – y(j)

)∣∣, 0 ≤ j ≤ k
}

≥ ‖x – y‖,

where θ ∈ (– 3π
4 , – π

4 ) ∪ ( π
4 , 3π

4 ). Hence, by (19), for all x, y ∈ Ṽ1 and x, y ∈ Ṽ2,

∥∥Hε(x) – Hε(y)
∥∥ ≥ (

ε – L max{1,λ})‖x – y‖.
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Since ε > 3
4π (1 + L max{1,λ}), we have ε – L max{1,λ} > 1. Thus Hε satisfies assumption

(ii) in Lemma 6. By Lemma 6 system (3) with (6) is chaotic in both Li–Yorke and Devaney
senses. This completes the proof. �

Now we consider the controlled systems (4) and (5). For convenience, we give a periodic
boundary condition for Eq. (1):

x(n, k + 1) = x(n, 0), n ≥ 0. (29)

We have the following two results.

Theorem 3 Consider the controlled system (4), that is,

x(n + 1, m) = f
(
x(n, m), x(n, m + 1)

)
+ ε tan

(
x(n, m + 1)

)
, n ≥ 0, 0 ≤ m ≤ k < +∞,

with (29). Suppose that condition (i) in Theorem 1 holds. Then all the results in Theorem 1
hold for system (4) with (29), except that max{1,λ} in Theorem 1 is replaced by 1.

Proof The induced system of (4) with (29) can be written as

xn+1 = F̃(xn) + ε Tan(̂xn) := G̃ε(xn), n ≥ 0,

where

F̃(xn) =
(
f
(
x(n, 0), x(n, 1)

)
, f

(
x(n, 1), x(n, 2)

)
, . . . , f

(
x(n, k), x(n, 0)

))T , (30)

Tan(̂xn) =
(

tan
(
x(n, 1)

)
, tan

(
x(n, 2)

)
, . . . , tan

(
x(n, k)

)
, tan

(
x(n, 0)

))T .

Let V1 and V2 be the same as in Theorem 1. We divide the proof into two parts.
Step 1. System (4) with (29) is chaotic in the Li–Yorke sense.
For each x ∈ V1 with x(j + 1) = –π/4, from (9) it follows that for 0 ≤ j ≤ k – 1,

G̃ε,j(x) = f
(
x(j), x(j + 1)

)
+ ε tan

(
x(j + 1)

)

= f
(

x(j), –
π

4

)
+ ε tan

(
–

π

4

)

≤ L max

{∣∣x(j)
∣∣,

π

4

}
– ε + f (0, 0)

=
π

4
L – ε + f (0, 0) ≤ –

π

4
,

(31)

and for j = k, from (9) and (29) it follows that x(k + 1) = x(0) = –π/4, so that

G̃ε,k(x) = f
(
x(k), x(0)

)
+ ε tan

(
x(0)

)

= f
(

x(k), –
π

4

)
+ ε tan

(
–

π

4

)

≤ L max

{∣∣x(k)
∣∣,

π

4

}
– ε + f (0, 0)

=
π

4
L – ε + f (0, 0) ≤ –

π

4
.

(32)
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For each x ∈ V1 with x(j + 1) = π/4, by (9) and (29), x(k + 1) = x(0) = π/4 for j = k. Therefore
for 0 ≤ j ≤ k,

G̃ε,j(x) = f
(

x(j),
π

4

)
+ ε tan

(
π

4

)

≥ –L max

{∣
∣x(j)

∣
∣,

π

4

}
+ ε + f (0, 0)

= –
π

4
L + ε + f (0, 0) ≥ 5π

4
.

(33)

For each x ∈ V2 with x(j + 1) = 3π/4, 0 ≤ j ≤ k, from (9) and (29) it follows that

G̃ε,j(x) = f
(

x(j),
3π

4

)
+ ε tan

(
3π

4

)

≤ L max

{∣∣x(j)
∣∣,

3π

4

}
– ε + f (0, 0)

≤ 5π

4
L – ε + f (0, 0) ≤ –

π

4
,

(34)

and for each x ∈ V2 with x(j + 1) = 5π/4, 0 ≤ j ≤ k, we have

G̃ε,j(x) = f
(

x(j),
5π

4

)
+ ε tan

(
5π

4

)

≥ –L max

{∣
∣x(j)

∣
∣,

5π

4

}
+ ε + f (0, 0)

= –
5π

4
L + ε + f (0, 0) ≥ 5π

4
.

(35)

By the intermediate value theorem and (31)–(35) we have G̃ε(Vi) ⊃ V1 ∪V2, i = 1, 2. There-
fore by Lemma 5 system (4) with (29) is chaotic in the Li–Yorke sense.

Step 2. System (4) with (29) is chaotic in both Li–Yorke and Devaney senses.
Since V1, V2 ⊂ [–r, r]k+1, from (9) and (29) it follows that for all x, y ∈ V1 and x, y ∈ V2,

∥∥F̃(x) – F̃(y)
∥∥ = max

{∣∣f
(
x(j), x(j + 1)

)
– f

(
y(j), y(j + 1)

)∣∣, 0 ≤ j ≤ k
}

≤ L max
{∣∣x(j) – y(j)

∣∣, 0 ≤ j ≤ k
}

= L‖x – y‖.

(36)

On the other hand, by Lagrange’s mean value theorem, for all x, y ∈ V1 and x, y ∈ V2,

∥
∥Tan(̂x) – Tan(̂y)

∥
∥ = max

{∣∣tan
(
x(j)

)
– tan

(
y(j)

)∣∣, 0 ≤ j ≤ k
}

= max
{∣∣sec2 η

(
x(j) – y(j)

)∣∣, 0 ≤ j ≤ k
}

≥ ‖x – y‖,

(37)

where η ∈ (– π
4 , π

4 ) ∪ ( 3π
4 , 5π

4 ). Hence from (36) and (37) it follows that

∥∥G̃ε(x) – G̃ε(y)
∥∥ ≥ (ε – L)‖x – y‖, ∀x, y ∈ V1 or x, y ∈ V2.
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Since ε – L > 1, G̃ε satisfies assumption (ii) of Lemma 6. Together with the result obtained
in step 1, by Lemma 6 system (4) with (29) is chaotic in both Li–Yorke and Devaney senses.
This completes the proof. �

Remark 1 The boundary conditions imposed on systems (2)–(3) and (4)–(5) are different.
If (6) is imposed on system (4), then in (32), x(k + 1) = ϕ(x(p)) = –π/4, 0 ≤ p ≤ k, but we
cannot ensure that x(p) ∈ [– π

4 , π
4 ]. Thus x ∈ V1 may not hold. Therefore (29) is imposed

on systems (4) and (5).

Theorem 4 Consider the controlled system (5), that is,

x(n + 1, m) = f
(
x(n, m), x(n, m + 1)

)
+ ε cot

(
x(n, m + 1)

)
, n ≥ 0, 0 ≤ m ≤ k < +∞,

with (29). Suppose that condition (i) in Theorem 1 holds. Then all the results in Theorem 2
hold for system (5) with (29), where max{1,λ} = 1.

Proof We use Lemmas 5 and 6. Let

xn+1 = F̃(xn) + ε Cot(̂xn) := H̃ε(xn), n ≥ 0,

be the induced system of system (5) with (29), where F̃ is defined in (30), and

Cot(̂xn) = ( cot
(
x(n, 1)

)
, cot

(
x(n, 2)

)
, . . . , cot

(
x(n, k), cot

(
x(n, 0)

))T .

Let Ṽ1 and Ṽ2 be the same as in Theorem 2.
For each x ∈ Ṽ1 with x(j + 1) = –3π/4, 0 ≤ j ≤ k, from (9) and (29) it follows that

H̃ε,j(x) = f
(

x(j), –
3π

4

)
+ ε cot

(
–

3π

4

)

≥ –L max

{∣∣x(j)
∣∣,

3π

4

}
+ ε + f (0, 0)

= –
3π

4
L + ε + f (0, 0) ≥ 3π

4
,

(38)

and for each x ∈ Ṽ1 with x(j + 1) = –π/4, 0 ≤ j ≤ k, from (9) and (29) it follows that

H̃ε,j(x) = f
(

x(j), –
π

4

)
+ ε cot

(
–

π

4

)

≤ L max

{∣
∣x(j)

∣
∣,

π

4

}
– ε + f (0, 0)

≤ 3π

4
L – ε + f (0, 0) ≤ –

3π

4
.

(39)

By the intermediate value theorem and (38)–(39) we have H̃ε(Ṽ1) ⊃ Ṽ1 ∪ Ṽ2. Similarly, we
can prove that H̃ε(Ṽ2) ⊃ Ṽ1 ∪ Ṽ2.
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By Lagrange’s mean value theorem we can verify that for all x, y ∈ Ṽ1 and x, y ∈ Ṽ2,

∥
∥Cot(̂x) – Cot(̂y)

∥
∥ = max

{∣∣cot
(
x(j)

)
– cot

(
y(j)

)∣∣, 0 ≤ j ≤ k
}

= max
{∣∣– csc2 θ

(
x(j) – y(j)

)∣∣, 0 ≤ j ≤ k
}

≥ ‖x – y‖,

where θ ∈ (– 3π
4 , – π

4 ) ∪ ( π
4 , 3π

4 ). Together with (36), for all x, y ∈ Ṽ1 and x, y ∈ Ṽ2, we have

∥∥H̃ε(x) – H̃ε(y)
∥∥ ≥ (ε – L)‖x – y‖,

where ε > 3π
4 (1 + L) > 1 + L. By Lemma 6 system (5) with (29) is chaotic in both Li–Yorke

and Devaney senses. This completes the proof. �

4 Examples
In this section, we discuss three examples with computer simulations.

Example 1 Consider the controlled system (2) with (6), where

f (x, y) =

⎧
⎨

⎩

1
32 xy + 1

2π , x, y ∈ [–4, 4],
1
2

|xy|, else,

and

ϕ(x) =
1
2

x, ∀x ∈ R.

It is evident that |fx(x, y)| + |fy(x, y)| ≤ 1/4 for all x, y ∈ [–4, 4], that is,

∣∣f (x1, y1) – f (x2, y2)
∣∣ ≤ 1

4
max

{|x1 – x2|, |y1 – y2|
}

, ∀x1, x2, y1, y2 ∈ [–4, 4].

Thus f and ϕ satisfy all the assumptions in Theorem 1 with r = 4, L = 1/4, λ = 1/2,
and f (0, 0) = π/2. By Theorem 1, for any ε > 17π/16, there exists a Cantor set 	 ⊂
[– 1

4π , 1
4π ]k+1 ∪ [ 3

4π , 5
4π ]k+1 such that the controlled system is chaotic on 	 in both Li–

Yorke and Devaney senses. Two simulation results on two-dimensional plane (x(·, 0),
x(·, 1)) and three-dimensional space (x(·, 0), x(·, 1), x(·, 2)) are given in Fig. 1 for p = 1,
k = 1, 2, and ε = 9π/8, which exhibit complicated dynamical behaviors of the controlled
system on 	.

Example 2 Consider the controlled system (3) with (6), where

f (x, y) =

⎧
⎨

⎩

1
9 x2 + 1

3 y, x, y ∈ [–3, 3],

cos(x + y), else,
(40)

and

ϕ(x) =
4
3

x, ∀x ∈ R.
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Figure 1 Simulations for system (2) with (6), where n = 0, 1, . . . , 10,000 and p = 0. In the 2-D graph, the initial
values are taken as x(0, 0) = 0.1 and x(0, 1) = –0.1. The initial values are x(0, 0) = 0.1, x(0, 1) = –0.1, and
x(0, 2) = 0.1 in the 3-D graph

Figure 2 Simulations for system (3) with (6), where n = 0, 1, . . . , 10,000 and p = 1. In the 2-D graph, k = 1, and
the initial values are x(0, 0) = 1, x(0, 1) = –0.1. In the 3-D graph, k = 2, and the initial value are x(0, 0) = 0.1,
x(0, 1) = –0.1, and x(0, 2) = 0.1

Figure 3 Simulations for system (5) with (29), where n = 0, 1, . . . , 10,000. In the 2-D graph, k = 1, and the initial
values are x(0, 0) = 1, x(0, 1) = –0.1. In the 3-D graph, k = 2, and the initial values are x(0, 0) = 0.1, x(0, 1) = –0.1,
and x(0, 2) = 0.1

Obviously, f (0, 0) = 0 and |fx(x, y)| + |fy(x, y)| ≤ 1 for all x, y ∈ [–3, 3], which implies that

∣∣f (x1, y1) – f (x2, y2)
∣∣ ≤ max

{|x1 – x2|, |y1 – y2|
}

, ∀x1, x2, y1, y2 ∈ [–3, 3].

Hence f and ϕ satisfy all the assumptions in Theorem 2 with r = 3, L = 1, λ = 4/3. Thus,
by Theorem 2, for any constant ε > 7π/4, there exists a Cantor set 	 ⊂ [– 3

4π , – 1
4π ]k+1 ∪

[ 1
4π , 3

4π ]k+1 such that the controlled system (3) with (6) is chaotic on 	 in both Li–Yorke
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and Devaney senses. Two simulation results are shown in Fig. 2 for p = 1 and ε = 2π , which
indicate that the controlled system has very complicated dynamical behaviors on 	.

Example 3 Consider the controlled system (5) with (29), where f (x, y) is (40). By the pre-
vious discussion, f satisfies all the assumptions in Theorem 4 with r = 3 and L = 1. Thus,
by Theorem 4, for any constant ε > 3π/2, there exists a Cantor set 	 ⊂ [– 3

4π , – 1
4π ]k+1 ∪

[ 1
4π , 3

4π ]k+1 such that the controlled system is chaotic on 	 in both Li–Yorke and Devaney
senses. Simulation results are shown in Fig. 3 for ε = 2π , which show that the controlled
system has very complicated dynamical behaviors on 	.
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