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Abstract
Nowadays, online gambling has a great negative impact on the society. In order to
study the effect of people’s psychological factors, anti-gambling policy, and social
network topology on online gambling dynamics, a new SHGD
(susceptible–hesitator–gambler–disclaimer) online gambling spreading model is
proposed on scale-free networks. The spreading dynamics of online gambling is
studied. The basic reproductive number R0 is got and analyzed. The basic
reproductive number R0 is related to anti-gambling policy and the network topology.
Then, gambling-free equilibrium E0 and gambling-prevailing equilibrium E+ are
obtained. The global stability of E0 is analyzed. The global attractivity of E+ and the
persistence of online gambling phenomenon are studied. Finally, the theoretical
results are verified by some simulations.

Keywords: SHGDmodel; Heterogeneity; Psychological factors; Anti-gambling policy;
Stability; Persistence

1 Introduction
Online gambling has emerged with the wide use of network technology. Compared with
traditional gambling, the online gambling is stronger interaction, higher concealment, and
more difficult to control [1]. Obviously, online gambling spreads more easily and widely
than traditional gambling. The widespread spread of online gambling phenomenon has a
huge negative impact on society [2–4].

How to control the phenomenon of online gambling is very important. Some scholars
have studied the phenomenon of online gambling from different aspects [5–9]. King and
Barak [10] studied the characteristics of online gambling such as attraction, convenience,
and reasons why people participate in gambling. Dickson-Gillespie et al. [11] found that
effective educational programs, media campaigns, and public policy would be good for
quitting gambling. In addition, we should note the network spread characteristic of on-
line gambling [12]. So, it is important for us to study the spreading dynamics of online
gambling. Through the study of online gambling dynamics, we can comprehensively and
systematically learn about the spreading mechanism and influence factors, which is more
helpful to control the spread of online gambling.

Research on spreading dynamics of online gambling is relatively rare at present. There
are some results in information spreading dynamics and disease spreading dynamics [13–
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18]. Liu et al. [19] studied the spread dynamics of word-of-mouth. Wang et al. [20] pro-
posed a network epidemic model for waterborne diseases spread and considered both
indirect environment-to-human and direct human-to-human transmission routes. King
et al. [21] established a two-way model, studied the influence of some background factors
to gambling spread. However, in the research works mentioned above, the persistence of
online gambling phenomenon and the global attractivity of online gambling equilibrium
are not studied. Meanwhile, some researchers found that the scale-free property is an im-
portant property of social networks [22, 23]. Obviously, the spread networks of online
gambling are based on social networks. So, based on scale-free networks, we study the dy-
namics of online gambling in the paper. Taking into account people’s psychological factors,
anti-gambling policy, we present a new comprehensively SHGD (susceptible–hesitator–
gambler–disclaimer) online gambling spreading model.

The rest of the paper is as follows: The SHGD online gambling spreading model is pre-
sented and described in Sect. 2. The basic reproductive number R0, gambling-free equilib-
rium E0, and gambling-prevailing equilibrium E+ are derived in Sect. 3. Then, the stability
of E0, the global attraction of E+, and the persistence of online gambling phenomenon are
studied. Some simulations are shown in Sect. 4. We conclude the paper in Sect. 5.

2 Model formulation
We present a new SHGD (susceptible–hesitator–gambler–disclaimer) online gambling
spreading model. The model has the spread sketch in Fig. 1. In the model, nodes are used
to stand for individuals, and edges are used to stand for the relationships between indi-
viduals. The whole crowd is divided into four different classes, namely susceptible (S),
hesitator (H), gambler (G), and disclaimer (D). S nodes represent individuals who are not
involved in gambling currently and can be influenced by the online gambling behavior; H
nodes represent individuals who know the phenomenon of online gambling and hesitate
whether to participate in online gambling and can spread online gambling behavior; G
nodes represent individuals who take part in online gambling and can spread the online
gambling behavior; D nodes represent the individuals who have given up gambling.

The transitions of these states are as follows:
(1) When a susceptible individual connects with a hesitator or a gambler, he or she can

be influenced and become a hesitator with probability β1 or β2, respectively.
(2) The parameter ε represents the probability that a hesitator becomes a susceptible

individual. The parameter η represents the probability that a hesitator becomes a
gambler. The parameter χ indicates the influence degree of the anti-gambling policy

Figure 1 The flow diagram of the SHGDmodel
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to the hesitator. Considering the influence degree of the anti-gambling policy, the
hesitator will become a susceptible individual with the probability χε, in contrast, a
gambler with the probability (1 – χ )η.

(3) The parameter ϕ represents the probability that a gambler becomes a hesitator. The
parameter μ represents the probability that a gambler becomes a disclaimer. The
parameter ψ represents the influence degree of the anti-gambling policy to the
gambler. Considering the influence degree of the anti-gambling policy, a gambler
will become a hesitator or a disclaimer with the probability ψϕ or ψμ, respectively.
A gambler will become a susceptible individual with the probability γ when he or
she loses interest in online gambling.

(4) Because of the psychological factors of the disclaimer, such as forgetting and so on,
the disclaimer will become a susceptible individual with the probability λ.

(5) The probability δ is the register rate and logout rate. Assume newcomers are
susceptible individuals.

We define Sk(t), Hk(t), Gk(t), Dk(t) as the relative densities of susceptible, hesitator, gam-
bler, and disclaimer nodes at time t, respectively, where k is the node degree. According
to the above description and assumption, we can get the SHGD model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk (t)
dt = δ + λDk(t) + γ Gk(t) + χεHk(t) – kβ1θ1(t)Sk(t) – kβ2θ2(t)Sk(t) – δSk(t),

dHk (t)
dt = kβ1θ1(t)Sk(t) + kβ2θ2(t)Sk(t) + ψϕGk(t)

– (1 – χ )ηHk(t) – χεHk(t) – δHk(t),
dGk (t)

dt = (1 – χ )ηHk(t) – ψμGk(t) – γ Gk(t) – ψϕGk(t) – δGk(t),
dDk (t)

dt = ψμGk(t) – λDk(t) – δDk(t),

(1)

where θ1(t) is the probability of linking to a hesitator at time t and satisfies

θ1(t) =
∑

k kQ(k)Hk(t)
∑

k sQ(s)
=

1
〈k〉

∑

k

kQ(k)Hk(t), (2)

where θ2(t) is the probability of linking to a gambler at time t and satisfies

θ2(t) =
∑

k kQ(k)Gk(t)
∑

k sQ(s)
=

1
〈k〉

∑

k

kQ(k)Gk(t). (3)

Here, 〈k〉 represents the average degree values in the network, and Q(k) represents
the degree distribution. H(t) =

∑
k Q(k)Hk(t) is the density of the hesitator, and G(t) =

∑
k Q(k)Gk(t) is the density of the gambler. We make ρ(t) = β1θ1 + β2θ2. And according to

system (1), we can get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dSk (t)
dt = δ + λDk(t) + γ Gk(t) + χεHk(t) – (kρ(t) + δ)Sk(t),

dHk (t)
dt = kρ(t)Sk(t) + ψϕGk(t) – ((1 – χ )η + χε + δ)Hk(t),

dGk (t)
dt = (1 – χ )ηHk(t) – (ψμ + γ + ψϕ + δ)Gk(t),

dDk (t)
dt = ψμGk(t) – (λ + δ)Dk(t).

(4)
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According to the normalization conditions, we can know Sk(t)+Hk(t)+Gk(t)+Dk(t) = 1.
The initial conditions for the system are as follows:

⎧
⎨

⎩

0 ≤ Sk(0), Hk(0), Gk(0), Dk(0) ≤ 1,

ρ(0) > 0.
(5)

3 The basic reproductive number and equilibriums
In the section, we analyze the properties of the SHGD online gambling spreading model.

Theorem 1 According to system (4), the basic reproductive number is defined as follows:

R0 =
〈k2〉
〈k〉

(ψμ + γ + ψϕ + δ)β1 + η(1 – χ )β2

(ψμ + γ + δ)((1 – χ )η + χε + δ) + ψϕ(χε + δ)
. (6)

Consider system (4), we can get:
(1) There is a gambling-free equilibrium E0(1, 0, 0, 0) when R0 < 1.
(2) There is a unique gambling-prevailing equilibrium E+(S∗

k , H∗
k , G∗

k , D∗
k) when R0 > 1.

Proof It can be easy to find that system (4) satisfies Sk(t) = 1 – Hk(t) – Gk(t) – Dk(t). Ac-
cording to system (4), we can get

⎧
⎪⎪⎨

⎪⎪⎩

dHk (t)
dt = kρ(t)(1 – Hk(t) – Gk(t) – Dk(t)) + ψϕGk(t) – ((1 – χ )η + χε + δ)Hk(t),

dGk (t)
dt = (1 – χ )ηHk(t) – (ψμ + γ + ψϕ + δ)Gk(t),

dDk (t)
dt = ψμGk(t) – (λ + δ)Dk(t).

(7)

Obviously, there is a gambling-free equilibrium E0 = {(0, 0, 0)}k in system (7). By using
the next generation matrix method [24], system (7) can be written

dx
dt

= j(x) – l(x),

where

x = (Hk , Gk , Dk)T ,

j(x) =

⎛

⎜
⎝

kρ(t)((1 – Hk – Gk – Dk)
0
0

⎞

⎟
⎠ , (8)

l(x) =

⎛

⎜
⎝

((1 – χ )η + χε + δ)Hk – ψϕGk

(ψμ + γ + ψϕ + δ)Gk – (1 – χ )ηHk

(λ + δ)Dk – ψμGk

⎞

⎟
⎠ . (9)

At E0, the Jacobian matrices of j(x) and l(x) are got

J = Dj(E0) =

⎛

⎜
⎝

J11 J12 0
0 0 0
0 0 0

⎞

⎟
⎠ , (10)
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L = Dl(E0) =

⎛

⎜
⎝

L11 L12 0
L21 L22 0
0 L32 L33

⎞

⎟
⎠ , (11)

where

J11 =
β1

〈k〉

⎛

⎜
⎜
⎜
⎜
⎝

Q(1) 2Q(2) · · · nQ(n)
2Q(1) 22Q(2) · · · 2nQ(n)

...
...

. . .
...

nQ(1) 2nQ(2) · · · n2Q(n)

⎞

⎟
⎟
⎟
⎟
⎠

, (12)

J12 =
β2

〈k〉

⎛

⎜
⎜
⎜
⎜
⎝

Q(1) 2Q(2) · · · nQ(n)
2Q(1) 22Q(2) · · · 2nQ(n)

...
...

. . .
...

nQ(1) 2nQ(2) · · · n2Q(n)

⎞

⎟
⎟
⎟
⎟
⎠

. (13)

Here,

L11 =
(
(1 – χ )η + ψε + δ

)
I, L12 = –ψϕI, L21 = –

(
(1 – χ )η

)
I,

L22 = (ψμ + γ + ψϕ + δ)I, L32 = –ψμI, L33 = (λ + δ)I,

where I is an identity matrix. So, we can calculate the basic reproductive number denoted
by

R0 = ρ
(
JL–1) =

〈k2〉
〈k〉

(ψμ + γ + ψϕ + δ)β1 + η(1 – χ )β2

(ψμ + γ + δ)((1 – χ )η + χε + δ) + ψϕ(χε + δ)
,

where 〈k2〉 =
∑

k k2Q(k).
Next, it is clear that system (4) has a gambling-free equilibrium E0(1, 0, 0, 0). To get the

gambling-prevailing equilibrium E+(S∗
k , H∗

k , G∗
k , D∗

k), system (4) satisfies

dSk(t)
dt

= 0,
dHk(t)

dt
= 0,

dGk(t)
dt

= 0,
dDk(t)

dt
= 0.

So, we can know

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δ + λDk(t) + γ Gk(t) + χεHk(t) – (kρ(t) + δ)Sk(t) = 0,

kρ(t)Sk(t) + ψϕGk(t) – ((1 – χ )η + χε + δ)Hk(t) = 0,

(1 – χ )ηHk(t) – (ψμ + γ + ψϕ + δ)Gk(t) = 0,

ψμGk(t) – (λ + δ)Dk(t) = 0.

(14)

According to the above equation, we get

⎧
⎪⎪⎨

⎪⎪⎩

Sk(t) = ((1–χ )η+ψε+δ)(ψμ+γ +ψϕ+δ)–ψϕη(1–χ )
kρ(t)(1–χ )η Gk(t),

Hk(t) = ψμ+γ +ψϕ+δ

(1–χ )η Gk(t),

Dk(t) = ψμ

λ+δ
Gk(t).

(15)
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By using to the normalization condition S∗
k (t) + H∗

k (t) + G∗
k(t) + D∗

k(t) = 1, it gets

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S∗
k (t) = ((1–χ )η+χε+δ)(ψμ+γ +δ)(λ+δ)+ψϕ(λ+δ)(χε+δ)

Bk
,

H∗
k (t) = kρ(t)(λ+δ)(ψμ+γ +ψϕ+δ)

Bk
,

G∗
k(t) = kρ(t)η(1–χ )(λ+δ)

Bk
,

D∗
k(t) = kρ(t)ψμη(1–χ )

Bk
.

(16)

And

Bk = kρ(t)
(
(λ + δ)(ψμ + γ + ψϕ + δ) + ψμη(1 – χ ) + η(1 – χ )(λ + δ)

)

+ ψϕ(λ + δ)(χε + δ) +
(
(1 – χ )η + χε + δ

)
(ψμ + γ + δ)(λ + δ),

where ρ(t) =
∑

k kQ(k)(β1θ1 + β2θ2)/〈k〉. By substituting the second equation of system
(16) into Eq. (2), we get

θ∗
1 (t) =

1
〈k〉

∑

k

k2Q(k) · ρ(t)(λ + δ)(ψμ + γ + ψϕ + δ)
Bk

.

According to θ1(t) =
∑

k kQ(k)Hk (t)
∑

k sQ(s) = 1
〈k〉

∑
k kQ(k)Hk(t) and θ2(t) =

∑
k kQ(k)Gk (t)
∑

k sQ(s) =
1

〈k〉
∑

k kQ(k)Gk(t), we can get θ∗
2 = η(1–χ )

ψμ+γ +ψϕ+χ
θ∗

1 . Then, let θ∗
1

= f (θ∗
1 ), obviously, θ∗

1 = 0

is a solution. In order for θ∗
1

= f (θ∗
1 ) to have a nontrivial solution, the following conditions

should be satisfied:

df (θ∗
1 )

dθ∗
1

∣
∣
∣
∣
θ∗

1 =0
> 1 and f (1) ≤ 1. (17)

So, we get

R0 =
〈k2〉
〈k〉

(ψμ + γ + ψϕ + δ)β1 + η(1 – χ )β2

(ψμ + γ + δ)((1 – χ )η + χε + δ) + ψϕ(χε + δ)
> 1.

According to Eq. (16), we know 0 < S∗
k , H∗

k , G∗
k , D∗

k < 1. System (4) has the gambling-
prevailing equilibrium E+(S∗

k , H∗
k , G∗

k , D∗
k). Then, when the basic regeneration number R0 >

1, there is a unique positive equilibrium E+(S∗
k , H∗

k , G∗
k , D∗

k). The proof is completed. �

Theorem 2 When R0 < 1, the gambling-free equilibrium E0 is global asymptotically stable.
When R0 > 1, online gambling phenomenon is persistent, which means there is a constant
φ > 0, lim inft→∞

∑
k(H(t) + G(t)) ≥ φ.

Proof For simplicity, let Qi = iQ(i)/〈k〉. For the gambling-free equilibrium, system (7) has
the Jacobian matrix of 3n × 3n as follows:

G =

⎛

⎜
⎜
⎝

B11 · · · B1n
...

. . .
...

Bn1 · · · Bnn

⎞

⎟
⎟
⎠ , (18)
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where

B11 =

⎛

⎜
⎝

–((1 – χ )η + χε + δ) + β1Q1 ψϕ + β2Q1 0
(1 – χ )η –(ψμ + γ + ψϕ + δ) 0

0 ψμ –(λ + δ)

⎞

⎟
⎠ , (19)

B1n =

⎛

⎜
⎝

β1Qn β2Qn 0
0 0 0
0 0 0

⎞

⎟
⎠ , (20)

Bn1 =

⎛

⎜
⎝

nβ1Q1 nβ2Q1 0
0 0 0
0 0 0

⎞

⎟
⎠ , (21)

Bnn =

⎛

⎜
⎝

–((1 – χ )η + χε + δ) + nβ1Qn ψϕ + nβ2Qn 0
(1 – χ )η –(ψμ + γ + ψϕ + δ) 0

0 ψμ –(λ + δ)

⎞

⎟
⎠ . (22)

So, the characteristic polynomial of the gambling-free equilibrium E0 is

(z +λ+δ)n–1(z +ψμ+γ +ψϕ +δ)n–1(z +(1–χ )η+χε+δ
)n–1(z3 + sz2 +pz +q

)
= 0, (23)

where s = ((1 – χ )η + χε + δ) + (ψμ + γ + ψϕ + δ) + (λ + δ) – β1
∑n

i=1 iQi, and

p =
(
(1 – χ )η + χε + λ + 2δ

)
(ψμ + γ + ψϕ + δ) +

(
(1 – χ )η + χε + δ

)
(λ + δ)

– ψϕη(1 – χ ) –
(
(ψμ + γ + ψϕ + λ + 2δ)β1 + η(1 – χ )β2

)
n∑

i=1

iQi,
(24)

q =
(
(1 – χ )η + χε + δ

)
(ψμ + γ + ψϕ + δ)(λ + δ) – ψϕη(1 – χ )(λ + δ)

–
(
(ψμ + γ + ψϕ + δ)β1 + η(1 – χ )β2

)
(λ + δ)

n∑

i=1

iQi.
(25)

Obviously, when R0 < 1, q > 0. It also means

(
(1 – χ )η + χε + δ

)
+ (ψμ + γ + ψϕ + δ) + (λ + δ) > β1

n∑

i=1

iQi (26)

and
(
(1 – χ )η + χε + λ + 2δ

)
(ψμ + γ + ψϕ + δ) +

(
(1 – χ )η + χε + δ

)
(λ + δ)

> ψϕη(1 – χ ) +
(
(ψμ + γ + ψϕ + λ + 2δ)β1 + η(1 – χ )β2

)
n∑

i=1

iQi.
(27)

In other words, we get s > 0, q > 0, and p > 0. According to the above proof, the real eigen-
values λ of matrix B are all negative when R0 < 1. Furthermore, there is a unique positive
eigenvalue λ of matrix B if R0 > 1. By using the Perron–Frobenius theorem, the maximal
real part of all eigenvalues of λ is positive only if R0 > 1. Through the theorem of Laj-
manovich and York [25], we can get the results. The proof is completed. �
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Theorem 3 ([26]) Suppose that (Hk(t), Gk(t), Dk(t)) is the solution of system (7), which
satisfies Eq. (5) with Hk(0) > 0 or Gk(0) > 0. If R0 > 1, then limt→∞(Hk(t), Gk(t), Dk(t)) =
(H∗

k , G∗
k , D∗

k), where (H∗
k , G∗

k , D∗
k) is the gambling-prevailing equilibrium of system (7) for

k = 1, 2, . . . , n.

Proof In the proof, let us assume that k is integer between 1 and n. According to Theo-
rem 2, a positive constant 0 < α < 1/3 and a sufficiently large constant T > 0 exist to satisfy
Hk(t) ≥ α and Gk(t) ≥ α for t > T . Thus, ρ(t) > α(β1 + β2) for t > T . Submitting this into
the first equation of system (7), it is easy to get

dHk(t)
dt

≤ k(β1 + β2)
(
1 – Hk(t)

)
–

(
(1 – χ )η + χε + δ

)
Hk(t) (28)

for t > T .
According to the standard comparison theorem in the theory of differential equations,

for any given positive constant

0 < α1 <
(1 – χ )η + χε + δ

2[k(β1 + β2) + ((1 – χ )η + χε + δ)]
, (29)

there exists t1 > T , so Hk(t) ≤ M(1)
k – α1 for t > t1, where

M(1)
k =

k(β1 + β2)
k(β1 + β2) + ((1 – χ )η + χε + δ)

+ 2α1 < 1. (30)

From system (7), it is easy to obtain

dGk(t)
dt

≤ (1 – χ )η
(
1 – Gk(t)

)
– (ψμ + γ + ψϕ + δ)Gk(t) (31)

for t > t1.
So, the constant

0 < α2 < min

{

1/2,α1,
ψμ + γ + ψϕ + δ

2((1 – χ )η + (ψμ + γ + ψϕ + δ))

}

, (32)

there exists t2 > t1, so Gk(t) ≤ A(1)
k – α2 for t > t2, where

A(1)
k =

η(1 – χ )
η(1 – χ ) + (ψμ + γ + ψϕ + δ)

+ 2α2 < 1. (33)

From system (7), it is easy to obtain

dDk(t)
dt

≤ ψμ
(
1 – Dk(t)

)
– (λ + δ)Dk(t) (34)

for t > t2.
Consequently, for constant

0 < α3 < min

{

1/3,α2,
λ + δ

2(ψμ + (λ + δ))

}

, (35)
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there exists t3 > t2 such that Dk(t) ≤ V (1)
k – α3 for t > t3, where

V (1)
k =

ψμ

ψμ + (λ + δ)
+ 2α3 < 1. (36)

Then, replacing Hk(t) ≥ α, Gk(t) ≥ α and ρ(t) > α(β1 + β2) into the first equation of
system (7), we get

dHk(t)
dt

≥ kα(β1 + β2)
(
1 – Hk(t) – Gk(t) – Dk(t)

)

+ ψϕGk(t) –
(
(1 – χ )η + χε + δ

)
Hk(t)

≥ kα(β1 + β2)
(
1 – A(1)

k – V (1)
k

)
+ ψϕA(1)

k

–
(
kα(β1 + β2) + (1 – χ )η + χε + δ

)
Hk(t)

(37)

for t > T .
Therefore, for constant

0 < α4 < min

{

1/4,α3,
kα(β1 + β2)(1 – A(1)

k – V (1)
k ) + ψϕA(1)

k
2[kα(β1 + β2) + (1 – χ )η + χε + δ]

}

, (38)

there exists t4 > t3 such that Hk(t) ≥ m(1)
k + α4 for t > t4, where

m(1)
k =

kα(β1 + β2)(1 – N (1)
k – V (1)

k ) + ψϕN (1)
k

kα(β1 + β2) + (1 – χ )η + χε + δ
– 2α4 > 0. (39)

Therefore

dGk(t)
dt

≥ η(1 – χ )m(1)
k – (ψμ + γ + ψϕ + δ)Gk(t) (40)

for t > t4.
Hence, for constant

0 < α5 < min

{

1/5,α4,
η(1 – χ )m(1)

k
2(ψμ + γ + ψϕ + δ)

}

, (41)

there exists t5 > t4 such that Gk(t) ≥ a(1)
k + α5 for t > t5, where

a(1)
k =

η(1 – χ )x(1)
k

ψμ + γ + ψϕ + δ
– 2α5 > 0. (42)

Similarly,

dDk(t)
dt

≥ ψμa(1)
k – (λ + δ)Dk(t) (43)

for t > t5.
Consequently, for constant

0 < α6 < min

{

1/6,α5,
ψμa(1)

k
2(λ + δ)

}

, (44)
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there exists t6 > t5 such that Dk(t) ≥ v(1)
k + α6 for t > t6, where

v(1)
k =

ψμa(1)
k

λ + δ
– 2α6 > 0. (45)

Because α is a small constant, we can get 0 < m(1)
k < M(1)

k < 1, 0 < a(1)
k < A(1)

k < 1, and
0 < v(1)

k < V (1)
k < 1.

Let

u(j) =
n∑

i=1

Qi
(
β1m(j)

i + β2a(j)
i

)
, U (j) =

n∑

i=1

Qi
(
β1M(j)

i + β2A(j)
i

)
, j = 1, 2, . . . . (46)

From the above discussion, we have

0 < u(1) ≤ ρ(t) ≤ U (1) < β1 + β2

and t > t6.
And, according to system (7), we can get

dHk(t)
dt

≤ kU (1)(1 – a(1)
k – v(1)

k
)

+ ψϕa(1)
k –

(
kU (1) + (1 – χ )η + χε + δ

)
Hk(t) (47)

for t > t6.
Consequently, for constant 0 < α7 < min{1/7,α6}, there exists t7 > t6 such that

Hk(t) ≤ M(2)
k

= min

{

M(1)
k – α1,

kU (1)(1 – a(1)
k – v(1)

k ) + ψϕy(1)
k

kU (1) + (1 – χ )η + χε + δ
+ α7

}

(48)

for t > t7.
Thus,

dGk(t)
dt

≤ η(1 – χ )M(2)
k – (ψμ + γ + ψϕ + δ)Gk(t) (49)

for t > t7.
Consequently, for constant 0 < α8 < min{1/8,α7}, there exists t8 > t7 such that

Gk(t) ≤ A(2)
k

= min

{

A(1)
k – α2,

η(1 – χ )M(2)
k

ψμ + γ + ψϕ + δ
+ α8

}

(50)

for t > t8.
As a result, it follows that

dDk(t)
dt

≤ ψμA(2)
k – (λ + δ)Dk(t) (51)

for t > t8.
Therefore, for constant 0 < α9 < min{1/9,α8}, there exists t9 > t8 such that

Dk(t) ≤ V (2)
k

= min

{

V (1)
k – α3,

ψμA(2)
k

λ + δ
+ α9

}

(52)

for t > t9.
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According to system (7), we can get

dHk(t)
dt

≥ ku(1)(1 – A(2)
k – V (2)

k
)

+ ψϕA(2)
k –

(
ku(1) + (1 – χ )η + χε + δ

)
Hk(t) (53)

for t > t9.
Hence, for constant

0 < α10 < min

{

1/10,α9,
ku(1)(1 – A(2)

k – V (2)
k ) + ψϕA(2)

k
2(ku(1) + (1 – χ )η + χε + δ)

}

, (54)

there exists t10 > t9, and Hk(t) ≥ m(2)
k + α10, t > t10, where

m(2)
k = max

{

m(1)
k + α4,

ku(1)(1 – A(2)
k – V (2)

k ) + ψϕA(2)
k

ku(1) + (1 – χ )η + χε + δ
– 2α10

}

. (55)

Thus,

dGk(t)
dt

≥ (1 – χ )ηm(2)
k – (ψμ + γ + ψϕ + δ)Gk(t) (56)

for t > t10.
So, for constant

0 < α11 < min

{

1/11,α10,
(1 – χ )ηm(2)

k
2(ψμ + γ + ψϕ + δ)

}

, (57)

there exists t11 > t10, and Gk(t) ≥ a(2)
k + α11, t > t11, where

a(2)
k = max

{

a(1)
k + α5,

(1 – χ )ηm(2)
k

ψμ + γ + ψϕ + δ
– 2α11

}

. (58)

Similarly,

dDk(t)
dt

≥ ψμa(2)
k – (λ + δ)Dk(t) (59)

for t > t11.
Therefore, for constant

0 < α12 < min

{

1/12,α11,
ψμa(2)

k
2(λ + δ)

}

, (60)

there exists t12 > t11, and Dk(t) ≥ v(2)
k + α12, t > t12, where

v(2)
k = max

{

v(1)
k + α6,

ψμa(2)
k

λ + δ
– 2α12

}

. (61)

According to the above discussion and analyses, we can obtain six sequences: {M(r)
k },

{A(r)
k }, {V (r)

k }, {m(r)
k }, {a(r)

k }, and {v(r)
k }. We can find that the first three sequences are mono-

tone increasing and the last three sequences are strictly monotone decreasing, and there
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is a sufficiently large positive integer L such that, for r ≥ L:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(r)
k = kU(r–1)(1–a(r–1)

k –v(r–1)
k )+ψϕa(r–1)

k
kU(r–1)+(1–χ )η+χε+δ

+ α6r–5,

A(r)
k = (1–χ )ηM(r)

k
ψμ+γ +ψϕ+δ

+ α6r–4,

V (r)
k = ψμA(r)

k
λ+δ

+ α6r–3,

m(r)
k = ku(r–1)(1–A(r)

k –V (r)
k )+ψϕA(r)

k
ku(r–1)+(1–χ )η+χε+δ

– 2α6r–2,

a(r)
k = (1–χ )ηm(r)

k
ψμ+γ +ψϕ+δ

– 2α6r–1,

v(r)
k = ψμa(r)

k
λ+δ

– 2α6r .

(62)

It is easy to find that

⎧
⎪⎪⎨

⎪⎪⎩

m(r)
k ≤ Hk(t) ≤ M(r)

k ,

a(r)
k ≤ Gk(t) ≤ A(r)

k ,

v(r)
k ≤ Dk(t) ≤ V (r)

k ,

where t > t6r . (63)

Since the sequential limits of system (62), thus let limt→∞ �
(r)
k = �k , where �k ∈ {Mk , Ak ,

Vk , mk , ak , vk , Uk , uk} and �
(r)
k ∈ {M(r)

k , A(r)
k , V (r)

k , m(r)
k , a(r)

k , v(r)
k , U (r)

k , u(r)
k }. Since 0 < αr < 1/r, it

has αr → 0 as r → ∞. Supposing r → ∞, it follows from (62) that
⎧
⎨

⎩

Mk = kU(1–ak–vk )+ψϕak
kU+(1–χ )η+χε+δ

, Ak = (1–χ )ηMk
ψμ+γ +ψϕ+δ

, Vk = ψμAk
λ+δ

,

mk = ku(1–Ak–Vk )+ψϕAk
ku+(1–χ )η+χε+δ

, ak = (1–χ )ηmk
ψμ+γ +ψϕ+δ

, vk = ψμak
λ+δ

,
(64)

where

u =
n∑

i=1

Qi(β1mi + β2ai), U =
n∑

i=1

Qi(β1Mi + β2Ai).

What is more,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mk = 1
Gk

[kU(λ + δ)2(ψμ + γ + ψϕ + δ)2(ku + (1 – χ )η + χε + δ)

+ ku(1 – χ )(λ + δ)(ψμ + γ + ψϕ + δ)(ψϕη(λ + δ) – kU(η(λ + δ) + ψμη))],

Ak = 1
Gk

[kUη(1 – χ )(ψμ + γ + ψϕ + δ)(λ + δ)2(ku + (1 – χ )η + χε + δ)

+ kuη(λ + δ)(1 – χ )2(ψϕη(λ + δ) – kU(η(λ + δ) + ψμη))],

mk = 1
Gk

[ku(λ + δ)2(ψμ + γ + ψϕ + δ)2(kU + (1 – χ )η + χε + δ)

+ kU(1 – χ )(λ + δ)(ψμ + γ + ψϕ + δ)(ψϕη(λ + δ) – ku(η(λ + δ) + ψμη))],

ak = 1
Gk

[kuη(1 – χ )(ψμ + γ + ψϕ + δ)(λ + δ)2(kU + (1 – χ )η + χε + δ)

+ kUη(λ + δ)(1 – χ )2(ψϕη(λ + δ) – ku(η(λ + δ) + ψμη))],

(65)

where

Gk = (λ + δ)2(ψμ + γ + ψϕ + δ)2(ku + (1 – χ )η + χε + δ
)(

kU + (1 – χ )η + χε + δ
)

– (1 – χ )2(ψϕη(λ + δ) – kU
(
η(λ + δ) + ψμη

))

× (
ψϕη(λ + δ) – ku

(
η(λ + δ) + ψμη

))
.
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From the above equation, we get U = u. So,

n∑

i=1

Qi
[
β1(Mi – mi) + β2(Ai – ai)

]
= 0, (66)

which is equivalent to Mi = mi and Ai = ai for 1 ≤ i ≤ n. Then, from systems (63) and (64),
it can be concluded that

lim
t→∞ Hk(t) = Mk = mk , lim

t→∞ Gk(t) = Ak = ak , lim
t→∞ Dk(t) = Vk = vk .

Finally, U = u is substituted into system (65). For system (64), we can get Mk = H∗
k , Ak = G∗

k ,
and Vk = D∗

k . The proof is completed. �

4 Simulation results and analyses
In this section, the analysis results are illustrated through numerical simulations. Based
on a scale-free network, we have Q(k) = ωk–3 in system (1), and the parameter ω satisfies
∑n

k=1 ωk–3 = 1, n = 1000.
In Fig. 2, we choose δ = 0.2, β1 = 0.1, β2 = 0.1, ε = 0.4, χ = 0.3, η = 0.5, ϕ = 0.1, ψ = 0.7,

μ = 0.6, γ = 0.3, λ = 0.1 and obtain the basic reproductive number R0 = 0.9544 < 1. Figure 2
shows that when R0 < 1, H150 and G150 will equal to zero eventually, which means that the
spread of online gambling phenomenon will eventually disappear.

In Fig. 3, we choose δ = 0.1, β1 = 0.2, β2 = 0.5, ε = 0.1, χ = 0.1, η = 0.3, ϕ = 0.2, ψ = 0.4,
μ = 0.6, γ = 0.1, λ = 0.1 and obtain R0 = 6.1795 > 1. The figure shows that when R0 > 1,
H150 and G150 will maintain positive recently, and the online gambling phenomenon will
not disappear.

In Fig. 4(a) and (b), we choose δ = 0.2, β1 = 0.1, β2 = 0.1, ε = 0.4, χ = 0.3, η = 0.5, ϕ = 0.1,
ψ = 0.7, μ = 0.6, γ = 0.3, λ = 0.1 and obtain R0 = 0.9544 < 1. The figure shows trends of
the hesitator H(t) and the gambler G(t) over time with different degree. And when R0 < 1,
online gambling phenomenon will ultimately disappear. In addition, the larger the degree
is, the faster the spread of online gambling behavior.

In Fig. 5(a) and (b), we choose δ = 0.1, β1 = 0.2, β2 = 0.5, ε = 0.1, χ = 0.1, η = 0.3, ϕ = 0.2,
ψ = 0.4, μ = 0.6, γ = 0.1, λ = 0.1 and obtain R0 = 6.1795 > 1. The figure shows trends of
the hesitator H(t) and the gambler G(t) over time with different degree. And when R0 > 1,

Figure 2 The orbits of four states over time when
R0 = 0.9544 < 1
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Figure 3 The orbits of four states over time when
R0 = 6.1795 > 1

Figure 4 The orbits of the hesitator or the gambler with different degree when R0 < 1

Figure 5 The orbits of the hesitator or the gambler with different degree when R0 > 1

online gambling phenomenon will be persistent. Moreover, more people are involved in
gambling with the increasing of degree.

In Fig. 6(a) and (b), we choose δ = 0.1, β1 = 0.2, β2 = 0.5, ε = 0.1, χ = 0.1, η = 0.3, ϕ = 0.2,
μ = 0.6, γ = 0.1, λ = 0.1. The figure shows the change of the hesitator H(t) and the gambler
G(t) with different probability ψ . With the growth of ψ , H(t) will increase but G(t) will
fall to a constant. Apparently, larger ψ can decrease the number of gamblers.
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Figure 6 Prevalence H100(t), G100(t) versus t corresponding to different ψ

Figure 7 Prevalence H100(t), G100(t) versus t corresponding to different χ

In Fig. 7(a) and (b), we choose δ = 0.1, β1 = 0.2, β2 = 0.5, ε = 0.1, η = 0.3, ϕ = 0.2, ψ = 0.6,
μ = 0.6, γ = 0.1, λ = 0.1. The figure shows the change of the hesitator H(t) and the gambler
G(t) with different probability χ . With the growth of χ , H(t) and G(t) will fall to a constant.
Apparently, larger χ can decrease the number of the hesitator and the gambler.

In Fig. 8, the parameters are chosen as δ = 0.2, ε = 0.4, χ = 0.3, η = 0.5, ϕ = 0.1, ψ = 0.7,
μ = 0.6, γ = 0.3, λ = 0.1. We can see that larger β1 or β2 can lead to larger R0, and β1 has
a greater impact on R0. That is to say, the larger number of the hesitator H(t) and the
gambler G(t) can speed up the spread of online gambling.

In Fig. 9(a) and (b), we choose δ = 0.1, β1 = 0.2, β2 = 0.5, ε = 0.1, η = 0.3, ϕ = 0.2, μ =
0.6, γ = 0.1, λ = 0.1. Apparently, larger χ or ψ can lead to smaller R0, χ has a greater
impact on R0. In other words, within a certain range of anti-gambling efforts, the anti-
gambling policy helps to decrease the spread of online gambling, and the anti-gambling
policy for the hesitator is more effective in reducing the spread of online gambling. It is
more effective to decrease the spread of online gambling if they work together.

5 Conclusion
In this paper, we proposed a new SHGD online gambling spreading model and analyzed
the spreading dynamics of online gambling. We obtained the basic reproductive number
R0, gambling-free equilibrium E0, and gambling-prevailing equilibrium E+. If R0 < 1, the
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Figure 8 The relationship between the basic reproductive number R0 and the parameters β1 and β2 on
scale-free networks

Figure 9 The relationship between the basic reproductive number R0 and the parameters ψ and χ on
scale-free networks

gambling-free equilibrium is globally asymptotically stable, i.e., online gambling spread-
ing phenomenon will eventually disappear. If R0 > 1, the spread of online gambling phe-
nomenon is persistent and globally asymptotically stable, i.e., online gambling is a univer-
sal phenomenon. Smaller β1 and β2 can lead to the lower number of the disseminator, and
β1 has a greater impact than β2. Furthermore, larger χ and ψ can speed up the disappear-
ance of online gambling phenomenon, especially χ . That is, increasing the intensity of the
anti-gambling policy on the hesitator or the gambler can restrain online gambling spread-
ing, and the anti-gambling policy on the hesitator is more effective. This research results
have important guiding significance in controlling the spreading of online gambling.

Acknowledgements
We thank the referees and the editor for their careful reading of the original manuscript and many valuable comments
and suggestions that greatly improved the presentation of this paper.

Funding
This work is supported in part by the National Natural Science Foundation of China under grants 61672112 and 61873287.



Kong et al. Advances in Difference Equations         (2021) 2021:11 Page 17 of 17

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
YK performed the analysis and wrote the manuscript; TL designed the study; YW and XC developed the methodology;
HW and YL helped perform the analysis with constructive discussions. All authors read and approved the final manuscript.

Author details
1School of Electronics and Information, Yangtze University, Jingzhou, 434023, P.R. China. 2College of Information Science
and Engineering, Central South University, Changsha, 410083, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 3 June 2020 Accepted: 6 December 2020

References
1. Binde, P.: Exploring the impact of gambling advertising: an interview study of problem gamblers. Int. J. Mental Health

Addict. 7(4), 541 (2009)
2. Young, M., Markham, F., Doran, B.: Too close to home? The relationships between residential distance to venue and

gambling outcomes. Int. Gambl. Stud. 12(2), 257–273 (2012)
3. Griffiths, M.: Gambling technologies: prospects for problem gambling. J. Gambl. Stud. 15(3), 265–283 (1999)
4. Fiedler, I., Kairouz, S., Costes, M.J., Kristina, S.: Gambling spending and its concentration on problem gamblers. J. Bus.

Res. 98, 82–91 (2019)
5. Hoffmann, J.P.: Religion and problem gambling in the US. Rev. Relig. Res. 41(4), 488–509 (2000)
6. Holtgraves, T.: Evaluating the problem gambling severity index. J. Gamb. Stud. 25(1), 105 (2009)
7. Rockloff, M.J., Schofield, G.: Factor analysis of barriers to treatment for problem gambling. J. Gamb. Stud. 20(2),

121–126 (2004)
8. Hodgins, D.C., Currie, S.R., El-Guebaly, N.: Motivational enhancement and self-help treatments for problem gambling.

J. Consult. Clin. Psychol. 69(1), 50 (2001)
9. Hodgins, D.C., El-Guebaly, N.: Natural and treatment-assisted recovery from gambling problems: a comparison of

resolved and active gamblers. Addiction 95(5), 777–789 (2000)
10. King, S.A., Barak, A.: Compulsive Internet gambling: a new form of an old clinical pathology. CyberPsychol. Behav. 2(5),

441–456 (1999)
11. Dickson-Gillespie, L., Rugle, L., Rosenthal, R., Fong, T.: Preventing the incidence and harm of gambling problems. J.

Primary Prevent. 29(1), 37–55 (2008)
12. Stehmann, J.: Identifying research streams in online gambling and gaming literature: a bibliometric analysis. Comput.

Hum. Behav. 107, 106219 (2020)
13. Guan, Z.H., Sun, F.L., Wang, Y.W., Li, T.: Finite-time consensus for leader-following second-order multi-agent networks.

IEEE Trans. Circuits Syst. I, Regul. Pap. 59(11), 2646–2654 (2012)
14. Pastor-Satorras, R., Castellano, C., Van, M.P., et al.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925

(2015)
15. Zhan, X.S., Sun, X.X., Li, T., Wu, J., Jiang, X.W.: Optimal performance of networked control systems with bandwidth and

coding constraints. ISA Trans. 59, 172–179 (2015)
16. Li, C.: A study on time-delay rumor propagation model with saturated control function. Adv. Differ. Equ. 2017, 255

(2017)
17. Lin, T., Fan, C., Liu, C., et al.: Optimal control of a rumor propagation model with latent period in emergency event.

Adv. Differ. Equ. 2015, 54 (2015)
18. Wang, Y., Cao, J., Alsaedi, A., et al.: The spreading dynamics of sexually transmitted diseases with birth and death on

heterogeneous networks. J. Stat. Mech. Theory Exp. 2017(2), 023502 (2017)
19. Liu, W., Li, T., Liu, X.: Spreading dynamics of a word-of-mouth model on scale-free networks. IEEE Access 6,

65563–65572 (2018)
20. Wang, Y., Cao, J.: Global dynamics of a network epidemic model for waterborne diseases spread. Appl. Math. Comput.

237, 474–488 (2014)
21. King, D.L., Delfabbro, P.H.: Early exposure to digital simulated gambling: a review and conceptual model. Comput.

Hum. Behav. 55, 198–206 (2016)
22. Lei, Y., Li, T., Wang, Y., Ye, G., Sun, S., Xia, Z.: Spreading dynamics of a CPFB group booking preferential information

model on scale-free networks. IEEE Access 7, 156287–156300 (2019)
23. Liu, X., Li, T., Cheng, X., et al.: Spreading dynamics of a preferential information model with hesitation psychology on

scale-free networks. Adv. Differ. Equ. 2019, 279 (2019)
24. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for

compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)
25. Lajmanovich, A., Yorke, J.A.: A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci.

28(3–4), 221–236 (1976)
26. Zhu, G., Fu, X., Chen, G.: Spreading dynamics and global stability of a generalized epidemic model on complex

heterogeneous networks. Appl. Math. Model. 36(12), 5808–5817 (2012)


	Dynamics analysis of an online gambling spreading model on scale-free networks
	Abstract
	Keywords

	Introduction
	Model formulation
	The basic reproductive number and equilibriums
	Simulation results and analyses
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


