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Abstract
A system of singularly perturbed convection-diffusion equations with Robin
boundary conditions is considered on the interval [0, 1]. It is shown that any solution
of such a problem can be expressed to a system of first-order singularly perturbed
initial value problem, which is discretized by the backward Euler formula on an
arbitrary nonuniform mesh. An a posteriori error estimation in maximum norm is
derived to design an adaptive grid generation algorithm. Besides, in order to establish
the initial values of the original problems, we construct a nonlinear optimization
problem, which is solved by the Nelder–Mead simplex method. Numerical results are
given to demonstrate the performance of the presented method.
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1 Introduction
In this paper, we consider the following strongly coupled system of singularly perturbed
convection-diffusion Robin boundary conditions problems:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L1
−→u (x) := ε1u′′

1(x) + (a11(x)u1(x))′ + (a12(x)u2(x))′ = f1(x), x ∈ (0, 1),

L2
−→u (x) := ε2u′′

2(x) + (a21(x)u1(x))′ + (a22(x)u2(x))′ = f2(x), x ∈ (0, 1),

u1(0) + ε1β1u′
1(0) = s11, u1(1) + ε1γ1u′

1(1) = s21,

u2(0) + ε2β2u′
2(0) = s12, u2(1) + ε2γ2u′

2(1) = s22,

(1.1)

where −→u (x) = (u1(x), u2(x))T , 0 ≤ ε1, ε2 � 1, are the perturbation parameters, β1, β2, γ1,
γ2, sij (i, j = 1, 2) are given constants. For each i, j = 1, 2 and x ∈ [0, 1], aij(x) are sufficiently
smooth functions, and there exist constants αi (i = 1, 2) and C such that

aii(x) ≥ αi > 0, aij(x) < 0, i �= j, (1.2)
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aii(x) ≥ ∣
∣aij(x)

∣
∣ for x ∈ [0, 1], i �= j, (1.3)

∣
∣f j

k (x)
∣
∣ ≤ C

(

1 + ε
k–1–j
1 exp

(

–
αx
ε1

)

+ ε
2–k–j
2 exp

(

–
αx
ε2

))

, (1.4)

where α = min{α1,α2}, k = 1, 2. Under these conditions, there exists a unique solution −→u (t)
of problem (1.1). Such type of problems appear in optimal control problems and in certain
resistor-capacitor circuits (see [1]).

It is well known that many numerical methods have been developed for the solution
of singularly perturbed problems (see [2–4] for example). To capture the singularly per-
turbed nature of these problems, one effective approach is based on the use of meshes
that are designed to be very fine where sharp layer appears in the solution. Such meshes
contain two classes: special meshes (e.g., Shishkin meshes) that are chosen by a priori in-
formation and adaptive meshes that are generated by a grid iterative algorithm. Over the
past few decades, the special mesh approach [5–10] was used to solve some system of
singularly perturbed problems. The authors in [11, 12] proposed adaptive grid methods
to solve the system of singularly perturbed convection-diffusion problems with Dirich-
let boundary conditions. As far as we know, the adaptive grid methods for the system of
singularly perturbed convection-diffusion Robin boundary problems are not found in the
literature.

In this paper, we propose an adaptive grid method to solve the above problem (1.1).
An upwind finite difference scheme is developed to approximate the system of first-order
singularly perturbed differential equations transformed from problem (1.1). Then, an a
posteriori error estimate for the presented finite difference scheme is derived, which is
used to design an adaptive grid algorithm(see [13]). In addition, in order to establish the
approximation values of u′

1(0) and u′
2(0), we design a nonlinear optimization problem,

which is solved by the Nelder–Mead simplex method [14]. Finally, linear and nonlinear
numerical examples are used to verify the effectiveness and practicability of the proposed
adaptive grid method.

Notations. Throughout this paper, let C be a generic positive constant that is indepen-
dent of all perturbation parameters εi (i = 1, 2) and mesh parameter N . It may take different
values in different place. Besides, in our estimates, we use the L∞ norm defined by

∥
∥v(x)

∥
∥∞ = ess sup

x∈[0,1)

∣
∣v(x)

∣
∣.

For vector-valued functions v = (v1(x), v2(x))T , let |v| = (|v1(x)|, |v2(x)|)T and ‖v‖∞ =
max{‖v1‖∞,‖v2‖∞}. For a real-valued mesh function ϕ := {ϕ(xi)}N

i=0, define the discrete
maximum norm for such functions by ‖ϕ‖∞ = maxi=0,1,...,N |ϕ(xi)|. For vector mesh func-
tions V := {(V1(xi), V2(xi))T }N

i=0, we set ‖V‖∞ = max{‖V1‖∞,‖V2‖∞}.

2 Reformulation of the boundary value problem
Our numerical method for solving (1.1) is based on reformulating it as a system of first-
order singularly perturbed differential equations, for which we will design an adaptive grid
method.
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Now, we integrate the two sides of the first two equations of problem (1.1) from 0 to x
and write it into the following matrix form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L−→u (x) := E−→u ′(x) + A(x)−→u (x) =
−→
F (x) + E−→u ′(0) + A(0)−→u (0),

x ∈ � = (0, 1),
−→u (0) = −→

η , −→u ′(0) =
−→
θ ,

(2.1)

where −→u (x) = (u1(x), u2(x))T , E = diag(ε1, ε2),
−→
F (x) =

∫ x
0

−→
f (t) dt,

−→
f (t) = (f1(t), f2(t))T ,

−→
η = (η1,η2)T ,

−→
θ = (θ1, θ2)T , and

A(x) =

(
a11(x), a12(x)
a21(x), a22(x)

)

.

Then, from the Robin boundary conditions of problem (1.1), we have

−→
η + Eβ

−→
θ = −→s 1,

where β =
( β1 0

0 β2

)
,−→s 1 = (s11, s12)T . It should be pointed out that the constant vector −→

η

is an initial condition which will be adjusted so that the solution satisfies the right Robin
boundary condition of problem (1.1). In recent years, the numerical methods of this type
of equations were discussed in [15, 16]. Our numerical method for solving (1.1) is based
on discretizing (2.1). That is, we solve our original Robin boundary problems by applying
the adaptive grid approach to solve problem (2.1). This numerical method is cheap: a di-
rect method to settle (1.1) would entail solving a linear system of equations with 2N + 2
unknowns, but when using (2.1) instead, we only solve N second-order linear systems.

For the later analysis of our numerical method, further information about the structure
of the continuous solution −→u (x) of (2.1) is needed. We shall mainly consider the following
stability result for problem (2.1).

Lemma 2.1 (Stability result) The solution −→u (x) of the initial value problem (2.1) satisfies
the following inequality:

∥
∥−→u (x)

∥
∥∞ ≤ C max

{|−→η |,∥∥L−→u (x)
∥
∥∞

}
, ∀x ∈ (0, 1). (2.2)

Proof The proof can be seen in Theorem 2.4 of [15]. �

Corollary 2.1 For two given function vectors −→v (x) and −→w (x), let

−→v (0) = −→w (0)

and

L−→v (x) – L−→w (x) =
−→
G (x), (2.3)
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where
−→
G (x) is a piecewise continuous function vector. Then we have

∥
∥−→v (x) – −→w (x)

∥
∥∞ ≤ C

∥
∥L−→v (x) – L−→w (x)

∥
∥∞. (2.4)

3 Discretization and nonuniform mesh
3.1 Finite difference discretization
Let �̄N = {xi|0 = x0 < x1 < · · · < xN = 1} be an arbitrary nonuniform mesh and hi = xi –
xi–1, i = 1, . . . , N , be the local mesh size. Then the finite difference scheme of (2.1) can be
constructed as follows:

LN−→
U i := ED–−→

U i + Ai
−→
U i =

i∑

j=1

∫ xj

xj–1

−→
f (xj) dt + E

−→
θ + A(0)−→η , 1 ≤ i ≤ N ,

−→
U 0 = −→u (0) = −→

η ,

(3.1)

where D–−→
U i =

−→
U i–

−→
U i–1

hi
, Ai = A(xi), and

−→
U i = (U1i, U2i)T is the approximation solution of

−→u (xi). Here, we use
∑i

j=1
∫ xj

xj–1

−→
f (xj) dt to approximate the integral term

∫ xi
0

−→
f (t) dt.

Next, we give the stability property for the discrete scheme (3.1). The discrete maximum
principle implies the following discrete stability result.

Theorem 3.1 Let {−→U i}N
i=0 be the solution of difference scheme (3.1) computed on an arbi-

trary mesh {xi}N
i=0. Then we have

‖−→U ‖∞ ≤ C max
{∥
∥
−→
U (0)

∥
∥∞,

∥
∥LN−→

U
∥
∥∞

}
, 0 ≤ i ≤ N .

Proof The proof can be seen in Lemma 3.2 of [14]. �

3.2 Nonuniform mesh generation algorithm
It is well known that many researchers developed an adaptive grid method to solve the
single singularly perturbed differential equation (see, e.g., [15–19]). In these works, the
authors used the arc-length monitor function to design a grid generation algorithm. Re-
cently, Liu and Chen [13] proposed an adaptive grid method for a system of singularly
perturbed differential equations.

In this paper, similar to [13, 17], we also choose the following monitor function:

M̃
(−→

U (x), x
)

=
√

1 + max
x∈(0,1]

{[
Ũ ′

1(x)
]2,

[
Ũ ′

2(x)
]2},

where Ũj(x) ∈ C(0, 1] is a piecewise linear interpolation function through the knots
(xi, Uj,i), j = 1, 2, i = 0, 1, . . . , N . Thus, the key technologies of the adaptive mesh method
is to find (xi, Uj,i) such that

∫ xi+1

xi

M̃
(−→

U (x), x
)

dx =
1
N

∫ 1

0
M̃

(−→
U (x), x

)
dx, (3.2)

where j = 1, 2, i = 0, 1, . . . , N – 1.
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Here, in order to solve the above equidistribution problem (3.2), we construct the fol-
lowing grid iteration algorithm [17].

Step 1. Let k = 0, choose �̄
(k)
N = {xi|xi = i/N , i = 0, 1, . . . , N} as an initial mesh.

Step 2. For given k, assume that the mesh �̄
(k)
N = {x(k)

0 , x(k)
1 , . . . , x(k)

N } and the corresponding
computational solutions {U (k)

j,i } satisfy (3.2). Let h(k)
i = x(k)

i – x(k)
i–1 for each i and

l(k)
i =

√
(
h(k)

i
)2 + max

1≤j≤2

[(
U (k)

j,i – U (k)
j,i–1

)2]

be the maximum arc-length between the points (x(k)
i–1, U (k)

j,i–1) and (x(k)
i , U (k)

j,i ) in the piecewise
linear computed solutions Ũ (k)

j (x), where j = 1, 2. Then

L(k) =
N∑

i=1

√
(
h(k)

i
)2 + max

1≤j≤2

[(
U (k)

j,i – U (k)
j,i–1

)2].

Step 3. Choose a user-chosen constant C0 > 1. If C0 satisfies the following stopping cri-
terion:

max1≤i≤N {l(k)
i }

L(k) ≤ C0

N
, (3.3)

then go to Step 5. Otherwise, continue to Step 4.
Step 4. Generate a new mesh �̄

(k+1)
N = {0 = x(k+1)

0 < x(k+1)
1 < · · · < x(k+1)

N = 1} such that

∫ x(k+1)
i

x(k+1)
i–1

√

1 + max
x∈(0,1]

{[(
Ũk

1 (x)
)′]2,

[(
Ũk

2 (x)
)′]2}dx = L(k)/N , (3.4)

where i = 1, 2, . . . , N . k = k + 1, return to Step 2.
Step 5. Set x∗

i = x(k+1)
i and U∗

j,i = U (k+1)
j,i , j = 1, 2, i = 0, 1, . . . , N , then stop.

4 A posterior error analysis

Let
−→
U N (x) be a piecewise linear interpolation function vector of the solution {−→U i}N

i=0, this
yields

−→
U N (x) =

−→
U i + (x – xi)D–−→

U i, x ∈ (xi–1, xi). (4.1)

Then, based on this interpolation function (4.1), we can derive the following a posteriori
error estimate for the discrete scheme (3.1).

Theorem 4.1 Let −→u (x) be the exact solution of equation (2.1),
−→
U i be the discrete solution

of equation (3.1), and
−→
U N (x) be its piecewise linear interpolation function vector defined

in (4.1). Then we have

∥
∥
−→
U N (x) – −→u (x)

∥
∥∞ ≤ C max

1≤i≤N

{
hi + hi max

1≤j≤2

∣
∣D–Uji

∣
∣
}

. (4.2)
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Proof By the definition of the differential operator L, we have

L
−→
U N (x) – L−→u (x) = ED–−→

U i + A(x)
−→
U N (x) –

(∫ x

0

−→
f (t) dt + E

−→
θ + A(0)−→η

)

=
i∑

j=1

∫ xj

xj–1

−→
f (xj) dt – Ai

−→
U i + A(x)

−→
U N (x) –

∫ x

0

−→
f (t) dt

=
i∑

j=1

∫ xj

xj–1

−→
f (xj) dt –

∫ xi

0

−→
f (t) dt +

∫ xi

x

−→
f (t) dt

+ A(x)
−→
U N (x) – Ai

−→
U i

= −→p + −→q + −→r ,

(4.3)

where

−→p =
i∑

j=1

∫ xj

xj–1

(−→
f (xj) –

−→
f (t)

)
dt,

−→q =
∫ xi

x

−→
f (t) dt,

−→r = A(x)
−→
U N (x) – Ai

−→
U i.

For the first term of (4.3), we have

|−→p | ≤
i∑

j=1

∣
∣
∣
∣

∫ xj

xj–1

−→
f (xj) –

−→
f (t) dt

∣
∣
∣
∣

≤
i∑

j=1

∫ xj

xj–1

∣
∣
−→
f ′(t)

∣
∣(t – xj–1) dt

≤
i∑

j=1

hj

∫ xj

xj–1

∣
∣
−→
f ′(t)

∣
∣dt

≤ C max
1≤i≤N

hi

(∫ 1
0 |f ′

1(t)|dt
∫ 1

0 |f ′
2(t)|dt

)

≤ C max
1≤i≤N

hi

(
1
1

)

,

(4.4)

where condition (1.4) is used.
Obviously, the second term of (4.3) satisfies the following estimation:

|−→q | ≤ Chi

(
1
1

)

. (4.5)
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For the third term of (4.3), we have

|−→r | =
∣
∣A(x)

−→
U N (x) – Ai

−→
U i

∣
∣

=
∣
∣A(x)

(−→
U i + D–−→

U i(x – xi)
)

– Ai
−→
U i

∣
∣

=
∣
∣
(
A(x) – Ai

)−→
U i + A(x)D–−→

U i(x – xi)
∣
∣

≤ ∣
∣A(x) – Ai

∣
∣|−→U i| +

∣
∣A(x)

∣
∣
∣
∣D–−→

U i
∣
∣hi

≤ Chi

(
1
1

)

+ Chi

(
1 1
1 1

)(
|D–U1i|
|D–U2i|

)

,

(4.6)

where we have used the assumptions of aij(x) and Theorem 3.1.
Combined with (4.3)–(4.6) and Corollary 2.1, we can obtain

∥
∥
−→
U N (x) – −→u (x)

∥
∥∞ ≤ C max

1≤i≤N

{
hi + hi max

1≤j≤2

∣
∣D–Uji

∣
∣
}

. (4.7)
�

5 Numerical results and discussion
In Sect. 5.1, we first design a numerical method to obtain the parameter vector

−→
θ defined

in (3.1). Then, numerical experiments are presented in Sect. 5.2 to demonstrate the validity
and efficiency of the presented adaptive grid method. In the numerical experiments below,
we shall take C0 = 1.1.

For comparison purpose, the presented finite difference scheme (3.1) is also studied on a
piecewise-uniform Shishkin mesh, which is constructed as follows [20]: Let N be divisible
by 3 and λ > 0 be a mesh parameter. Fixed mesh transition points σ1 and σ2 are as follows:

σ2 = min

{
2
3

,
ε2

λ
ln N

}

, σ1 = min

{
σ2

2
,
ε1

λ
ln N

}

.

Then the mesh is obtained by dividing each of the intervals [0,σ1], [σ1,σ2], and [σ2, 1] into
N/3 equal subintervals.

5.1 A calculating method of initial values
At first, from the first Robin boundary conditions of problem (1.1), we have

−→
η = –Eβ

−→
θ + −→s 1. (5.1)

Then, for given
−→
θ , combining with (5.1), we can use the presented adaptive grid method

to calculate the numerical solution
−→
U i of (2.1). Obviously, the numerical solution

−→
U i de-

pends on the value of
−→
θ . Finally, in order to obtain the approximation value of

−→
θ , we

construct the following optimization problem:

min Z(
−→
θ ) =

∥
∥
∥
∥

(−→
U 0 + Eβ

−→
U 1 –

−→
U 0

h1
– −→s 1

)2



Liu et al. Advances in Difference Equations          (2021) 2021:6 Page 8 of 13

+
(−→

U N + Eγ

−→
U N –

−→
U N–1

hN
– −→s 2

)2∥∥
∥
∥, (5.2)

where γ =
( γ1 0

0 γ2

)
,−→s 2 = (s21, s22)T .

Since the above objective function Z(
−→
θ ) is an implicit function above variable

−→
θ , we

choose the Nelder–Mead simplex method [14] to solve the above nonlinear optimization
problem (5.2).

5.2 Example 1: a linear problem
In this section, we give a linear test problem to illustrate the theoretical result of the pre-
sented adaptive grid method

ε1u′′
1(x) +

(
(2x + 1)u1(x)

)′ –
(
x2u2(x)

)′ = f1(x), x ∈ (0, 1), (5.3)

ε2u′′
2(x) –

(
x2u1(x)

)′ +
(
u2(x)

)′ = f2(x), x ∈ (0, 1) (5.4)

with Robin boundary conditions

u1(0) + ε1u′
1(0) = 1, u1(1) + ε1u′

1(1) = 2 + 2ε1,

u2(0) + ε2u′
2(0) = 2, u2(1) + ε2u′

2(1) = 4 + 3ε2 – ε2 cos 1 – sin 1.

Here, we choose f1(x) and f2(x) to agree with the following exact solutions:

u1(x) = 1 – exp(–x/ε1) + x2,

u2(x) = 2 – 2 exp(–x/ε2) + x(1 + x) – sin x.

Recalling that
−→
U N

i is the solution of the discrete scheme (3.1), we calculate the errors

EN
ε1,ε2 := max

0≤i≤N

∥
∥−→u (xi) –

−→
U N

i
∥
∥∞, (5.5)

where xi are the points in the final mesh generated by the above iteration algorithm. Rates
of convergence are calculated by

rN
ε1,ε2 = log2

(EN
ε1,ε2

E2N
ε1,ε2

)

. (5.6)

For different values of εi (i = 1, 2) and N , we use the Nelder–Mead simplex method
to calculate the above nonlinear optimization problem (5.2) with (2, 2)T as the initial
value of

−→
θ . Next, for ε1 = 2–9, ε2 = 2–2k and ε2 = 2–9, ε1 = 2–2k , where k = 0, 1, . . . , 10,

we use the presented adaptive grid method to calculate the test problem with N =
32, 64, 128, 256, 512, 1024, and the errors in the maximum norm, the rates of convergence,
and the number of iterations K are given in Tables 1–2. Besides, to illustrate the advan-
tages of the adaptive grid method, we also compare the numerical results computed on
an adaptive grid to those obtained on a Shishkin mesh, see Table 3. It is shown from these
results that the convergence order of the presented adaptive grid method is first order and
the accuracy of adaptive grid method is higher than that of Shishkin mesh method.
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Table 1 Numerical results with ε1 = 2–9 for Example 1

ε2 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

20 ENε1,ε2 4.18e–02 2.31e–02 1.25e–02 6.40e–03 3.30e–03 1.70e–03
rNε1,ε2 0.86 0.89 0.97 0.96 0.96
K 5 4 4 3 3 3

2–2 ENε1,ε2 4.62e–02 2.65e–02 1.42e–02 7.40e–03 3.80e–03 2.00e–03
rNε1,ε2 0.80 0.90 0.94 0.96 0.93
K 5 4 4 3 3 3

2–4 ENε1,ε2 4.66e–02 2.68e–02 1.44e–02 7.30e–03 3.80e–03 1.90e–03
rNε1,ε2 0.80 0.90 0.98 0.94 1.00
K 5 4 4 3 3 3

2–6 ENε1,ε2 5.11e–02 2.73e–02 1.42e–02 7.30e–03 3.70e–03 1.90e–03
rNε1,ε2 0.90 0.94 0.96 0.98 0.96
K 5 4 4 3 3 3

2–8 ENε1,ε2 4.80e–02 2.59e–02 1.32e–02 6.90e–03 3.50e–03 1.80e–03
rNε1,ε2 0.89 0.97 0.94 0.98 0.96
K 4 5 3 3 3 3

2–10 ENε1,ε2 4.95e–02 2.62e–02 1.36e–02 6.80e–03 3.50e–03 1.80e–03
rNε1,ε2 0.92 0.95 1.00 0.96 0.96
K 8 4 4 3 3 3

2–12 ENε1,ε2 5.35e–02 2.93e–02 1.53e–02 7.90e–03 3.90e–03 2.00e–03
rNε1,ε2 0.87 0.94 0.95 1.02 0.96
K 5 5 5 4 3 3

2–14 ENε1,ε2 5.49e–02 3.06e–02 1.64e–02 8.40e–03 4.40e–03 2.10e–03
rNε1,ε2 0.84 0.90 0.97 0.93 1.07
K 7 6 5 4 4 3

2–16 ENε1,ε2 5.78e–02 3.06e–02 1.67e–02 8.70e–03 4.40e–03 2.30e–03
rNε1,ε2 0.92 0.87 0.94 0.98 0.94
K 6 5 6 5 4 4

2–18 ENε1,ε2 5.78e–02 3.25e–02 1.66e–02 8.40e–03 4.40e–03 2.30e–03
rNε1,ε2 0.83 0.97 0.98 0.93 0.94
K 7 8 5 4 4 4

2–20 ENε1,ε2 5.78e–02 3.09e–02 1.72e–02 8.70e–03 4.30e–03 2.30e–03
rNε1,ε2 0.90 0.85 0.98 1.02 0.90
K 7 6 9 5 4 4

For ε1 = 10–6, ε2 = 10–8, and N = 64, Fig. 1 shows the changing process of mesh move-
ment with the number of iterations K . The right-hand part of this figure is labeled with
the value of C0 for which the stopping criterion (3.3) becomes an equation. It is shown
from Fig. 1 that the solution of Example 1 has a boundary layer at x = 0.

5.3 A nonlinear problem
To demonstrate that our presented adaptive grid method can be successfully applied in
a nonlinear setting, consider the following system of quasi-linear convection-diffusion
equations:

ε1u′′
1(x) +

(
b1

(
x, u1(x), u2(x)

))′ = f1(x), (5.7)

ε2u′′
2(x) +

(
b2

(
x, u1(x), u2(x)

))′ = f2(x) (5.8)

with Robin boundary conditions

u1(0) + ε1β1u′
1(0) = s11, u1(1) + ε1γ1u′

1(1) = s21, (5.9)

u2(0) + ε2β2u′
2(0) = s12, u2(1) + ε2γ2u′

2(1) = s22. (5.10)
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Table 2 Numerical results with ε2 = 2–9 for Example 1

ε1 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

20 ENε1,ε2 5.02e–02 2.74e–02 1.37e–02 7.30e–03 3.80e–03 1.90e–03
rNε1,ε2 0.87 1.00 0.91 0.94 1.00
K 4 4 3 3 3 3

2–2 ENε1,ε2 5.26e–02 2.90e–02 1.45e–02 7.80e–03 4.10e–03 2.10e–03
rNε1,ε2 0.86 1.00 0.89 0.93 0.97
K 4 4 3 3 3 3

2–4 ENε1,ε2 5.33e–02 2.94e–02 1.48e–02 8.00e–03 4.10e–03 2.10e–03
rNε1,ε2 0.86 0.99 0.89 0.96 0.97
K 4 4 3 3 3 3

2–6 ENε1,ε2 5.11e–02 2.85e–02 1.44e–02 7.70e–03 3.90e–03 2.00e–03
rNε1,ε2 0.84 0.98 0.90 0.98 0.96
K 4 4 3 3 3 3

2–8 ENε1,ε2 4.76e–02 2.62e–02 1.31e–02 6.80e–03 3.50e–03 1.80e–03
rNε1,ε2 0.86 1.00 0.95 0.96 0.96
K 4 4 3 3 3 3

2–10 ENε1,ε2 4.70e–02 2.59e–02 1.29e–02 6.90e–03 3.60e–03 1.80e–03
rNε1,ε2 0.86 1.01 0.90 0.94 1.00
K 4 4 3 3 3 3

2–12 ENε1,ε2 5.10e–02 2.83e–02 1.50e–02 7.80e–03 3.90e–03 2.00e–03
rNε1,ε2 0.85 0.92 0.94 1.00 0.96
K 5 5 6 4 3 3

2–14 ENε1,ε2 5.54e–02 3.03e–02 1.62e–02 8.40e–03 4.30e–03 2.20e–03
rNε1,ε2 0.87 0.90 0.95 0.97 0.97
K 6 5 4 4 4 3

2–16 ENε1,ε2 5.98e–02 3.14e–02 1.66e–02 8.60e–03 4.40e–03 2.30e–03
rNε1,ε2 0.93 0.92 0.95 0.97 0.94
K 8 7 6 4 4 4

2–18 ENε1,ε2 5.89e–02 3.14e–02 1.68e–02 8.70e–03 4.50e–03 2.30e–03
rNε1,ε2 0.91 0.90 0.95 0.95 0.97
K 8 6 5 5 4 4

2–20 ENε1,ε2 5.86e–02 3.14e–02 1.69e–02 8.70e–03 4.50e–03 2.30e–03
rNε1,ε2 0.90 0.89 0.96 0.95 0.97
K 9 8 6 5 6 4

Table 3 Comparison of numerical results with Shishkin mesh for Example 1

N ε1 = 10–8,ε2 = 10–5 ε1 = 10–8,ε2 = 10–10

Shishkin mesh Adaptive mesh Shishkin mesh Adaptive mesh

32× 3 5.30e–02 2.36e–02 2.92e–02 2.36e–02
0.77 0.96 0.80 0.98

64× 3 3.10e–02 1.21e–02 1.68e–02 1.20e–02
0.82 0.97 0.91 0.98

128× 3 1.76e–02 6.16e–03 8.93e–03 6.09e–03
0.84 0.99 0.78 0.98

256× 3 9.83e–03 3.11e–03 5.21e–03 3.08e–03
0.86 0.99 0.87 0.99

512× 3 5.43e–03 1.57e–03 2.86e–03 1.55e–03
0.88 0.99 0.88 0.99

1024× 3 2.96e–03 7.87e–04 1.55e–03 7.80e–04

As far as we know, the layer-adapted meshes and adaptive grid approaches for a single
singularly perturbed quasi-linear two-point boundary value problem have attracted much
attention; see [19, 21] and the references therein. However, the adaptive grid method for
the system of quasi-linear convection-diffusion equations (5.7)–(5.10) is not found in the
literature to the best of our knowledge. Thus, in this paper, we will also use the presented
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Figure 1 Mesh movement with ε1 = 10–6, ε2 = 10–8, and N = 64 for Example 1

adaptive grid method to solve the following test problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε1u′′
1(x) + (3u1(x) – 1

4 e–u2
1(x) – u2(x))′ = 2x, x ∈ (0, 1),

ε2u′′
2(x) + (4u2(x) – cos(u2(x)) – u1(x))′ = exp(x), x ∈ (0, 1),

u1(0) + ε1u′
1(0) = – 3

4 , u1(1) + ε1u′
1(1) = 1

4 ,

u2(0) + ε2u′
2(0) = 2, u2(1) + ε2u′

2(1) = e + 1.

The exact solution is unknown, so we take Ū2048
j (x) as our reference solution, which is the

piecewise linear interpolation function through points (xi, U4096
ji ), i = 0, 1, . . . , N . Then the

error in each computed solution can be given as follows:

EN
ε1,ε2 = max

0≤i≤N
max
1≤j≤2

∣
∣Ū2048

j (xi) – UN
j,i

∣
∣.

Here, we also use (5.6) to calculate the rates of convergence.

Let (–1, 1)T be the initial value of
−→
θ . Then we utilize the Nelder–Mead simplex algo-

rithm to solve the optimization problem (5.2) for ε1, ε2, and N . For ε1 = 10–4, ε2 = 10–2k(k =
1, . . . , 5), and N = 32, 64, 128, 256, 512, 1024, Table 4 lists the errors and rates of conver-
gence for the numerical solutions of this nonlinear test problem. One can see that the
presented adaptive grid method is quite successful: for large N , the errors are robust with
respect to εi (i = 1, 2) and the convergence rates are close to one. In addition, the evolu-
tion process of the mesh by the above iteration algorithm is given in Fig. 2 for the case
ε1 = 10–4, ε2 = 10–3, and N = 64, which shows that this nonlinear test problem also has a
boundary layer at x = 0.

6 Conclusion
It was shown that a system of singularly perturbed convection-diffusion equations with
Robin boundary conditions could be reformulated in terms of a first-order system of sin-
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Table 4 Numerical results with ε1 = 10–4 for Example 2

ε2 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10–2 ENε1,ε2 1.99e–02 1.13e–02 6.12e–03 3.10e–03 1.48e–03 6.48e–04
rNε1,ε2 0.82 0.88 0.98 1.06 1.19

10–4 ENε1,ε2 2.07e–02 1.16e–02 6.05e–03 2.96e–03 1.43e–03 6.09e–04
rNε1,ε2 0.84 0.93 1.03 1.05 1.23

10–6 ENε1,ε2 2.22e–02 1.21e–02 6.29e–03 3.17e–03 1.49e–03 6.29e–04
rNε1,ε2 0.88 0.94 0.99 1.09 1.24

10–8 ENε1,ε2 2.19e–02 1.21e–02 6.32e–03 3.16e–03 1.49e–03 6.29e–04
rNε1,ε2 0.86 0.94 1.00 1.08 1.24

10–10 ENε1,ε2 2.17e–02 1.21e–02 6.45e–03 3.17e–03 1.49e–03 6.31e–04
rNε1,ε2 0.84 0.91 1.02 1.09 1.24

Figure 2 Mesh movement with ε1 = 10–4, ε2 = 10–3, and N = 64 for Example 2

gularly perturbed initial value problems. It also led to the development of an efficient adap-
tive grid method for solving the original problem.

Our numerical experiment has shown that the presented method can achieve first-order
convergence. It should be pointed out that the ideas presented in this paper can be used
to deal with the other high-order singularly perturbed differential equations with Robin
boundary conditions.
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