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Abstract
In this article, a hybrid technique called the homotopy perturbation Elzaki transform
method has been implemented to solve fractional-order Helmholtz equations. In the
hybrid technique, the Elzaki transform method and the homotopy perturbation
method are amalgamated. Three problems are solved to validate and demonstrate
the efficacy of the present technique. It is also demonstrated that the results obtained
from the suggested technique are in excellent agreement with the results by other
techniques. It is shown that the proposed method is efficient, reliable and easy to
implement for various related problems of science and engineering.
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1 Introduction
In this century, the study of fractional calculus and its various applications in mathematics,
physics and engineering have received considerable attention. Fractional calculus appli-
cations are found in many areas, such as electrical networks, dynamic device control the-
ory, probability and statistics, corrosion electrochemistry, chemical mechanics, and optics
and signal processing. Linear or nonlinear fractional-order differential equations may be
successfully modeled. A fractional differential equation is obtained from the classical dif-
fusion equation of mathematical physics by replacing the nth order time derivative with a
fractional-order derivative γ (n – 1 < γ ≤ n), which is now the area of increasing interest
apparent in the literature study. A significant phenomenon of these evolution equations is
that it produces the Brownian fractional movement, a Brownian motion generalization. In
several articles and books, different definitions of fractional calculus are available [1–10].

The Helmholtz equation or the reduced wave equation is an elliptic partial differential
equation (PDE) derived directly from the wave model. A Helmholtz equation is a PDE that
represents a time-independent mechanical development in space. The Helmholtz equa-
tion is one of the most significant in physics and applied mathematical models [10]. The
Helmholtz equation’s solutions, which are generally generated from the separation of vari-
ables, address important science phenomena. The equations occur in some phenomena,
such as electromagnetic waves in fluids, vibrating lines, plates, walls, acoustics, magnetic
fields, nuclear plants and the Lamb equation in geoscience. Consider a two-dimensional

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-03167-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-03167-x&domain=pdf
mailto:nehad.ali.shah@tdtu.edu.vn


Shah et al. Advances in Difference Equations         (2021) 2021:14 Page 2 of 15

non-homogeneous isotropic medium whose velocity is c in euclidean space [11, 12]. The
wave result is μ(x, y) corresponding to the harmonic origin φ(x, y) vibrating at the specified
fixed frequency ω > 0 satisfies the Helmholtz equation for the defined area R:

∂2μ(x, y)
∂x2 +

∂2μ(x, y)
∂y2 + λμ(x, y) = –φ(x, y), (1)

where μ(x, y) is an appropriately differentiable function at the boundary of R, and φ(x, y)
is a specified function, λ > 0 is a constant value, and

√
λ = ω

c is a wave number with
a wavelength of 2π√

λ
. If φ(x, y) = 0 is necessary, then Eq. (1), the Helmholtz equation, is

homogeneous. Most equations connected to steady-state oscillations (electromagnetic,
acoustic, hydraulic, thermoelectric) lead to a two-dimensional Helmholtz equation. If the
positive sign (in front of the λ term) is modified to a negative sign, this problem de-
fines mass transport procedures with first-order volume chemical compounds. For in-
stance, in linear acoustics, φ(x, y) can reflect a disturbance of the reference state pressure
(Thompson and Pinsky, 1995 [12]). Conservation equations, which are also transformed
into Helmholtz equations, often have various implementations in several physical prob-
lems, such as shear viscosity streams or fluids constrained inside thermophysical walls
[11–14]. In recent decades, many of the numerical and analytical techniques have been
implemented to solve fractional-order Helmholtz equations, such as He’s homotopy per-
turbation technique [10], Laplace variational iteration technique [15], the reduced differ-
ential transform technique [16], the q-homotopy analysis transform technique [17], the
spectral technique [17] and He’s variational iteration technique [18].

The homotopy perturbation method (HPM), first suggested by the Chinese scientist He
has played a crucial role since 1998 [19]. This is so because of the idea that it approaches
the scheme, not requiring any discrimination or linearization. This technique is fair, ef-
ficient and effective, and eliminates an unconditioned matrix, infinite series and compli-
cated integrals. This algorithm does not need a specific parameter of the problem. In this
technique, according to the homotopy method, a homotopy with an embedding parameter
p ∈ [0, 11] is constructed, and the embedding parameter is considered as a “small param-
eter,” which can take full advantage of the traditional perturbation techniques and homo-
topy methods [20–23]. The Ezaki transformation (E.T.) is a recent integral transform im-
plemented in 2010 by Elzaki. E.T. is a modified transformation of the Laplace and Sumudu
transformations. It is worth noting that absolute differential equations with variable co-
efficients cannot be achieved by Laplace and Sumudu transformations but can be easily
handled with the use of E.T. [24–26]. The homotopy perturbation Elzaki transformation
method (HPETM) combines the Elzaki transformation and the homotopy perturbation
method. Many researchers have solved different equations with the help of HPETM, such
as the Navier–Stokes equations [27], heat-like equations [28], a gas dynamic equation [29],
a hyperbolic equation and Fisher’s equation [30].

As the main aim of this work the HPETM is implemented to solve fractional-order two-
dimensional Helmholtz equations. The HPETM solutions are determined for three par-
ticular examples of fractional-order two-dimensional Helmholtz equations. The higher
efficiency and accuracy of HPETM is observed, using graphs comparing to exact solu-
tions. The series form solutions of HPETM for fractional-order Helmholtz equations have
shown the desired rate of convergence. Thus, the present technique is proposed to solve
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other fractional partial differential equations. The article is organized as follows: after pre-
senting basic definitions and fractional calculus properties in Sect. 2, we introduce the
proposed method in Sect. 3. Section 4 presents the exact and approximate solutions of
three examples of fractional Helmholtz equation. Section 5 concludes the study.

2 Preliminaries concepts
Definition 2.1 ([24–26]) Let us write the definition of the gamma function:

�(γ ) =
∫ ∞

0
e–ηηγ –1∂η, γ > 0.

Definition 2.2 A real function g(x), x > 0, is said to be in the space Cγ , γ ∈ R if there exists
a real number p > γ , such that g(x = xpg(x)), where g(x) ∈ [0,∞] and it is said to be in space
Cκ

γ if g(κ) ∈ Cγ , κ ∈ N [24–26].

Definition 2.3 (The partial fractional-order derivatives [24–26]) Now consider g(x) to
be a function of n variables xi, i = 1, . . . ,κ , also of group C on D ∈ Rκ . As an implement of
definition 2 we define the fractional order γ for g(x) with respect to xi by

∂γ
x g =

1
�(κ – a)

∫ xi

0
(xi – 1)κ–γ –1∂γ

xi
g(xj)|xj=η dη.

Definition 2.4 The Riemann–Liouville fractional-order equation, γ > 0, of a function f ∈
Cκ , γ ≥ –1, is defined as [1, 2, 24–26]

Jγ g(x) =
1

�(γ )

∫ x

0
(x – 1)γ –1g(η)∂η,γ , x > 0,

Jγ g(x) = g(x).

Some properties of the operator are:
For g ∈ Cκ , γ ≥ –1, γ , δ ≥ 0 and α > –1

Jγ Jδg(x) = Jγ +δg(x),

Jγ Jδg(x) = JδJγ g(x),

Jγ xδ =
�(δ + 1)

(γ + δ + 1)
xγ +δ .

Lemma 2.5 If κ – 1 < γ ≤ κ , κ ∈ N and g ∈ Cκ , γ ≥ –1, then Dγ Jγ g(x) = g(x) and

Dγ Jγ g(x) = g(x) –
m–1∑
k=0

g(k)(0)
xk

k!
, x > 0.

Fundamental concept of the Elzaki transformation

A new transformation called the Elzaki transformation is described for the exponential
order function that we find in the A set, represented by [24–26]

A = g(η) :� |M, k1, k2 > 0,
∣∣g(η)

∣∣ < Me
|η|
kj , if (η) ∈ (–1)j × [0,∞).
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The constant M must be a finite number, k1 and k2 are finite or infinite for a given function
in the set. The Elzaki transformation is described through the integral equation

E
[
g(η)

]
= T(s) = s

∫ ∞

0
g(η)e

–η
s dη, η ≥ 0, k1 ≤ s ≤ k2.

We obtain the following result from the description and the fundamental analyses:

E
[
ηn] = n!sn+2,

E
[
g ′(η)

]
=

T(s)
s

– sg(0),

E
[
g ′′(η)

]
=

T(s)
s2 – g(0) – sg ′(0),

E
[
g(n)(η)

]
=

T(s)
sn –

n–1∑
k=0

s2–n+kg(k)(0).

Theorem 2.6 If T(s) is the Elzaki transformation of (η), the Elzaki transformation of the
Riemann–Liouville derivative can be taken into consideration as follows [24–26]:

E
[
Dγ g(η)

]
= s–γ

[
T(s) –

n∑
k=1

{
Dγ –kg(0)

}]
; –1 < n – 1 ≤ γ < n.

Proof Let us take the Laplace transform of

g ′(η) =
d

dη
g(η),

L
[
Dγ g(η)

]
= Sγ T(s) –

n–1∑
k=0

sk[Dγ –k–1g(0)
]

= sγ T(s) –
n–1∑
k=0

sk–1[Dγ –kg(0)
]

= sγ T(s) –
n–1∑
k=0

sk–2[Dγ –kg(0)
]

= sγ T(s) –
n–1∑
k=0

1
s–k+2

[
Dγ –kg(0)

]
= sγ T(s) –

n–1∑
k=0

1
sγ –k+2–γ

[
Dγ –kg(0)

]

= sγ T(s) –
n–1∑
k=0

sγ 1
sγ –k+2

[
Dγ –kg(0)

]
,

L
[
Dγ g(η)

]
= sγ

[
T(s) –

n–1∑
k=0

(
1
s

)γ –k+2[
Dγ –kg(0)

]]
.

Therefore, when we put 1
s for s, the Elzaki transform of fractional order of g(η) becomes

E
[
Dγ g(η)

]
= s–γ

[
T(s) –

n∑
k=0

(s)γ –k+2[Dγ –kg(0)
]]

. �
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Definition 2.7 The Caputo fractional-order Elzaki transformation by using Theorem 2.6
is given as [1–3]

E
[
Dγ

η g(η)
]

= s–γ E
[
g(η)

]
–

κ–1∑
k=0

s2–γ +kg(k)(0), where κ – 1 < γ < κ . (2)

3 Homotopy perturbation Elzaki transform method
Being the basic concept of the given technique, we consider a general form of PDE:

Dγ
y μ(x, y) + Mμ(x, y) + Nμ(x, y) = h(x, y), y > 0, 0 < γ ≤ 1,

μ(x, 0) = g(x), ν ∈ 	.
(3)

Applying the Elzaki transformation of Eq. (3)

E
[
Dγ

y μ(x, y) + Mμ(x, y) + Nμ(x, y)
]

= E
[
h(x, y)

]
, y > 0, 0 < γ ≤ 1,

μ(x, y) = s2g(x) + sγ E
[
h(x, y)

]
– sγ E

[
Mμ(x, y) + Nμ(x, y)

]
.

(4)

Now, by taking the inverse Elzaki transformation, we have

μ(x, y) = F(x, y) – E–1[sγ E
{

Mμ(x, y) + Nμ(x, y)
}]

, (5)

where

F(x, y) = E–1[s2g(x) + sγ E
[
h(x, y)

]]
= g(ν) + E–1[sγ E

[
h(x, y)

]]
. (6)

Now, the perturbation procedure in terms of a power series with parameter p is pre-
sented as

μ(x, y) =
∞∑

k=0

pkμk(x, y), (7)

where p is the perturbation parameter and p ∈ [0, 1].
The non-linear term can be defined as

Nμ(x, y) =
∞∑

k=0

pkHk(μk), (8)

where Hn are He’s polynomials in terms of μ0,μ1,μ2, . . . ,μn, and can be determined as

Hn(μ0,μ1, . . . ,μn) =
1

γ (n + 1)
Dk

p

[
N

( ∞∑
k=0

pkμk

)]

p=0

, (9)

where Dk
p = ∂k

∂pk .
Substituting Eqs. (8) and (9) in Eq. (5), we get

∞∑
k=0

pkμk(x, y) = F(x, y) – p ×
[

E–1

{
sγ E

{
M

∞∑
k=0

pkμk(x, y) +
∞∑

k=0

pkHk(μk)

}}]
. (10)
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On both sides, by comparison of the coefficients p, we have

p0 : μ0(x, y) = F(x, y),

p1 : μ1(x, y) = E–1[sγ E
(
Mμ0(x, y) + H0(μ)

)]
,

p2 : μ2(x, y) = E–1[sγ E
(
Mμ1(x, y) + H1(μ)

)]
,

...

pk : μk(x, y) = E–1[sγ E
(
Mμk–1(x, y) + Hk–1(μ)

)]
, k > 0, k ∈ N .

(11)

The μk(x, y) component can be determined easily which quickly leads us to the conver-
gent series. We can get, as p → 1,

μ(x, y) = lim
M→∞

M∑
k=1

μk(x, y). (12)

4 Applications
In this section of the article, the method HPETM will be applied to some examples to
understand the proposed method’s procedure. Some numerical simulations are carried
out to visualize the family of Helmholtz equations through HPETM.

Example 1 Consider the fractional-order Helmholtz equations

∂γ μ(x, y)
∂xγ

+
∂2μ(x, y)

∂y2 – μ(x, y) = 0, 1 < γ ≤ 2, (13)

with initial condition

μ(0, y) = y and μx(0, y) = 0. (14)

Applying the Elzaki Transformation of Eq. (13), we get

1
sγ

E
[
μ(x, y)

]
= μ(0, y)s2–γ – E

{
∂2μ(x, y)

∂y2 – μ(x, y)
}

, (15)

E
[
μ(x, y)

]
= s2μ(0, y) – sγ E

{
∂2μ(x, y)

∂y2 – μ(x, y)
}

. (16)

Taking the inverse Elzaki transformation, we have

E
[
μ(x, y)

]
= y – E–1

[
sγ E

{
∂2μ(x, y)

∂y2 – μ(x, y)
}]

. (17)

Implementing HPM in Eq. (17), we obtain

∞∑
κ=0

pκμκ (x, y) = y – p

[
E–1

{
sγ E

{( ∞∑
κ=0

pκμκ (x, y)

)

yy

–
∞∑
κ=0

pκμκ (x, y)

}}]
. (18)
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On comparing the coefficients p on both sides, we obtain

p0 : μ0(x, y) = y,

p1 : μ1(x, y) = –E–1
[

sγ E
{

∂2μ0(x, y)
∂y2 – μ0(x, y)

}]
=

xγ

�(γ + 1)
y,

p2 : μ2(x, y) = –E–1
[

sγ E
{

∂2μ1(x, y)
∂y2 – μ1(x, y)

}]
=

x2γ

�(2γ + 1)
y,

p3 : μ3(x, y) = –E–1
[

sγ E
{

∂2μ2(x, y)
∂y2 – μ2(x, y)

}]
=

x3γ

�(3γ + 1)
y,

p4 : μ4(x, y) = –E–1
[

sγ E
{

∂2μ3(x, y)
∂y2 – μ3(x, y)

}]
=

x4γ

�(4γ + 1)
y,

...

(19)

The series form a solution of the given example, and we have

μ(x, y) = μ0(x, y) + μ1(x, y) + μ2(x, y) + μ3(x, y) + μ4(x, y) + · · · ,

μ(x, y) = y
[

1 +
xγ

�(γ + 1)
+

x2γ

�(2γ + 1)
+

x3γ

�(3γ + 1)
+

x4γ

�(4γ + 1)
+ · · ·

]
.

(20)

The exact result of Example 1 when γ = 2 is

μ(x, y) = y cosh x.

In the same way the solution of y-space can be determined through HPETM as

∂γ μ(x, y)
∂yγ

+
∂2μ(x, y)

∂x2 – μ(x, y) = 0, (21)

with proper initial value

μ(x, 0) = x. (22)

Thus the result of Eq. (21) is obtained,

μ(x, y) = x
(

1 +
yγ

�(γ + 1)
+

y2γ

�(2γ + 1)
+

y3γ

�(3γ + 1)
+

y4γ

�(4γ + 1)
+ · · ·

)
,

in the case when γ = 2, then the solution through HPETM is

μ(x, y) = x cosh y. (23)

Figure 1 depicts solutions in a two-dimensional plot of exact and HPETM solutions in
Figs. (a) and (b) for different values of γ = 2, 1.9, 1.8, 1.7, 1.6, 1.5 for x ∈ [0; 1] and y = 1.
In Fig. 2, the three-dimensional plots of exact and HPETM solutions in Figs. (a) and (b),
respectively, at γ = 2 and the closed contact of the exact and HPETM solutions are an-
alyzed. In Fig. 3, the graphs (c) and (d) represent the HPETM solutions at γ = 1.8 and
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Figure 1 (a) Graphs of exact and approximate solution and (b) different fractional-order results of γ of
Example 1

Figure 2 (a) Graphs of exact and (b) approximate solution of γ = 1 of Example 1

Figure 3 (c) Graphs of fractional-order results at γ = 0.8 and (d) γ = 0.6 of Example 1

1.6, respectively, of Example 1. The fractional results are investigated to be convergent
an integer-order result of each problem. In the same way, we can draw the figures for the
y-space fractional derivative.

Example 2 Consider the fractional-order Helmholtz equation

∂γ μ(x, y)
∂xγ

+
∂2μ(x, y)

∂y2 + 5μ(x, y) = 0, 1 < γ ≤ 2, (24)
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Table 1 Comparison of HPETM and RDTM solutions of different fractional-order results at γ of
Example 1

μ(x, y) HPETM HPETM HPETM RDTM RDTM

γ = 1.5 γ = 1.7 γ = 2 γ = 1.7 γ = 2

(0.1, 0.1) 9.8994158× 10–4 1.8951426× 10–6 4.4682560× 10–8 1.8951426× 10–6 4.4682560× 10–8

(0.2, 0.2) 9.5789042× 10–3 9.7686054× 10–6 9.8994158× 10–8 9.4137771× 10–6 9.7686054× 10–8

(0.3, 0.3) 1.6770296× 10–3 1.9457270× 10–5 9.8994158× 10–7 1.8868189× 10–5 1.9457270× 10–7

(0.4, 0.4) 1.9696739× 10–2 2.8187283× 10–5 2.9025947× 10–6 2.8187283× 10–5 2.9025947× 10–6

(0.5, 0.5) 2.9389443× 10–2 3.7373595× 10–4 3.8474635× 10–6 3.7373595× 10–4 3.8474635× 10–6

(0.6, 0.6) 3.8973948× 10–2 4.6424252× 10–4 4.7800451× 10–5 4.6424252× 10–4 4.7800451× 10–5

(0.7, 0.7) 4.8445597× 10–2 5.5332903× 10–4 5.6998309× 10–5 5.5332903× 10–4 5.6998309× 10–5

(0.8, 0.8) 5.7798601× 10–2 6.4090547× 10–4 6.6061216× 10–5 6.4090547× 10–4 6.6061216× 10–5

(0.9, 0.9) 6.7025983× 10–2 7.2685898× 10–4 7.4980409× 10–5 7.2685898× 10–4 7.4980409× 10–5

(1.0, 1.0) 7.6119511× 10–2 8.1105544× 10–4 8.3745391× 10–5 8.1105544× 10–4 8.3745391× 10–5

with initial condition

μ(0, y) = y and μx(0, y) = 0. (25)

Applying the Elzaki Transformation of Eq. (24), we get

1
sγ

E
[
μ(x, y)

]
= μ(0, y)s2–γ – E

{
∂2μ(x, y)

∂y2 + 5μ(x, y)
}

, (26)

E
[
μ(x, y)

]
= s2μ(0, y) – sγ E

{
∂2μ(x, y)

∂y2 + 5μ(x, y)
}

. (27)

Taking the inverse Elzaki transformation, we have

E
[
μ(x, y)

]
= y – E–1

[
sγ E

{
∂2μ(x, y)

∂y2 + 5μ(x, y)
}]

. (28)

By implementing the HPM in Eq. (28), we obtain

∞∑
k=0

pkμk(x, y) = y – p

[
E–1

{
sγ E

{( ∞∑
k=0

pkμk(x, y)

)

yy

+ 5
∞∑

k=0

pkμk(x, y)

}}]
. (29)

On comparing the coefficients p on both sides, we obtain

p0 : μ0(x, y) = y,

p1 : μ1(x, y) = –E–1
[

sγ E
{

∂2μ0(x, y)
∂y2 + 5μ0(x, y)

}]
= –5y

xγ

�(γ + 1)
,

p2 : μ2(x, y) = –E–1
[

sγ E
{

∂2μ1(x, y)
∂y2 + 5μ1(x, y)

}]
= 25y

x2γ

�(2γ + 1)
,

p3 : μ3(x, y) = –E–1
[

sγ E
{

∂2μ2(x, y)
∂y2 + 5μ2(x, y)

}]
= –125

x3γ

�(3γ + 1)
,

p4 : μ4(x, y) = –E–1
[

sγ E
{

∂2μ3(x, y)
∂y2 + 5μ3(x, y)

}]
= 625y

x4γ

�(4γ + 1)
,

...

(30)



Shah et al. Advances in Difference Equations         (2021) 2021:14 Page 10 of 15

The series form a solution of the given example as

μ(x, y) = μ0(x, y) + μ1(x, y) + μ2(x, y) + μ3(x, y) + μ4(x, y) + · · · ,

μ(x, y) = y
[

1 –
5xγ

�(γ + 1)
+

25x2γ

�(2γ + 1)
–

125x3γ

�(3γ + 1)
+

625x4γ

�(4γ + 1)
+ · · ·

]
.

(31)

The exact result of Example 2, when γ = 2, is

μ(x, y) = y cos
√

5x.

In the same way, the solution of y-space can be determined through HPETM as

∂γ μ(x, y)
∂yγ

+
∂2μ(x, y)

∂x2 + 5μ(x, y) = 0, (32)

with proper initial value

μ(x, 0) = x. (33)

Thus the result of Eq. (32) is defined by

μ(x, y) = x
(

1 –
5yγ

�(γ + 1)
+

25y2γ

�(2γ + 1)
–

125y3γ

�(3γ + 1)
+

625y4γ

�(4γ + 1)
+ · · ·

)
.

The exact result is

μ(x, y) = x cos
√

5y. (34)

Figure 4 depicts solutions in the two-dimensional plot of exact and HPETM solutions
in Figs. (a) and (b) for different values of γ = 2, 1.9, 1.8, 1.7, 1.6, 1.5 for x ∈ [0; 1] and y = 1.
In Fig. 5, the three-dimensional plots of exact and HPETM solutions in Figs. (a) and (b),
respectively, at γ = 2 and the closed contact of the exact and HPETM solutions are an-
alyzed. In Fig. 6, the graphs (c) and (d) represent the HPETM solutions at γ = 1.8 and
1.6, respectively, of Example 2. The fractional-order results are found to be convergent to

Figure 4 (a) Graph of exact and approximate solution and (b) different fractional-order results of γ of
Example 2
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Figure 5 (a) Graph of exact and (b) approximate solution of γ = 1 of Example 2

Figure 6 (c) Graph of fractional-order results of γ = 0.8 and (d) γ = 0.6 of Example 2

an integer-order result of the problem. In the same way, we can draw the graphs for the
y-space fractional-order derivative.

Example 3 Consider the fractional-order Helmholtz equation

∂γ μ(x, y)
∂xγ

+
∂2μ(x, y)

∂y2 – 2μ(x, y) =
(
12x2 – 3x4)sin y, 1 < γ ≤ 2, 0 ≤ y ≤ 2π , (35)

with initial conditions

μ(0, y) = 0 and μx(0, y) = 0. (36)

Implementing the Elzaki transformation of Eq. (35), we get

1
sγ

E
[
μ(x, y)

]
= μ(0, y)s2–γ – E

{
∂2μ(x, y)

∂y2 – 2μ(x, y)
}

, (37)

E
[
μ(x, y)

]
= s2μ(0, y) – sγ E

{
∂2μ(x, y)

∂y2 – 2μ(x, y)
}

. (38)

Using the inverse Elzaki transformation, we have

E
[
μ(x, y)

]
=

(
x4 –

x6

10

)
sin y – E–1

[
sγ E

{
∂2μ(x, y)

∂y2 – 2μ(x, y)
}]

. (39)
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Using HPM as in Eq. (39), we get

∞∑
k=0

pkμk(x, y) = y – p

[
E–1

{
sγ E

{( ∞∑
k=0

pkμk(x, y)

)

yy

– 2
∞∑

k=0

pkμk(x, y)

}}]
. (40)

On both sides on comparing the coefficients p, we obtain

p0 : μ0(x, y) =
(

x4 –
x6

10

)
sin y,

p1 : μ1(x, y) = –E–1
[

sγ E
{

∂2μ0(x, y)
∂y2 – 2μ0(x, y)

}]

= 3
(

xγ +4

�(γ + 5)
–

72xγ +6

�(γ + 7)

)
sin y,

p2 : μ2(x, y) = –E–1
[

sγ E
{

∂2μ1(x, y)
∂y2 – 2μ1(x, y)

}]

= 3
(

x2γ +4

�(2γ + 5)
–

216x2γ +6

�(2γ + 7)

)
sin y,

p3 : μ3(x, y) = –E–1
[

sγ E
{

∂2μ2(x, y)
∂y2 – 2μ2(x, y)

}]

= 3
(

x3γ +4

�(3γ + 5)
–

648x3γ +6

�(3γ + 7)

)
sin y,

p4 : μ4(x, y) = –E–1
[

sγ E
{

∂2μ3(x, y)
∂y2 – 2μ3(x, y)

}]

= 3
(

x4γ +4

�(4γ + 5)
–

1944x2γ +6

�(2γ + 7)

)
sin y,

...

(41)

The series form a solution of the given example,

μ(x, y) = μ0(x, y) + μ1(x, y) + μ2(x, y) + μ3(x, y) + μ4(x, y) + · · · ,

μ(x, y) =
(

x4 –
x6

10

)
sin y + 3

(
xγ +4

�(γ + 5)
–

72xγ +6

�(γ + 7)

)
sin y

+ 3
(

x2γ +4

�(2γ + 5)
–

216x2γ +6

�(2γ + 7)

)
sin y

+ 3
(

x3γ +4

�(3γ + 5)
–

648x3γ +6

�(3γ + 7)

)
sin y

+ 3
(

x4γ +4

�(4γ + 5)
–

1944x2γ +6

�(2γ + 7)

)
sin y + · · · .

(42)

The exact result of Example 3, when γ = 2, is

μ(x, y) = x4 sin y.
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Figure 7 (a) Graphs of exact and (b) approximate solution of Example 3

Figure 8 (a) Graph of exact and approximate solution and (b) different fractional-order results of γ of
Example 3

In Fig. 7, the three-dimensional plots of exact and HPETM solution in Figs. (a) and (b),
respectively, at γ = 2 and the closed contact of the exact and HPETM solutions are ana-
lyzed. In Fig. 8, we depict solutions in two-dimensional plots of exact and HPETM solu-
tions in Figs. (a) and (b) for different values of γ = 2, 1.9, 1.8, 1.7, 1.6, 1.5 for x ∈ [0; 1] and
y = 1. The fractional results are investigated and found to be convergent to an integer-
order result of the problem. In the same way, we can draw the graphs for the y-space
fractional-order derivative.

5 Conclusions
In this work, we utilized the homotopy perturbation Elzaki transform method to solve
fractional-order Helmholtz equations and their approximate solutions were obtained. The
homotopy perturbation Elzaki transform method was proved to be an effective approach
for solving partial differential equations with Caputo operators due to the excellent agree-
ment between the obtained approximate solution and the exact solution. A comparison
was made to show that the method has a small computation size compared to the compu-
tational size required in other numerical methods. And its rapid convergence shows that
the procedure is reliable and introduces a significant improvement in solving linear and
non-linear fractional-order partial differential equations.
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