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Abstract
Recently, various studied were presented to describe the population dynamic of
covid-19. In this effort, we aim to introduce a different vitalization of the growth by
using a controller term. Our method is based on the concept of conformable calculus,
which involves this term. We investigate a system of coupled differential equations,
which contains the dynamics of the diffusion among infected and asymptomatic
characters. Strong control is considered due to the social separation. The result is
consequently associated with a macroscopic law for the population. This dynamic
system is useful to recognize the behavior of the growth rate of the infection and to
confirm if its control is correctly functioning. A unique solution is studied under
self-mapping properties. The periodicity of the solution is examined by using integral
control and the optimal control is discussed in the sequel.
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1 Introduction
COVID-19 has been spreading speedily into many countries in the world; the World
Health Organization (WHO) classified it as a pandemic. The first WHO report of dyed-in-
the-wool cases of COVID-19 was issued on January 21, 2020 with 282 confirmed cases,
which is outstanding with the most recent report on March 18, 2020, which mentions
191,127 confirmed cases (see [1, 2]). Numerous growth designs have been very newly em-
ployed to describe the time evolution of the COVID-19 infection [3]. Mainly, by utilizing
the system dχ (t)/dt = χ (t), where χ represents the number of infected people, the ram-
pant phase, the increasing number of asymptomatic infected persons, is described. Nowa-
days, there are different numerical studies and analytic investigations in COVID-19 have
been presented (see [4–7]).

The present work deals with the generalized dynamic system of the growth laws by
applying the concept of conformable calculus. This concept involves an important term
which is the controller to organize and expect the graph of the growth. The existence and
uniqueness of the solution are studied in view of the fixed point theory of self-mappings.
Other properties are investigated such as the integrated and optimal controller.
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2 Conformable dynamic system (CDS)
In this section, we construct the dynamic system of a couple equations. Before that, we
need the following preliminaries about the conformable calculus [8].

2.1 Conformable calculus (CC)
In this part, we introduce the definition of the conformable calculus.

Definition 1 (Conformable differential operator) A differential operator Dν ,ν ∈ [0, 1], is
conformable if and only if D0 is the identity operator and D1 is the ordinary differential
operator. Particularly, the operator is conformable if and only if a differential function χ (t)
satisfies

D0χ (t) = χ (t) and D1χ (t) =
d
dt

χ (t) = χ ′(t).

In the theory of control systems, a proportional-differential controller for controlling
resultant υ at time t with two tuning criteria has the setting

υ(t) = σp�(t) + σd
d
dt

�(t), (1)

where σp is the proportional gain, σd is the derivative gain, and � is the error between the
formal variable and the actual variable. Based on (1), Anderson and Ulness [9] developed
the common idea of CC.

Definition 2 (A special class of conformable calculus) For two continuous functions
σ0,σ1 : [0, 1] ×R → (0,∞), we obtain

Dνχ (t) = σ1(ν, t)χ (t) + σ0(ν, t)χ ′(t), (2)

where

lim
ν→0

σ1(ν, t) = 1, lim
ν→1

σ1(ν, t) = 0, σ1(ν, t) �= 0,∀t,ν∈(0, 1),

and

lim
ν→0

σ0(β , t) = 0, lim
ν→1

σ0(ν, t) = 1, σ0(ν, t) �= 0,∀t,ν∈(0, 1).

Definition 3 The integral operator corresponding to Dν has the following expression:

∫
Dνχ (t) dνt = χ (t) + ke0(t, t0), (3)

where k ∈R, dνt = dt
σ0(t) ,ν �= 0, and

e0(t,κ) = exp

(
–

∫ t

κ

σ1(ν,ς )
σ0(ν,ς ))

dς

)
. (4)
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Figure 1 The dynamic process of system (10) with the connections

Also, the definite integral of the derivative of χ over the interval [a, b] is given by

∫ t

a

[
Dνχ (ς )

]
e0(t,ς ) dνς = χ (t) – χ (a)e0(t, a).

In our investigation, we need one of the following formulas of σ1 and σ0:

σ1(ν, t) = (1 – ν)tν , σ0(ν, t) = νt1–ν , t ∈ (0,∞), (5)

σ1(ν, t) = (1 – ν)|t|ν , σ0(ν, t) = ν|t|1–ν , (6)

σ1(ν, t) = cos

(
νπ

2

)
tν , σ0(ν, t) = sin

(
νπ

2

)
t1–ν , t ∈ (0,∞), (7)

σ1(ν, t) = cos

(
νπ

2

)
|t|ν , σ0(ν, t) = sin

(
νπ

2

)
|t|1–ν , t ∈R\{0}, (8)

or for ψ0,ψ1 ∈ (0,∞)

σ0(ν, t) = νψ1–ν
0 , σ1(ν, t) = (1 – ν)ψν

1 . (9)

Lastly, the conformable inner product between two continuous functions χ and υ has the
formula

〈χ ,υ〉 =
∫ b

a
χ (t)υ(t)e0(b, t) dνt.

2.2 Construction of CDS
In the structure of CDS, we require �(t), the growing overall number of infected individu-
als, which is the sum of the number of the growing identified infected persons χ (t) and of
the asymptomatic transmission ones 
(t): �(t) = χ (t) + 
(t). On the information of χ (t)
the number of passing on the decease, the process of curing people is involved, because
they have been formerly diseased. The rate of each function is given by the conformable
connections σ0 and σ1 for the conformable changing in χ (t) and ρ0 and ρ1 for the con-
formable changing in 
(t) satisfying Definition 2. Based on the above discussion, we have
the following CDS:

Dνχ (t) = σ1(ν, t)χ (t) + σ0(ν, t)χ ′(t) + σ (t)
(t),

Dμ
(t) = ρ1(μ, t)
(t) + ρ0(μ, t)
′(t) + ρ(t)χ (t),
(10)

where σ and ρ are the connection rate functions of 
 in Dνχ (t) and χ in Dμ
(t), respec-
tively. They describe the damping properties in line for the control energy. The dynamic
process of (10) can be recognized in Fig. 1.

There are two directions to study CDS in view of the mathematical analysis: paramet-
ric and bifurcation analysis. Parametric analysis considers the measurable adjustments of
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path dynamics in reaction to perturbations of path parameters. This analysis is typically
employed for identifying critical path methods. Therefore, there are diverse procedures to
seek the performance of the system, such as critical point theory, and fixed point theory.
Centering on the second option, we employ the current fixed point theorem of a self-
mapping. Meanwhile, bifurcation analysis is applied to control how qualitative properties
of a path rest on its parameters. Explicitly, it studies the steady-state results of a structure
and their stability.

3 Results
In this section, we proceed to discuss the existence and uniqueness solution of system (10).
Moreover, we investigate the controller solution from different points of view.

3.1 Unique solution
By assuming X(t,χ ) := χ ′(t) and A(t,χ ) := 
′(t), we obtain the following system:

Dνχ (t) = σ1(ν, t)χ (t) + σ0(ν, t)X(t,χ ) + σ (t)
(t),

Dμ
(t) = ρ1(μ, t)
(t) + ρ0(μ, t)A(t,
) + ρ(t)χ (t),
(11)

satisfying the following assumptions:
(A1) Assume that X : [0, T] ×R→R is a non-decreasing continuously differentiated

function with X(0, 0) = 0 and non-vanishing in a compact interval (0, T].
Furthermore, there is a positive constant � such that

∣∣X(t,χ1) – X(t,χ2)
∣∣ ≤ �|χ1 – χ2|.

(A2) Assume that A : [0, T] ×R →R is a non-decreasing continuously differentiated
function with A(0, 0) = 0 and non-vanishing in a compact interval (0, T]; in
addition, assume that there exists a positive constant L such that

∣∣A(t,
1) – A(t,
2)
∣∣ ≤ L

∣∣
1 – 
2
∣∣.

We aim to establish the existence and the uniqueness solution of system (11) using self-
mapping fixed point theorem [10].

Lemma 3.1 Let (M,�) be a complete metric space andW : M → M a self-mapping leading
to the relation

�
(
�

(
W(x),W(y)

)) ≤ �
(
� (x, y)

)
– ℘

(
� (x, y)

)
(12)

for all x, y ∈ M, where �,℘ : [0,∞) → [0,∞) are both continuous and non-decreasing func-
tions with �(0) = ℘(0) = 0. Then W admits a unique fixed point.

Let M = R and define an operator P : R×R →R×R as follows:

(
P(χ ,
)

)
(t) =

(
P1(χ ,
),P2(χ ,
)

)
(t)
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= (
∫ (

σ1(ν, t)χ (t) + σ0(ν, t)X
(
t,χ (t)

)
+ σ (t)
(t)

)
dνt + c1,

×
∫ (

ρ1(μ, t)
(t) + ρ0(μ, t)A
(
t,
(t) + ρ(t)χ (t)

)
dνt + c2

)
.

(13)

Since (χ ,
) ∈ R×R, P is a self-mapping.

Lemma 3.2 Consider the functions G1,2 : R3 →R
+ by

G1(χ1,χ2,χ3) = max
{|χı – χj | : ı, j = 1, 2, 3, ı �= j

}

and

G2(
1,
2,
3) = max
{|
ı – 
j | : ı, j = 1, 2, 3, ı �= j

}
.

Then the function G := (G1,G2) ∈R×R forms a metric.

Proof Clearly, G1(χ1,χ2,χ3) = 0 for χ1 = χ2 = χ3; moreover, we get the following calcula-
tion:

G1(χ1,χ1,χi) + G1(χ2,χ2,χj) + G1(χ3,χ3,χk)

= max
i=2,3

{|χ1 – χi|
}

+ max
j=1,3

{|χ2 – χj|
}

+ max
k=1,2

{|χ3 – χk|
}

= max
{|χ1 – χ2|, |χ1 – χ3

}
+ max

{|χ2 – χ1|, |χ2 – χ3
}

+ max
{|χ3 – χ1|, |χ3 – χ2|

}

= 2 max
{|χ1 – χ2|, |χ2 – χ3|, |χ3 – χ1|

}

> max
{|χ1 – χ2|, |χ2 – χ3|, |χ3 – χ1|

}

= max
{|χı – χj | : ı, j = 1, 2, 3, ı �= j

}

= G1(χ1,χ2,χ3).

(14)

Hence, the function G1(χ1,χ2,χ3) is a metric on the set R. Similarly for G2 ∈ R. We con-
clude that G ∈R×R, which indicates a metric. �

This metric indicates the maximum measurement between the three cases of the growth
of covid-19 (Fig. 1, the first column for χ and the second column for 
). Note that this
metric can extend to include other cases in the dynamical systems.

Theorem 3.3 Consider the dynamic system (11) satisfying the assumptions (A1) and (A2).
If the positive constants � and L obey

� <
1 – (1 – ν)Tν

νT1–ν
and L <

1 – (1 – μ)Tμ

μT1–μ
, T < ∞,

respectively, then P has a unique fixed point in the ball Br := (Br1, Br2), where r1 ≤ 1 and
r2 ≤ 1.
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Proof Let the functions σ0 and σ1 be

σ1(ν, t) = (1 – ν)tν , σ0(ν, t) = νt1–ν , t ∈ (0, T), T < ∞

and

ρ1(μ, t) = (1 – μ)tμ, ρ0(μ, t) = μt1–μ, t ∈ (0, T), T < ∞.

Note that a similar proof can be presented for other formulas. Then, by the assumption
on �, and the definition of the metric in Lemma 3.2, we have

G1
(
P1χ1(t),P1χ2(t),P1χ3(t)

)

= max
{∣∣P1χı(t) – P1χj (t)

∣∣ : ı, j = 1, 2, 3, ı �= j
}

≤ max

{∣∣σ1(ν, t)χı(t) + σ0(ν, t)X(t,χı)

–
(
σ1(ν, t)χj (t) + σ0(ν, t)X

(
t,χj (t)

))∣∣Tν

ν2 : ı, j = 1, 2, 3, ı �= j

}

≤ max

{(
σ1(ν, t)|χı – χj | + σ0(ν, t)�|χı – χj |

)Tν

ν2 : ı, j = 1, 2, 3, ı �= j

}

≤ max

{(
(1 – ν)Tν |χı – χj | + νT1–ν�|χı – χj |

)Tν

ν2 : ı, j = 1, 2, 3, ı �= j

}

= max

{[
(1 – ν)Tν + νT1–ν�

]Tν

ν2 |χı – χj | : ı, j = 1, 2, 3, ı �= j

}

=
[
(1 – ν)Tν + νT1–ν�

]Tν

ν2

(
max

{|χı – χj | : ı, j = 1, 2, 3, ı �= j
})

:= r1G1(χ1,χ2,χ3).

By the assumption of the theorem on �, we have

[
(1 – ν)Tν + νT1–ν�

]Tν

ν2 < 1

⇒ [
(1 – ν)Tν + νT1–ν�

]
<

ν2

Tν

< 1,

which leads to the boundedness of the operator P1 in the unit ball Br1 of radius 0 < r1 < 1.
Similarly for P2, which is bounded in the ball Br2, 0 < r2 < 1. Combining the above conclu-
sions, we find that the operator P = (P1,P2) is bounded in Br = (Br1, Br2).

We proceed to discover more properties of the operator P1. For t, τ ∈ (0, T) with t > τ

and χ (t) > χ (τ ) (increasing function), we have

G1(P1χ1(t),P1χ2(t),P1χ3(t) –
(
P1χ1(τ ),P1χ2(τ ),P1χ3(τ )

)

= G1
(
P1

(
χ1(t) – χ1(τ )

)
,P1

(
χ2(t) – χ2(τ )

)
,P1

(
χ3(t) – χ3(τ )

))

= G1
(
P1χ1(t – τ ),P1χ2(t – τ ),P1χ3(t – τ )

)
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≤ G1
(
P1χ1(t),P1χ2(t),P1χ3(t)

)

≤ r1G1(χ1,χ2,χ3).

Thus, P1 is equicontinuous on Br1. Similarly for P2; thus, the integral operator P is
equicontinuous on Br . Next, we check the continuity of the integral operator P ∈ Br .

Now, by putting χl(t) – ηl(t) = ξl(t), l = 1, 2, 3, we obtain

G1
(
P1

(
χ1(t) – η1(t)

)
,P1

(
χ2(t) – η2(t)

)
,P1

(
χ3(t) – η3(t)

))

= G1
(
P1

(
ξ1(t)

)
,P1

(
ξ2(t)

)
,P1

(
ξ3(t)

))

≤ max

{∣∣σ1(ν, t)ξı(t) + σ0(ν, t)X(ξı

(
χı(t)

)

– (σ1(ν, t)ξj (t) + σ0(ν, t)X
(
ξj

(
ξj (t)

))∣∣Tν

ν2 : ı, j = 1, 2, 3, ı �= j

}

≤ max

{
σ1(ν, t)|ξı – ξj |Tν

ν2 + σ0�|ξı – ξj |Tν

ν2 : ı, j = 1, 2, 3, ı �= j

}

≤ max

{
(1 – ν)Tν |ξı – ξj |Tν

ν2 + νT1–ν�|ξı – ξj |Tν

ν2 : ı, j = 1, 2, 3, ı �= j

}

= max

{[
(1 – ν)Tν + νT1–ν(ν, t)�

]Tν

ν2 |ξı – ξj | : ı, j = 1, 2, 3, ı �= j

}

= r1G1(ξ1, ξ2, ξ3) ≤ r1G1(χ1,χ2,χ3).

Therefore, the operator P1 is continuous in Br1. Similarly, for P2, which leads to P having
a fixed point P(χ ,
) = (χ ,
) corresponding to the solution of the dynamic system (11).

Next, we aim to satisfy inequality (12). Suppose that there are two continuous and non-
decreasing functions �,℘ : [0,∞) → [0,∞) having the properties: �(t),℘(t) > 0 for t > 0
and �(0) = ℘(0) = 0. Now, suppose that

�(ε) = ε/r1, ℘(ε) =
ε(1 – r1)

r1
,

then, by the boundedness of P1, we conclude that

�
(
G1P1(χ1,χ1,χi)

)

=
G1P1(χ1,χ1,χi)

r1
≤ G1(χ1,χ2,χ3)

≤ G1(χ1,χ1,χi) + G1(χ2,χ2,χj) + G1(χ3,χ3,χk)

= �
(
G1(χ1,χ1,χi)

)
– ℘

(
G1(χ1,χ1,χi)

)
+ G1(χ2,χ2,χj) + G1(χ3,χ3,χk)

≤ �
(
G1(χ1,χ1,χi)

)
– ℘

(
G1(χ1,χ1,χi)

)

+ min
{
G1(χ2,χ2,P1χ2),G1(χ2,χ2,P1χ1),G1(χ1,χ1,P1χ1),G1(χ1,χ1,P1χ2)

}
.

Hence, one obtains the inequality (12). Similarly for P2, which shows that in view of
Lemma 3.1, the integral operator P has a unique fixed point lying in Br = (Br1, Br2),
r ≤ 1. �
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3.2 Control solution
Here, we investigate the controlling of the unique solution under the assumptions of The-
orem 3.3. We construct the modest control system based on system (11). For a linear case
X(t,χ (t)) = χ (t) and A(t,
(t)) = 
(t), system (11) becomes

Dνχ (t) = σ1(ν, t)χ (t) + σ0(ν, t)χ (t) + σ (t)
(t),

Dμ
(t) = ρ1(μ, t)
(t) + ρ0(μ, t)
(t) + ρ(t)χ (t).

By considering the formula of σ1 and σ0 and of ρ1 and ρ0, we have

Dνχ (t) =
[
(1 – ν)tν + νt1–ν

]
χ (t) + σ (t)
(t),

Dμ
(t) =
[
(1 – μ)tμ + μt1–ν

]

(t) + ρ(t)χ (t),

Dνχ (t) =
(

t–ν

1 + t–ν

)
χν(t) + σ (t)
(t),

Dμ
(t) =
(

t–μ

1 + t–μ

)

μ(t) + ρ(t)χ (t),

(15)

where

χν(t) = ((1 – ν)t2ν
(
1 + t–ν

)
+ (νt)

(
1 + t–ν

)

and


μ(t) = ((1 – μ)t2μ
(
1 + t–μ

)
+ (μt)

(
1 + t–μ

)
.

This control models a diffusion of cells, which we aim to minimize. To complete the min-
imization, we define the following norm:

∥∥H(ϒ1,ϒ2)
∥∥∞ = sup

t

(
σ̄
(
ϒ1(t)

)
, ρ̄

(
ϒ2(t)

))
,

where σ̄ represents the maximum singular value of ϒ1 and ρ̄ indicates the maximum sin-
gular value of ϒ2. The problem of the H-controller is to select (χν ,
μ) that makes the
closed-loop system internally stable, i.e. minimize the value ‖H‖∞. In our discussion, we
let ϒ1(t) = χ (t) and ϒ2(t) = 
(t). Also, we consider that there exist two Perron functions
ω1(·, ·),ω2(·, ·) such that

(A3) sup
t

(
σ̄
(
ϒ1(t)

)
, ρ̄

(
ϒ2(t)

))

≤ (
ω1

(
t, |χν,1 – χν,2|

)
,ω2

(
t, |
μ,1 – 
μ,2|

))
+ ε, ε ∈ [0, 1].

Recall, a function ω is called a Perron function if it is integrally bounded on bounded sets,
ω(t, 0) = 0,ω(t, .) is non-decreasing for every t and the zero function is the only solution of
the scalar differential equation f ′(t) = ω(t, f (t)), f (0) = 0. System (15) satisfies the following
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functional system:

χ (·) →
∫ T

0

((
t–ν

1 + t–ν

)
χν(t) + σ (t)
(t)

)
dνt,


(·) →
∫ T

0

((
t–μ

1 + t–μ

)

μ(t) + ρ(t)χ (t)

)
dμt,

(16)

which is continuous in Br . Moreover, the above integral function is the lower semi-
continuous version of the function

(
∫ (

σ1(ν, t)χ (t) + σ0(ν, t)X
(
t,χ (t)

)
+ σ (t)
(t)

)
dνt + c1,

∫ (
ρ1(μ, t)
(t) + ρ0(μ, t)A

(
t,
(t) + ρ(t)χ (t)

)
dνt + c2

)
.

But the limit solution set is Br , which is compact and every lower semi-continuous real
valued function attains its minimum to a compact set. Thus, we seek the following optimal
control theorem.

Theorem 3.4 Let the assumptions (A1)–(A3) hold. Then system (11) admits an optimal
limit solution.

Remark 3.5
• The controller protects the set-point as the disturbance (σ ,ρ) is changed. The system

with integral control jumps to oscillation as there is reduction of (σ ,ρ). The
presentation of a controller appears to make the solutions of the coupled system less
stable, or more oscillatory, than for the system without supplementary control.

• The model described the relation between the symptomatic growing detected people
χ (t) and the asymptomatic one, 
(t), we established a unique relation under the
solution of Theorem 3.3. Furthermore, one catches beneficial signs on the number of
asymptomatic persons.

• The dynamical method may be such that the macroscopic explanation indicates the
possibility of assessing the accumulative number of asymptomatic persons as a
function of time. We recall that our study applies to the temporary region of fast
growth and not to the satiety phase of the diffusion. As exposed in Fig. 3, in the
short-lived rule, the increasing number of asymptomatic people turns out to be larger
than the number of infected people, but smaller than in other planned simulations [3].

• Biological importance: agreeing with the standard control, the system possesses the
focuses of positive complexes within acceptable limits and thus gives the internal
stability of growing cells and creatures (see [11]). Our conclusions clarify how the
integral control allows biological systems to continue full-bodied under the ordinary
circumstances, even when they demonstrate periodic or chaotic performance. In
other words, it illustrates that an internal parameter in contradiction of external
disturbances (parameter changes) can be conserved even when systems are wavering.
Integral control leads to a full life controlling device that covers more than the stability
of the unique solution.
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Figure 2 The optimal values of the controller at the fractional parameters ν = 0.85 and μ = 0.95

• The optimal value of the fractional parameters indicates that t–ν/(1 + t–ν) → 1 and
t–μ/(1 + t–μ) → 1, when ν = 0.85 and μ = 0.95. Figure 2 shows the plot of these
controller factors.

4 Applications
In this section, we start to exam our system by suggesting real data from the internet.
Figure 3 indicates the conformed data in March for the highest-value countries. We used
Mathematica Wolfram 11.2 for calculation and coding the system.

Generally, in the diffusion of infections there are a huge number of asymptomatic res-
idents, which affects the time dependence of χ (t) in the temporary phase. Both χ (t) and

(t) approach a steady-state condition after some time, challenging as regards assessing
by mathematical reproductions, where asymptomatic persons are still current, but with a
low pathological load. From this point of view, the asymptomatic people should show de-
generation in the fullness phase. The optimal control shows its convergence of the actual
data, under different sets of parameters.

Our set of parameters plays an important role to detect the suitable graph of data. As is
seen, different connections (coefficients) are suggested to discover and cover the real data.
For instance, USA data require an exponential connection of σ (t) and ρ(t), while China
connections are linearly selected. The dynamic process of system (16) with the connec-
tions σ (t) = 0.012t and ρ(t) = 0.12(t +1) are for Spain data. Meanwhile for Italy data, which
is rapidly increasing, we use σ (t) = 0.026t and ρ(t) = 0.26(t + 1). Moreover, the guarantee-
ing set of parameters implies the suitable graph of the actual data for both χν(t) and 
μ(t).
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Figure 3 The dynamic process of system (16) with the connections σ (t) = 0.012t and ρ(t) = 0.12(t + 1) for
Spain data. Meanwhile for Italy data, which is rapidly increasing, we use σ (t) = 0.026t and ρ(t) = 0.26(t + 1).
China data in March have a stable distribution, therefore we suggest ν =μ = 0.25 with σ (t) = 80 + 0.033t and
ρ(t) = 0.34t + 80. Finally, for the USA, the graph shows high conformation, thus we utilize exponential
connections

Finally, the suggested dynamic system and its integral control system provide an opportu-
nity of deep study and flexibility for some modifications and extensions depending on the
set of data (see Theorem 3.4). For example, if one aims to study the oscillation of solutions,
it is better to use connections formula based on the cos(t) and sin(t) functions (Fig. 3).

5 Conclusion
From above, we confirm that the use of CC has the flexibility to control the orbit of the
solution. The CC operation involves the controller term with various types of connections
functions (fractional connections). Some of these connections are expressed in terms of
linear functions and others are nonlinear functions. The existence and uniqueness of the
dynamical system of the growth are established by using a self-function. The solvability is
studied by using a fixed point theorem of a metric space. The control solution is described
by using an integration formula. One can suggest it as a maximum solution.
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