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Abstract
In this paper, we consider a new fractional-order predator–prey model with Holling
type-III functional response and stage structure. Based on the Lyapunov stability
theory and by constructing a suitable Lyapunov functional, we obtain some sufficient
conditions for the existence and uniqueness of positive solutions and the asymptotic
stability of the positive equilibrium to the system. Finally, we give some numerical
examples to illustrate the feasibility of our results.
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1 Introduction
It is well known that the existence and uniqueness of positive solutions for predator–prey
models with Holling type-III functional response and stage structure have been widely
investigated by many researchers [1–9]. Stage structure is an important natural phe-
nomenon and represents, for example, the division of a population into immature and
mature individuals. In [4], the authors studied the global properties of a predator–prey
model with nonlinear functional response and stage structure for the predator, and the
conditions of the existence and the global stability of the positive steady state were estab-
lished. In [9], the authors discussed the existence and local stability of equilibrium points,
and in order to protect the stability of this kind of systems, they proposed a hybrid control
method such that the Hopf bifurcation can be controlled.

Fractional order calculus is the extension of integer order calculus to arbitrary real num-
ber order; both appeared almost at the same time. Most of the present works were focused
on fractional differential equations, see [10–16] and the references cited therein. The ba-
sic theory of fractional calculus can be found in the monographs of Miller and Ross [10].
With the improvement of fractional calculus theory, the fractional differential equations
are widely used in various fields, such as physics [17–19], economics [20–22], medicine
[23, 24], and biology [25, 26], etc. Because of the memory and heritage properties of frac-
tional calculus, it is more suitable for describing the population dynamics system than
integer calculus. Therefore, it is more in line with the laws of nature and has practical sig-
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nificance to study predator–prey models by using fractional calculus. There are many def-
initions of fractional derivative and integral, and those of Grünwald–Letnikov, Riemann–
Liouville, and Caputo are commonly used. To use the Riemann–Liouville definition one
must specify the value of a fractional derivative of the unknown solution at the initial
value t = 0, but this can simplify the calculation of the fractional derivative. For complex
multiscale analysis, the Riemann–Liouville definition can simplify the calculation process.
The shortcomings of the Riemann–Liouville fractional derivative can be compensated by
modifying the definition. Therefore, in this paper we will adopt the modified Riemann–
Liouville-type definition given in [12].

Recently, a fractional predator–prey model to describe the ecosystem was considered in
[27], where it performed well on a practical problem. The author considered the fractional
predator–prey model with Holling type-II functional response. Later, the research on the
dynamics of fractional-order predator–prey model with Holling type-II or Holling type-III
functional response has become a hot topic [28–31].

To the best of our knowledge, up to now, few results are available for fractional-order
predator–prey systems with Holling type-III functional response and stage structure.
Therefore, it is a challenging and important problem in theory and applications.

Motivated by the above discussion, in this paper, we consider the following fractional-
order predator–prey system with Holling type-III functional response and stage structure:

dαx1(t)
dtα

= ax2(t) – r1x1(t) – bx1(t),

dαx2(t)
dtα

= bx1(t) – r2x2(t) – b1x2
2(t) –

a1x2
2(t)y(t)

1 + mx2
2(t)

, (1.1)

dαy(t)
dtα

=
a2x2

2(t)y(t)
1 + mx2

2(t)
– ry(t) (0 < α ≤ 1),

where x1(t) and x2(t) represent the densities of the immature and mature prey at time t,
respectively; y(t) represents the density of the predator at time t; the parameters a, r1, b,
r2, b1, a1, m, a2, and r are positive constants.

Through calculation, it is easy to get that system (1.1) always has a trivial equilibrium
E0(0, 0, 0) and if the condition ab > r2(b + r1) holds, then (1.1) has a predator-extinction
equilibrium E1(x0

1, x0
2, 0), where

x0
1 =

a(ab – r2(b + r1))
b1(b + r1)2 , x0

2 =
ab – r2(b + r1)

b1(b + r1)
.

If the conditions ab > r2(b + r1) and (a2 – mr)(ab – r2(b + r1))2 > rb2
1(b + r1)2 hold, then

system (1.1) has a unique coexistence equilibrium E∗(x∗
1, x∗

2, y∗), where

x∗
1 =

a
b + r1

x∗
2, x∗

2 =
√

r
a2 – mr

,

y∗ =
a2x∗

2
ra1

(
ab

b + r1
– r2 – b1x∗

2

)
.

Our main purpose of this paper is to study the existence and asymptotical stability of
equilibria for system (1.1). Especially, we will focus on the considerations that system (1.1)
has a unique coexistence equilibrium.
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The main contributions of this paper are listed as follows. Firstly, fractional-order
predator–prey system with Holling type-III functional response and stage structure de-
fined by modified fractional derivative is proposed. Secondly, we consider the existence
and stability of the equilibrium point of the system, which has important practical signifi-
cance for the sustainable development of the ecosystem. Finally, examples and numerical
simulations are given to verify the effectiveness of the conclusion.

The organization of the rest of this paper is as follows. In Sect. 2, we introduce some good
properties on the fractional derivative to study fractional systems. We show that there is
a unique nonnegative solution of (1.1) in Sect. 3. In Sect. 4, we use the Lyapunov stability
theory [19] of the fractional system to prove that the positive equilibrium is asymptotically
stable.

2 Preliminaries
In this section, we introduce notations, some basic definitions, and preliminaries that will
be used in this paper.

Definition 2.1 ([12]) Let f : R →R, x �→ f (x), be a continuous (but not necessarily differ-
entiable) function, and let h > 0 be a constant discretization stepsize. Define the forward
operator FW (h), i.e., (the symbol := means that the left side is defined by the right one)

FW (h) · f (x) := f (x + h).

Then the fractional difference of order α, 0 < α < 1, of f (x) is defined by the expression

�αf (x) := (FW – 1)αf (x) =
∞∑

k=0

(–1)k

(
α

k

)
f
(
x + (α – k)h

)
,

and its derivative of fractional order is defined by the expression

f (α)(x) = lim
h↓0

�αf (x)
hα

, 0 < α ≤ 1.

Definition 2.2 ([12], Riemann–Liouville definition revisited) Refer to the function of Def-
inition 2.1. Then its fractional derivative of order α is defined by the expression

f (α)(x) =
1

�(–α)

∫ x

0
(x – s)–α–1(f (s) – f (0)

)
ds, α < 0.

For positive α, one will set

f (α)(x) =
(
f (α–1)(x)

)′ =
1

�(1 – α)
d

dx

∫ x

0
(x – s)–α

(
f (s) – f (0)

)
ds, 0 < α < 1

and

f (α)(x) :=
(
f (n)(x)

)(α–n), n ≤ α < n + 1, n ≥ 1.

Now, we give some properties of the modified Riemann–Liouville derivative [14] which
are used further in this paper:
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(i) �(1 + αk) := (αk)!;
(ii) (Differential relation) dαf ∼= �(1 + α) df , 0 < α ≤ 1.

Lemma 2.1 ([12]) The following equalities hold:

Dαxγ = �(1 + γ )�–1(γ + 1 – α)xγ –α , γ > 0,
(
u(x)v(x)

)(α) = uα(x)v(x) + u(x)v(α)(x),
(
f
[
u(x)

])(α) = f ′
u(u)u(α)(x).

The solution of the equation

dαx = f (t) dtα , t ≥ 0, (2.1)

x(0) = x0

is defined by the following result:

Lemma 2.2 ([14]) Let f (t) denote a continuous function. Then the solution of (2.1) is de-
fined by the equality

∫ t

0
f (s) dsα = α

∫ t

0
(t – s)α–1f (s) ds, 0 < α ≤ 1. (2.2)

In [19], the authors consider the equation

dαx
dtα

= f (x). (2.3)

Lemma 2.3 ([27]) Let V (x) be a C1 function satisfying V (0) = 0; V (x) > 0. Further,
(i) if dαV

dtα ≤ 0, then system (2.3) has a stable null solution;
(ii) if dαV

dtα < 0, then system (2.3) has an asymptotically stable null solution;
(iii) the null solution of system (2.3) is unstable provided dαV

dtα > 0.

3 Existence and uniqueness of the nonnegative solution
Throughout this paper, let R

3
+ denote the positive cone of R

3, namely, R
3
+ = {x =

(x1, x2, x3) ∈R
3 : xi > 0, i = 1, 2, 3}, R3

+ = {x = (x1, x2, x3) ∈R
3 : xi ≥ 0, i = 1, 2, 3}.

Theorem 3.1 For any initial value (x1(0), x2(0), y(0)) ∈R
3
+, system (1.1) has a unique global

positive solution (x1(t), x2(t), y(t)) ∈R
3
+ for t ≥ 0.

Proof Since the right-hand side coefficients of the system (1.1) are locally Lipschitz con-
tinuous, referring to the proof of Theorem 4 of [27], we omit the proof of existence of a
local solution in this paper. Hence, for any given initial value (x1(0), x2(0), y(0)) ∈ R

3
+, there

is a unique maximal local solution (x1(t), x2(t), y(t)) on t ∈ [0, τe), where τe is the explosion
time. To show this solution is global, we need to show that τe = ∞. Let k0 ≥ 1 be suffi-
ciently large so that x1(0), x2(0) and y(0) all lie within the interval [ 1

k0
, k0]. For each integer

k > k0, define the stopping time by

τk = inf

{
t ∈ [0, τe) : min

{
x1(t), x2(t), y(t)

} ≤ 1
k

or max
{

x1(t), x2(t), y(t)
} ≥ k

}
,
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where, throughout this paper, we set inf∅ = ∞ (∅ denotes the empty set). Obviously, τk

is increasing as k → ∞. Set τ∞ = limk→∞ τk , where τ∞ < τe. If we can show that τ∞ = ∞,
then τe = ∞ and (x1(t), x2(t), y(t)) ∈ R

3
+ for all t ≥ 0. Namely, to complete the proof, it is

sufficient to show that τ∞ = ∞. If this statement is false, then there is a constant T > 0
such that

τ∞ ≤ T .

Hence, there is an integer k1 > k0 such that

τk ≤ T , ∀k ≥ k1,

where k0 satisfies 1
k0

< xi(0) < k0, i = 1, 2, and 1
k0

< y(0) < k0.
Define a C2-function V : R3

+ → R+ by

V (x1, x2, y) =
(√

x1 – 1 –
1
2

log x1

)
+

(√
x2 – 1 –

1
2

log x2

)

+
(√

y – 1 –
1
2

log y
)

; (3.1)

the nonnegativity of this function can be seen from u – 1 – log u ≥ 0, ∀u.
Using the chain rule, we get

dαV
dtα

=
∂V
∂x1

dαx1

dtα
+

∂V
∂x2

dαx2

dtα
+

∂V
∂y

dαy
dtα

=
1
2

(
1√x1

–
1
x1

)
(ax2 – r1x1 – bx1)

+
1
2

(
1√x2

–
1
x2

)(
bx1 – r2x2 – b1x2

2 –
a1x2

2y
1 + mx2

2

)

+
1
2

(
1√y

–
1
y

)(
a2x2

2y
1 + mx2

2
– ry

)

=
1
2

(
√

x1 – 1)(–r1 – b) +
1
2

(
√

x2 – 1)
(

–r2 – b1x2 –
a1x2y

1 + mx2
2

)

+
1
2

(
√

y – 1)
(

a2x2
2

1 + mx2
2

– r
)

+
1
2

(
1√x1

–
1
x1

)
ax2

+
1
2

(
1√x2

–
1
x2

)
bx1. (3.2)

Now, we pay attention to the term 1
2 ( 1√x1

– 1
x1

)ax2. If x1 < 1, then 1
2 ( 1√x1

– 1
x1

)ax2 < 0, hence,
this term can be omitted from the right-hand side of the inequality. If x1 > 1, then 1

2 ( 1√x1
–

1
x1

)ax2 < 1
2 (√x1 – 1)ax2. Similarly, we have 1

2 ( 1√x2
– 1

x2
)bx1 < 1

2 (√x2 – 1)bx1. So we get the
following inequality:

dαV
dtα

≤ 1
2
[
r1 + b –

√
x1(r1 + b)

]
+

a
2

x2(
√

x1 – 1) +
b
2

x1(
√

x2 – 1)

+
1
2

[
–b1

3
√

x2
2 + b1x2 – r2

√
x2 + r2 –

a1

m

]
+

1
2

[
r +

(
a2

m
– r

)√
y
]
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≤ 1
2

[
b
2

x2
1 – bx1 –

√
x1(r1 + b) + r1 + b

]
+

1
2

[
r +

(
a2

m
– r

)√
y
]

+
1
2

[
a
2

x2
2 – b1

3
√

x2
2 + (b1 – a)x2 – r2

√
x2 + r2 –

a1

m

]

≤ M, (3.3)

where M is a positive constant. Then dαV ≤ M dtα . Therefore, on the one hand,

∫ τk∧T

0
dαV

(
x1(t), x2(t), y(t)

) ≤
∫ τk∧T

0
M dtα ≤ M

∫ T

0
dtα .

Using equality (2.2), we get

∫ T

0
dtα = α

∫ T

0
(T – t)α–1 dt, 0 < α ≤ 1,

which implies that

∫ τk∧T

0
dαV

(
x1(t), x2(t), y(t)

) ≤ Mα

∫ T

0
(T – t)α–1 dt = MTα .

On the other hand, using the differential relation dαf = �(1 + α) df , we have

∫ τk∧T

0
dαV =

∫ τk∧T

0
�(1 + α) dV

= �(1 + α)
[
V

(
x1(τk ∧ T), x2(τk ∧ T), y(τk ∧ T)

)
– V

(
x1(0), x2(0), y(0)

)]
.

Therefore

V
(
x1(τk ∧ T), x2(τk ∧ T), y(τk ∧ T)

) ≤ V
(
x1(0), x2(0), y(0)

)
+

MTα

�(1 + α)
. (3.4)

Set �k = {τk ≤ T} for k ≥ k1. Note that if at least one of x1(τk), x2(τk) and y(τk) equals
either k or 1

k , we know that V (x1(τk ∧ T), x2(τk ∧ T), y(τk ∧ T)) is no less than min{(√k –
1 – 1

2 ln k), ( 1√
k

– 1 – 1
2 ln 1

k )}. It then follows from (3.4) that

min

{(√
k – 1 –

1
2

ln k
)

,
(

1√
k

– 1 –
1
2

ln
1
k

)}

≤ V
(
x1(0), x2(0), y(0)

)
+

MTα

�(1 + α)
.

Letting k → ∞ leads to the contradiction

∞ > V
(
x1(0), x2(0), y(0)

)
+

MTα

�(1 + α)
= ∞.

This contradiction shows that τ∞ = ∞, which completes the proof. �
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4 The stability of the solution
In this section, by constructing an appropriate Lyapunov functional, we shall study the
stability of the solution of system (1.1).

Theorem 4.1 If (a2 – mr)(ab – r2(b + r1))2 > rb2
1(b + r1)2, then the positive equilibrium

(x∗
1, x∗

2, y∗) of system (1.1) is asymptotically stable, i.e., for any initial value (x1(0), x2(0),
y(0)) ∈ R

3
+, the solution of system (1.1) has the property that limt→+∞ x1(t) = x∗

1,
limt→+∞ x2(t) = x∗

2, limt→+∞ y(t) = y∗.

Proof Since (a2 – mr)(ab – r2(b + r1))2 > rb2
1(b + r1)2, then there is a positive equilibrium

(x∗
1, x∗

2, y∗) of system (1.1), and

r1 =
ax∗

2 – bx∗
1

x∗
1

, r2 =
bx∗

1
x∗

2
–

a1x∗
2y∗

1 + m(x∗
2)2 – b1x∗

2,

r =
a2(x∗

2)2

1 + m(x∗
2)2 .

System (1.1) can be rewritten as

dαx1

dtα
=

a
x∗

1

[
x1

(
x2 – x∗

2
)

– x2
(
x1 – x∗

1
)]

,

dαx2

dtα
=

b
x∗

2

[
x2

(
x1 – x∗

1
)

– x1
(
x2 – x∗

2
)]

– b1x2
(
x2 – x∗

2
)

+ a1x2
mx2x∗

2y∗(x2 – x∗
2) – x2(1 + m(x∗

2)2)(y – y∗) – y∗(x2 – x∗
2)

(1 + mx2
2)(1 + m(x∗

2)2)
, (4.1)

dαy
dtα

= a2y
(x2 + x∗

2)(x2 – x∗
2)

(1 + mx2
2)(1 + m(x∗

2)2)
(0 < α ≤ 1).

Define a Lyapunov function

V (x1, x2, y) = c1

(
x1 – x∗

1 – x∗
1 ln

(
x1

x∗
1

))

+ c2

(
x2 – x∗

2 – x∗
2 ln

(
x2

x∗
2

))

+ c3

(
y – y∗ – y∗ ln

(
y
y∗

))
,

where ci (i = 1, 2, 3) are positive numbers to be determined; the nonnegativity of this
function can be seen from the property that limt→+∞ x1(t) = x∗

1, limt→+∞ x2(t) = x∗
2,

limt→+∞ y(t) = y∗.
Then using the chain rule, we obtain

dαV
dtα

=
∂V
∂x1

dαx1

dtα
+

∂V
∂x2

dαx2

dtα
+

∂V
∂y

dαy
dtα

= c1

(
1 –

x∗
1

x1

)
a
x∗

1

[
x1

(
x2 – x∗

2
)

– x2
(
x1 – x∗

1
)]

+ c2

(
1 –

x∗
2

x2

)
b
x∗

2

[
x2

(
x1 – x∗

1
)

– x1
(
x2 – x∗

2
)]
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+ c2

(
1 –

x∗
2

x2

)
a1x2

mx2x∗
2y∗(x2 – x∗

2) – x2(1 + m(x∗
2)2)(y – y∗) – y∗(x2 – x∗

2)
(1 + mx2

2)(1 + m(x∗
2)2)

– c2

(
1 –

x∗
2

x2

)
b1x2

(
x2 – x∗

2
)

+ c3

(
1 –

y∗

y

)
a2y

(x2 + x∗
2)(x2 – x∗

2)
(1 + mx2

2)(1 + m(x∗
2)2)

= c1
(
x1 – x∗

1
) a

x∗
1

[(
x2 – x∗

2
)

–
x2

x1

(
x1 – x∗

1
)]

+ c2
(
x2 – x∗

2
) b

x∗
2

[(
x1 – x∗

1
)

–
x1

x2

(
x2 – x∗

2
)]

+ a1c2
(
x2 – x∗

2
)mx2x∗

2y∗(x2 – x∗
2) – x2(1 + m(x∗

2)2)(y – y∗) – y∗(x2 – x∗
2)

(1 + mx2
2)(1 + m(x∗

2)2)

– c2b1
(
x2 – x∗

2
)2 + a2c3

(
y – y∗) (x2 + x∗

2)(x2 – x∗
2)

(1 + mx2
2)(1 + m(x∗

2)2)
.

Set c1 = x∗
1

a , c2 = x∗
2

b , c3 = a1x∗
2y∗(1+m(x∗

2)2)
ba2(x2+x∗

2) . Then we have

dαV
dtα

=
x∗

1
a

(
x1 – x∗

1
) a

x∗
1

[(
x2 – x∗

2
)

–
x2

x1

(
x1 – x∗

1
)]

+
x∗

2
b

(
x2 – x∗

2
) b

x∗
2

[(
x1 – x∗

1
)

–
x1

x2

(
x2 – x∗

2
)]

+ a1
x∗

2
b

(
x2 – x∗

2
)mx2x∗

2y∗(x2 – x∗
2) – x2(1 + m(x∗

2)2)(y – y∗) – y∗(x2 – x∗
2)

(1 + mx2
2)(1 + m(x∗

2)2)

–
x∗

2
b

b1
(
x2 – x∗

2
)2 + a2

a1x∗
2y∗(1 + m(x∗

2)2)
ba2(x2 + x∗

2)
(
y – y∗) (x2 + x∗

2)(x2 – x∗
2)

(1 + mx2
2)(1 + m(x∗

2)2)

=
[

–
x2

x1

(
x1 – x∗

1
)2 + 2

(
x1 – x∗

1
)(

x2 – x∗
2
)

–
x1

x2

(
x2 – x∗

2
)2

]

–
x∗

2
b

[
b1 –

a1mx2x∗
2y∗ – a1y∗

(1 + mx2
2)(1 + m(x∗

2)2)

](
x2 – x∗

2
)2

+
a1x2x∗

2y∗(1 + m(x∗
2)2) – a1x2x∗

2y∗(1 + m(x∗
2)2)

b(1 + mx2
2)(1 + m(x∗

2)2)
(
x2 – x∗

2
)(

y – y∗)

≤ –
[√

x2

x1

(
x1 – x∗

1
)

–
√

x1

x2

(
x2 – x∗

2
)]2

–
x∗

2
b

[
b1 –

a1mx∗
2y∗ – a1y∗

(1 + m(x∗
2)2)

](
x2 – x∗

2
)2.

Then, from Lemma 2.3 and the condition of Theorem 4.1, the above implies dαV
dtα < 0. Thus

system (1.1) is asymptotically stable. The proof is complete. �

5 Numerical examples
In this section, we give numerical examples to illustrate the theoretical results above. The
simulation results are based on Adams–Bashforth–Moulton predictor–corrector scheme
[32] and step-length �t = 0.01.
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Example 5.1 Consider the following fractional order predator–prey system:

dαx1(t)
dtα

= ax2(t) – r1x1(t) – bx1(t),

dαx2(t)
dtα

= bx1(t) – r2x2(t) – b1x2
2(t) –

a1x2
2(t)y(t)

1 + mx2
2(t)

, (5.1)

dαy(t)
dtα

=
a2x2

2(t)y(t)
1 + mx2

2(t)
– ry(t) (0 < α ≤ 1),

and let α = 0.95, a = 6, a1 = 2
5 , a2 = 3, b = 2, b1 = 4, r1 = r2 = r = 1

2 , m = 2. It is easy to show
that

(a2 – mr)
(
ab – r2(b + r1)

)2 – rb2
1(b + r1)2 = 181.125 > 0.

Hence, system (5.1) has a unique coexistence equilibrium

x∗
1 =

a
b + r1

x∗
2 =

6
5

, x∗
2 =

√
r

a2 – mr
=

1
2

,

y∗ =
a2x∗

2
ra1

(
ab

b + r1
– r2 – b1x∗

2

)
=

69
4

,

which is asymptotically stable. The results are verified by the numerical simulations in
Figs. 1–3.

Example 5.2 Consider the following fractional order predator–prey system:

dαx1(t)
dtα

= ax2(t) – r1x1(t) – bx1(t),

dαx2(t)
dtα

= bx1(t) – r2x2(t) – b1x2
2(t) –

a1x2
2(t)y(t)

1 + mx2
2(t)

, (5.2)

dαy(t)
dtα

=
a2x2

2(t)y(t)
1 + mx2

2(t)
– ry(t) (0 < α ≤ 1),

Figure 1 Time responses of state variable x1(t) with α = 0.95
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Figure 2 Time responses of state variable x2(t) with α = 0.95

Figure 3 Time responses of state variable y(t) with α = 0.95

where α = 0.75, and we take a = 2, a1 = 0.1, a2 = 1, b = 0.5, b1 = 1.5, r1 = r2 = r = 0.2, m = 1.
By a simple calculation, we have

(a2 – mr)
(
ab – r2(b + r1)

)2 ≈ 0.5917 > 0.2205 = rb2
1(b + r1)2.

It is easy to check that the condition of Theorem 4.1 is satisfied. So, system (5.2) has a
unique coexistence equilibrium

x∗
1 =

a
b + r1

x∗
2 ≈ 1.4286, x∗

2 =
√

r
a2 – mr

= 0.5,

y∗ =
a2x∗

2
ra1

(
ab

b + r1
– r2 – b1x∗

2

)
≈ 11.9643,

which is asymptotically stable. Simulated by Matlab, Figs. 4–6 show the time responses of
the variables x1(t), x2(t) and y(t) of system (5.2).
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Figure 4 Time responses of state variable x1(t) with α = 0.75

Figure 5 Time responses of state variable x2(t) with α = 0.75

Figure 6 Time responses of state variable y(t) with with α = 0.75
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